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The Generalized Tikhonov Regularization Method for
High Order Numerical Derivatives

F. Yang1, C.L. Fu2 and X.X. Li1

Abstract: Numerical differentiation is a classical ill-posed problem. The gener-
alized Tikhonov regularization method is proposed to solve this problem. The error
estimates are obtained for a priori and a posteriori parameter choice rules, respec-
tively. Numerical examples are presented to illustrate the validity and effectiveness
of this method.
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1 Introduction

Numerical differentiation is a classical ill-posed problem in the sense that arbi-
trarily “small" differences in the input data can result in arbitrarily “large" errors
in the approximate derivatives [Kirsch (1996)], and it is very important in science
research and practical application. For example, the problems in image process
[Deans (1983)], solving Volterra integral equation [Cheng, Hon and Wang (2004);
Gorenflo and Vessella (1991)] and identification [Hanke and Scherzer (1999):] had
been focused on gaining the numerical differentiation. A number of effective meth-
ods have been appeared in the past years: difference methods [Groetsch (1991); Qu
(1996); Ramm and Smirnova (2001); Anderssen and Hegland (1999)], Tikhonov
regularization methods [Cullum (1971); Hanke and Scherzer (2001); Wang, Jia
and Cheng (2002)], mollification methods [Háo (1994); Murio, MejÃa and Zhan
(1998)], Wavelets method [Fu, Feng, and Qian (2010); Dou, Fu and Ma (2010)],
Fourier method [Qian, Fu, Xiong and Wei (2006):] and quasi-reversibility method
[Qian, Fu and Feng (2006)].

The major innovation of the present paper is to give a posteriori parameter choice
rule. In [Dou, Fu and Ma (2010); Fu, Feng and Qian (2010); Qian, Fu, Xiong
and Wei (2006); Qian, Fu and Feng (2006)], the regularization parameters which
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depend on the noise level and the a priori bound are selected by the a priori rule.
But there is a defect for any a priori method, i.e., the a priori choice of the reg-
ularization parameter depends seriously on the a priori bound E of the unknown
solution. However, the a priori bound E cannot be known exactly in practice, and
working with a wrong constant E may lead to the bad regularized solution. We
will consider not just the a priori choice of the regularization parameter for the
generalized Tikhononv regularization method, but also the a posteriori choice of
the regularization parameter will be given. Under there parameter choice rules, we
obtain the Hölder type error estimates which are order optimal.

The outline of the paper is as follows. In Section 2, we give the method to construct
approximation solution. The convergence results are given in Section 3. In Section
4, some numerical examples are proposed to show the effectiveness for this method.

2 Ill-posedness of problem and regularization

In this section, we analyze the ill-posedness of numerical differentiation and discuss
how to stabilize the numerical derivatives. We consider the function f (x) ∈ L2(R).
Let f̂ be the Fourier transform of f , i.e.,

f̂ (ξ ) =
1√
2π

∫
∞

−∞

f (x)e−iξ xdx. (1)

Now we consider the kth order derivative of function f , where k = 1,2, · · · . We
denote f (k)(x) = dk f (x)

dxk . Taking the Fourier transform, we have

f̂ (k)(ξ ) = (iξ )k f̂ (ξ ), (2)

or, equivalently,

f (k)(x) =
1√
2π

∫
∞

−∞

(iξ )k f̂ (ξ )eiξ xdξ . (3)

Note that f (x)∈Hk(R), the above express is significant. But in practice, in general,
we do not know the exact data f (x), instead of it, only a measured data fδ (x) which
merely belongs to L2(R) satisfies

‖ fδ − f‖ ≤ δ , (4)

where ‖ ·‖ denotes L2-norm, the constant δ > 0 represents a noise level. So, gener-
ally, the expression (3) for fδ (x) has no sense and some regularization methods are
necessary for the numerical derivative. However, before doing that, we impose an
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a priori bound on the input data (this is necessary in solving ill-posed problems),
i.e.,

