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Homotopy Method for Parameter Determination of Solute
Transport with Fractional Advection-dispersion Equation

Hui Wei1,2,3, Wen Chen1,2,4 and HongGuang Sun1,2

Abstract: The unknown parameters are critical factors in fractional derivative
advection-dispersion equation describing the solute transport in soil. For exam-
ples, the fractional derivative order is the index of anomalous dispersion, diffusion
coefficient represents the dispersion ability of media and average pore-water veloc-
ity denotes the main trend of transport, etc. This paper is to develop a homotopy
method to determine the unknown parameters of solute transport with spatial frac-
tional derivative advection-dispersion equation in soil. The homotopy method can
be easily developed to solve parameter determination problems of fractional deriva-
tive equations whose analytical solutions are difficult to obtain. The sigmoid func-
tion is involved to adjust the homotopy parameter during the iterative processes.
Numerical results show that the presented method is efficient and feasible in sev-
eral benchmark examples.

Keywords: Homotopy method, Parameter determination, Fractional advection-
dispersion equation, Sigmoid function.

1 Introduction

Many studies indicated that the conventional advection-dispersion equation (ADE)
can be obtained based on Fick’s law, for example, to simulate the contaminant
transport in homogenous media. However, most natural porous media (i.e., natural
soils or aquifers) are heterogeneous. Hereby the transport processes may no longer
follow Fick’s second law and should be called anomalous dispersion, due to the
heterogeneity of media. The distribution of the contaminant concentration versus
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time is no longer in Gaussian form. The measured concentrations are usually much
higher than those estimated by ADE at the early stage of the breakthrough curves,
this phenomena was so called as anomalous or non-Fickian transport [Lévy and
Berkowitz (2003)]. The classical ADE fails to model the anomalous character of
the solute transport in heterogeneous soil and other medium [Fomin et al. (2011)].
To more accurately describe the non-local property of anomalous diffusion (super-
diffusion) in soil, fractional derivative has become a promising approach in recent
years [Berkowitz and Scher (1997); Cortis and Berkowitz (2004); Fomin et al.
(2011); Klafter et al. (1987); Metzler Ralf and Klafter (2000); Metzler R et al.
(1994)].

Non-local diffusion processes can be governed by a generalized space-fractional
diffusion equation. It is obtained from the standard linear diffusion equation by
replacing the second-order space derivative with a suitable fractional derivative op-
erator [Gorenflo and Mainardi (1998)]. Based on Lévy motion theory, Benson et
al. [Benson D A (1998); Benson D A et al. (2000); Benson David A et al. (2001)]
described the spatial and temporal distribution of contaminant concentration by a
fractional advection-dispersion equation (FADE). The one-dimensional FADE for
describing non-reactive contaminant transport is given by
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where C is the solute concentration, v is the average pore-water velocity, x is the
spatial coordinate, t is the time, D is the diffusion coefficient with dimension of
[LαT−1], γ(−1 ≤ γ ≤ 1) is the skewness, i.e. the relative weight of solute particle
forward versus backward transition probability, and α(1 < α ≤ 2) is the order of
fractional derivative. The above FADE reduces to ADE when α equals to 2. The
definitions of the fractional derivative operator can be [Samko et al. (1993)]
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The model (1) has been used to simulate the non-Fickian process for conservative
solute by Pachepsky [Pachepsky et al. (2000)] and Huang [Huang G et al. (2005)].
For the, the more popularity used FADE model (symmetrical dispersion γ = 0) can
be written as follow [Huang G et al. (2005)]
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Nowadays, parameter determination has been caught more and more attention with
development of the fractional derivative model. Variety of softwares have been
developed to estimate the parameters for ADE models, i.e., CXTFIT [Toride et al.
(1995)]. But, to the best of our knowledge, very limited literatures on parameter
estimation of FADE model can be found.

Huang [Huang G et al. (2005)] developed a software named as FADEMain based
on FORTRAN, to estimate the parameters of Eq. (4): the fractional order α , the
dispersive coefficient D and the average pore-water velocity v. FADEMain is based
on the nonlinear least square fitting algorithm [Press et al. (1992)]. Huang [Guan-
hua (2003)] employed the analytical solution of Eq. (4) to get the Hesse matrix
in their method. However, analytical solutions of fractional derivative models are
usually difficult to obtain or too complex to use. Therefore, Huang’s method is
difficult to be extended to solve other problems. Hereby, based on the homotopy
method, we develop a numerical method to determine the unknown parameters of
Eq.(4). The presented method does not have to involve the analytical solution of
direct problem.

The idea of homotopy, which is a basic concept of algebraic topology [Watson
(1979, 1989)], has been widely used to find the approximate solution of nonlinear
differential equation. It can be able to eliminate the drawback of the traditional
numerical iteration which easily falls into local convergence and broaden the rigor-
ous restrictions on selecting initial guess. The homotopy method has been proved
to be efficient and large-scale convergent, and successfully used to solve the non-
linear complementarity problem [Watson (1979)], fractional differential equations
[Odibat and Momani (2008)], the optimal projection equations problems [ŽIGIĆ
et al. (1992)], multiobjective programming problem [Yao and Song (2013)] and
highly-nonlinear (buckling) structural mechanics problem [Elgohary et al. (2014)].

The rest of this paper is organized as below. Section 2 introduces the parameter
determination problem and the homotopy method. In section 3, two examples are
involved to illustrate the feasibility and efficiency of the homotopy method. Finally,
some conclusions are summarized in section 4.

2 Methodology

In this section, the parameter determination problem of FADE is presented. Then
the homotopy method is introduced to solve this problem.
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2.1 Parameter determination

We consider unabsorbed solute transport in a soil column with symmetrical spatial
FADE model in a finite domain

∂C
∂ t

=−v
∂C
∂x

+D
∂ αC
∂xα

,0 < x < L,1 < α < 2, (5)

subject to the following initial and boundary conditions

C(x,0) = 0,0≤ x≤ L, (6){
C(0, t) =C0, t > 0
∂C
∂x

∣∣∣
x=L

= 0, t > 0 . (7)

If all the parameters of the model (5)-(7) are given, we can solve the concentration
distribution with time and space, it is so called the direct problem. For the direct
problem, we can employ numerical methods to get the numerical solution, such as
finite difference scheme [Lin and Xu (2007); Meerschaert and Tadjeran (2004); Su
et al. (2009); Yuste (2006)], finite element method [Deng (2008)]. Actually, not all
the parameters of the model can be determined in prior or measured directly. Thus,
we need to determine the unknown parameters via mathematical algorithms by
adding some additional conditions, which is so-called the inverse problem, namely,
parameter determination. From the experiences of parameter inversion of ADE,
the measured breakthrough curves of solute in soil column experiments can be
considered as additional conditions in this article.

The observed concentration data versus times at a particular observation point, the
breakthrough curve, can be denoted as

C̃obs(ti), i = 1,2, · · ·N, (8)

Denote the unknown parameters, the fractional derivative order α , diffusion coef-
ficient D and average pore-water velocity v as a parameter vector p = (α,D,v)T .
Construct an objective function as follow

F(p) =
∥∥∥C̃p− C̃obs

∥∥∥ , (9)

where C̃obs =
(

C̃obs(t1),C̃obs(t2), · · · ,C̃obs(tN)
)T

represents the observed data, C̃p =(
C̃p(p, t1),C̃p(p, t2), · · · ,C̃p(p, tN)

)T
represents the computed results under the es-

timated parameter vector p = (α,D,v)T , ‖·‖ represents a norm. To determine the
unknown parameters, we can minimize the objective function (9) to get the optimal
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solution. Thus the parameter determination problem is converted into a nonlin-
ear optimization problem. When we choose l2-norm, the problem is reduced to a
nonlinear least square problem

min
p

F(p) =
∥∥∥C̃p− C̃obs

∥∥∥2
. (10)

As we known, the solution of the problem (10) nonlinearly depends on the un-
known parameters: the fractional derivative order α , the diffusion coefficient D
and the average pore-water velocity v. Therefore, the problem (10) is ill-posed in
the sense of Hadamard [Tikhonov (1977)]. In this situation, the solution of this
problem exists but may not be unique. However, the solution should be unique if
the range of the exact solution would be known a prior. Namely, we can obtain the
approximate solution in the neighborhood domain of the exact solution by applying
appropriate numerical methods, the details of prove can be referred to references
[Isakov (1998); Li (2007.12); Ma (2005.5)] .