‖ f‖H p ≤ E, p≥ 0, (5)

where E > 0 is a constant, ‖·‖H p denotes the norm in Sobolev space H p(R) defined
by

‖ f (·)‖H p :=
(∫

∞

−∞

(1+ξ
2)p| f̂ (ξ )|2dξ

)1/2

. (6)

From (3), we can obtain

f (k)(x) =
1√
2π

∫
∞

−∞

(iξ )k f̂ (ξ )eiξ xdξ := L f . (7)

Note that, |(iξ )k| = |ξ |k. Therefore, when we consider our problem in L2(R), the
exact data function f̂ (ξ ), must decay rapidly as ξ→∞. Such a decay is not likely to
occur in the Fourier transform of measured noisy temperature history fδ (x). In the
following, we apply the generalized Tikhonov regularization method to reconstruct
a new function fµ,δ (x) from the perturbed data fδ (x) which minimizes the quantity

Φ( f ) = ‖ f − fδ‖2 +µ‖L f‖2
H p , (8)

where µ is the regularization parameter. It can be verified that f̂µ,δ (ξ ) is the solu-
tion of the following equation [Kirsch (1996)]:

(I +µ(1+ξ
2)pL̂∗L̂) f̂µ,δ = f̂δ . (9)

From (7), we obtain,

L̂ = (iξ )k, L̂∗ = (iξ )k. (10)

Due to (9) and (10), we obtain

f̂µ,δ (ξ ) =
1

1+µ(1+ξ 2)p|ξ |2k f̂δ (ξ ). (11)

Then the approximation solution can be given as

f̂ (k)
µ,δ (ξ ) = (iξ )k 1

1+µ(1+ξ 2)p|ξ |2k f̂δ (ξ ). (12)

So

f (k)
µ,δ (x) =

1√
2π

∫
∞

−∞

eiξ x(iξ )k 1
1+µ(1+ξ 2)p|ξ |2k f̂δ (ξ )dξ = L fµ,δ . (13)
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3 Choice of regularization parameter and convergence results

In this section, we consider an a priori strategy and a posteriori choice rule to find
the regularization parameter. Under each choice of the regularization parameter,
convergence estimates can be obtained. We first give some useful Lemmas.
Lemma 3.1. If ξ ∈ R, p > k, the following inequality holds:

|ξ |2p

(1+ξ 2)p|ξ |2k ≤ 1. (14)

Proof. As |ξ | ≥ 1, we obtain

|ξ |2p

(1+ξ 2)p|ξ |2k ≤
1
|ξ |2k ≤ 1. (15)

As |ξ | ≤ 1, we obtain

|ξ |2p

(1+ξ 2)p|ξ |2k ≤ |ξ |
2(p−k) ≤ 1. (16)

Combining (15) with (16), we obtain

|ξ |2p

(1+ξ 2)p|ξ |2k ≤ 1. (17)

Lemma 3.2. If ‖L f‖H p ≤ E, then we have

‖L f‖ ≤ ‖ f‖
p−k

p ‖L f‖
k
p
H p . (18)

Proof. Using the Hölder inequality and (14), we obtain

‖L f‖2 = ‖L̂ f‖2 =
∫

∞

−∞

∣∣(iξ )k f̂ (ξ )
∣∣2 dξ =

∫
∞

−∞

|ξ |2k| f̂ (ξ )|
2k
p | f̂ (ξ )|

2(p−k)
p dξ

≤ [
∫

∞

−∞

(
|ξ |2k| f̂ (ξ )|

2k
p
) p

k dξ ]
k
p [
∫

∞

−∞

(
| f̂ (ξ )|

2(p−k)
p
) p

p−k dξ ]
p−k

p

= [
∫

∞

−∞

|ξ |2p| f̂ (ξ )|2 dξ ]
k
p [
∫

∞

−∞

| f̂ (ξ )|2 dξ ]
p−k

p

= ‖ f̂‖
2(p−k)