2.2 Homotopy method

In this section, the homotopy method is introduced to determine the parameters of
FADE models of solute transport in soil column.

Consider a nonlinear operator equation

F(x) = 0. (11)

Let F : X1→ X2 be a Fréchet differentiable operator, mapping a Banach space X1
to a Banach space X2, x∗ be a exact solution of the problem (11), x(0) be a initial
approximate value of the iterative process. The thought of the homotopy method is
to include a parameter λ and construct a mapping H, such that

1. For λ = 0, x(0) is the solution of equation H(x,λ ) = F(x(0)) = 0, which
corresponds to the initial value x(0);

2. For λ = 1, x(1) is the solution of equation H(x,1) = F(x(1)) = 0, which
corresponds to the exact solution x∗;

3. For 0≤ λ ≤ 1, the solution x(λ )of the homotopy equation H(x,λ )= 0 exists,
and is changed from x(0) to x(1) as λ changing from 0 to 1.

where x(λ ), the solution of the nonlinear equation (11), can be called the homotopy
path, which is a function with respect to the homotopy parameter λ . There are two
approaches to obtain the optimal solution by tracking the homotopy path. One is
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starting from the homotopy equation; another one is based on the initial value prob-
lem of differential equation. These two approaches are equivalent. In this study,
we consider starting from the homotopy equation. For the parameter determination
problem (10), differentiating the form (10) with p, and let it equal to 0, we have(

∂ C̃p

∂p

)T (
C̃p− C̃obs

)
= 0. (12)

Thus the nonlinear inverse problem is converted to finding zero points of equations
(12). The problem (12) is equivalent to the nonlinear least square problem (10).

Based on the homotopy method, we construct fixed homotopy equations

H(p,λ ) = λ

(
∂ C̃p

∂p

)T (
C̃p− C̃obs

)
+(1−λ )(p−p(0)) = 0, (13)

where p(0) is the initial guess value and λ the homotopy parameter. When λ = 1,
the problem (13) is reduced to the problem (12). Based on the homotopy method,
we can find a tracking path p(λ ), such that, the parameter vector tends to the op-
timal solution when λ is changed from 0 to1. The convergence of the homotopy
method can be referred to the references [Cui (2003); Garcia and Zangwill (1981)].
As we known, the observed data usually contain noisy data. Thus the homotopy
parameter is usually a positive constant, which is very close but not equal to 1.

Let pn+1 be the (n+1)-th iteration parameter vector, and then expanding C̃p(pn+1, ti)
in Taylor series near the point pn, we have

C̃p(pn+1, ti)≈ C̃p(pn, ti)+
∂ C̃p

∂p

∣∣∣∣∣
n

(
pn+1−pn) . (14)

Substituting the relation (14) into (13) and replacing p(0) by pn, we have

λ

(
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∣∣∣∣∣
n

)T [
∂ C̃p

∂p

∣∣∣∣∣
n

(
pn+1−pn)+ C̃p− C̃obs

]
+(1−λ )

(
pn+1−pn)= 0. (15)

Denote the gradient matrix as G=
∂ C̃p
∂p

∣∣∣
n

and the increment dp= pn+1−pn, rewrite
the relation (15) as follows

λGT Gdp+GT
(

C̃p− C̃obs

)
+(1−λ )dp = 0. (16)

Then the increment dp can be obtained by solving the following equation[
λGT G+(1−λ )I

]
dp =−λGT

(
C̃p− C̃obs

)
(17)
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According to Eq.(17), we can see that λGT G+(1−λ )I is nonsingular when 0 <
λ < 1. Thus, a nonlinear inverse problem is converted to a well-posed problem.
The derivatives of the fitted concentration with respect to the parameter p j ( j =
1,2, · · · ,M) are evaluated by

∂C̃p(ti)
∂ p j

=
C̃p(p1, p2, · · · , p j + τ, · · · , pM, ti)−C̃p(p1, p2, · · · , p j, · · · , pM, ti)

τ
. (18)

The current setting for the small interval τ is 0.01 for all parameters, which can
be appropriate for most cases [Toride et al. (1995)]. Hence, G is a N×M matrix

and Gi j =
∂C̃p(ti)

∂ p j
. We can obtain the best fitted solution of the original problem by

iterative process with Eq. (17).