p [
∫

∞

−∞

|ξ |2p(1+ξ
2)−p(1+ξ

2)p|ξ |−2k|ξ |2k| f̂ (ξ )|2 dξ ]
k
p

= ‖ f‖
2(p−k)

p [
∫

∞

−∞

|ξ |2p(1+ξ
2)−p|ξ |−2k(1+ξ

2)p|L̂ f |2 dξ ]
k
p

≤ ‖ f‖
2(p−k)

p sup
ξ∈R

|ξ |2p

(1+ξ 2)p|ξ |2k )
k
p ‖L f‖

2k
p

H p

≤ ‖ f‖
2(p−k)

p ‖L f‖
2k
p

H p .
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So

‖L f‖ ≤ ‖ f‖
p−k

p ‖L f‖
k
p
H p . (19)

3.1 The a priori choice rule

We assume that we have obtained an E in (5), then we have Theorem 3.3.

Theorem 3.3. Let f k(x) given by (7) be the exact solution and f k
µ,δ (x) given by

(13) be the general Tikhonov regularized approximation of f k(x). Let fδ (x) be
measured data satisfying (4) and the a priori condition (5) holds. If we select

µ = (
δ

E
)2, (20)

then there holds the following error estimate:

‖ f (k)(·)− f (k)
µ,δ (·)‖ ≤ (

√
2+1)δ

p−k
p E

k
p . (21)

Proof: For fµ,δ (x) is the minimizer of (8), we obtain

‖ fµ,δ − fδ‖2 ≤Φ( fµ,δ )≤Φ( f ) = ‖ f − fδ‖2 +µ‖L f‖2
H p ≤ 2δ

2 (22)

and

‖L fµ,δ‖2
H p ≤

1
µ

Φ( fµ,δ )≤
1
µ

Φ( f ) =
1
µ
‖ f − fδ‖2 +‖L f‖2

H p ≤ 2E2. (23)

Due to (4) and (22), we obtain

‖ f − fµ,δ‖ ≤ ‖ f − fδ‖+‖ fδ − fµ,δ‖ ≤ (
√

2+1)δ . (24)

Due to (5) and (23), we obtain

‖L( f − fµ,δ )‖H p ≤ ‖L f‖H p +‖L fµ,δ‖H p ≤ E +
√

2E = (
√

2+1)E. (25)

Due to Lemma 3.2, we obtain,

‖ f (k)− f (k)
µ,δ‖ ≤ ‖L f −L fµ,δ‖ ≤ ‖ f − fµ,δ‖

p−k
p ‖L( f − fµ,δ )‖

k
p
H p

≤ (
√

2+1)δ
p−k

p E
k
p .
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3.2 The a posteriori choice rule

Morozov’s discrepancy principle is used as a posteriori rule, i.e. choosing µ = µ2
as the solution of the following equation:

‖ fµ,δ − fδ‖= δ . (26)

To establish existence and uniqueness of solution for equation (26), we need the
following lemma:

Lemma 3.4. Let ρ(µ) := ‖ fµ,δ − fδ‖, then for δ < ‖ fδ‖, there hold
(a) ρ(µ) is a continuous function;
(b) limµ→0+ρ(µ) = 0;
(c) limµ→+∞ρ(µ) = ‖ fδ‖;
(d) ρ(µ) is a strictly increasing function.

The proof is very easy and we omit it here.

Theorem 3.5. Assume the conditions (4), (5) hold and take the solution µ of Eq.
(26) as the regularization parameter, then there holds the following error estimate:

‖ f (k)− f (k)
µ,δ‖ ≤ 2δ

p−k
p E

k
p . (27)

Proof: Since fµ2,δ (x) is the minimizer of (8), we obtain

‖ fµ2,δ − fδ‖2 +µ2‖L fµ2,δ‖
2
H p = Φ( fµ2,δ )≤Φ( f ) = ‖ f − fδ‖2 +µ2‖L f‖2

H p . (28)

Due to (26) and (28), we obtain

‖L fµ2,δ‖
2
H p ≤ ‖L f‖2

H p +
1
µ2

(‖ f − fδ‖2−δ
2)≤ ‖L f‖2

H p ≤ E2. (29)

So

‖L fµ2,δ −L f‖H p ≤ ‖L fµ2,δ‖H p +‖L f‖H p ≤ 2E. (30)

Due to (26) and (4), we obtain

‖ fµ2,δ − f‖ ≤ ‖ fµ2,δ − fδ‖+‖ fδ − f‖ ≤ 2δ . (31)

Due to Lemma 3.2, (30) and (31), we obtain

‖ f (k)− f (k)
µ2,δ
‖= ‖L f −L fµ2,δ‖ ≤ ‖ f − fµ2,δ‖

p−k
p ‖L( f − fµ2,δ )‖

k
p
H p

≤ 2δ
p−k

p E
k
p .

The proof of Theorem 3.5. is complete.
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4 Several numerical examples

In this section, we will test three kinds of functions to verify the effect of the pro-
posed algorithm. Moreover, we would like to compare numerical results of the a
posteriori parameter choice (26) with one of the a priori parameter choice rule
(20). The bisection method is used to solve the Eq. (26). In the following experi-
ments, we consider the numerical derivatives only in the finite interval x ∈ [0,1].
Suppose that the sequence { f j}n

j=0 represents samples from the function f (x) on
an equidistant grid, then we add a random uniform perturbation to each data, which
forms the vector fδ , i.e.,

fδ = f + ε randn(size( f )), (32)

where the function “ randn(·)" generates arrays of random whose elements are
normally distributed with mean 0, variance σ2 = 1. “ Randn(size(g)) " returns an
array of random entries that is of the same size as g. The total noise level δ can be
measured in the sense of Root Mean Square Error(RMSE) according to

δ = ‖ fδ − f‖l2 = (
1
n

n

∑
i=1

( fi− fi,δ )
2)

1
2 . (33)

Example 1. First we consider the function

f (x) = exp(2− 1
x(1− x)

). (34)
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Figure 1: The comparison of the numerical effects between the first derivative solu-
tion and its computed approximations with Example 1: (a) ε = 0.01, (b) ε = 0.001.
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Figure 2: The comparison of the numerical effects between the second derivative
solution and its computed approximations with Example 1: (a) ε = 0.01, (b) ε =
0.001.
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Figure 3: The comparison of the numerical effects between the third derivative
solution and its computed approximations with Example 1: (a) ε = 0.01, (b) ε =
0.001.

It is clear that the above function f ∈ H p(R), p≥ 0, and this fact is responsible for
good numerical results.
Example 2. Consider the function

f (x) = sin(10πx). (35)
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Figure 4: The comparison of the numerical effects between the first, second, third
and fourth derivatives and their computed approximations with Example 2: ε = 0.1:
(a) the first derivative and its approximations. (b) the second derivative and its
approximations. (c) the third derivative and its approximations. (d) the fourth
derivative and its approximations.

Example 3. Consider a non-smooth function

f (x) =


0, 0≤ x≤ 1

5 ,

2x2− 4
5 x+ 2

25 ,
1
5 < x≤ 1

2 ,

−2x2 + 16
5 x− 23

25 ,
1
2 < x≤ 4

5 ,
9

25 ,
4
5 < x≤ 1.

(36)

From Figs. 1-5, we firstly find that the smaller ε , the better the computed approxi-
mation is, and the smaller k is, the better the computed approximation is. There are
consistent with our theoretical analysis. Moreover, we can also easily find that the
a posteriori parameter choice rule works better than the a priori parameter choice
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Figure 5: The comparison of the numerical effects between the first derivative solu-
tion and its computed approximations with Example 3: (a) ε = 0.01, (b) ε = 0.001.

rule. Finally, From Figs. 1-5, it can be seen that the numerical solutions of Exam-
ple 3 are less ideal than these of Examples 1 and 2. It is not difficult to see that
the well-known Gibbs phenomenon and the recovered data near the discontinuities
points are not accurate.
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