However, there still exists a key problem-how to choose the homotopy parameter.
In this study, we involve a sigmoid function to adjust the homotopy parameter.
More details of this method can referred to refs [Cui (2003); Fan and Yu (2008);
Han Bo et al. (1991); Han Hua et al. (2004); Watson (1989); ŽIGIĆ et al. (1992)].

A sigmoid function can be expressed as follow

λ (n) =
1

1+ e−θn , (19)

where θ is a inclination coefficient. The sigmoid function has an “S” shape, see
Fig. 1, which satisfies the following properties:

1. The sigmoid function is continuous and smooth;

2. The range of the sigmoid function (19) is (0,1), and lim
n→∞

λ (n) = 1 and

lim
n→−∞

λ (n) = 0 hold.

Based on the above-mentioned two properties of the sigmoid function, we can ad-
just the homotopy parameter by using the sigmoid function during the iterative
process. The modified homotopy parameters can be chosen as follow

λ
(k) =

1
1+ e−βk , (20)

where k represents thek-th iteration, β is the modified parameter, in general, 0 <
β < 1.

In fact, for practical problems, the measurement data usually contain noise, namely

C̃obs = C∗obs +σ , (21)
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Figure 1: The sigmoid function.

where C∗obs represents the concentration without noise, and σ denotes the measure-
ment noise. Let ∆C = C̃p−C∗obs, the formula (17) can be rewritten as[
λGT G+(1−λ )I

]
dp+λGT (∆C−σ) = 0 (22)

Applying the singular value decomposition, the singular value decomposition of
the matrix G ∈ RN×M (N ≥M) is a decomposition of the form

G = UΣVT =
N

∑
i=1

uisivT
i (23)

where U = (u1,u2, ...,uN) and V = (v1,v2, ...,vN) are matrices with orthonormal
columns, UT U = VT V = I, and where Σ = diag(s1,s2, ...,sN) had non-negative
diagonal elements appearing in non-increasing order such that

s1 ≥ s2 ≥ ...≥ sN ≥ 0 (24)

Then the increment dp can be obtained as

dp=
N

∑
i=1

λ siuT
i ∆C

λ s2
i +(1−λ )

vi−
N

∑
i=1

λ siuT
i σ

λ s2
i +(1−λ )

vi (25)

From the formula (25), we can see that the homotopy parameter should be an appro-
priate value to be effectively against the effect of the measurement noise. Note that
the role of the homotopy parameter is similar to the role of regularization parameter
in regularization method.

Now the strategies of the homotopy method to solve the parameter determination
problem are given as follow:
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1. Given an initial guess parameter vector p(0), the iteration termination crite-
rion ε(or setting the maximum iterations), the modified parameterβ , and set
k = 0;

2. Use the implicit finite difference to solve the direct problem, and then obtain
the concentration values C(p(k), ti)i = 1,2, · · · ,N; if

∥∥∥C̃p− C̃obs

∥∥∥ < ε , then

p(k) should be the finial regularization solution of the original problem, end;
Otherwise, go to the step (3);

3. Select a appropriate homotopy parameter λ (k), and calculate G(k) by the re-
lation (18) and dp(k) by using the relation(17), and then set k = k+1;

4. Let p(k+1) = p(k)+dp(k), then go to the step (2).

The homotopy method is a large-scale convergence method, which have made im-
portant contributions in nonlinear problems of real-world applications. One may
find more details about this method in the references [Han Bo et al. (1991); Han
Hua et al. (2004)].

Note that we employ the implicit finite difference method proposed by Meerschaert
[Meerschaert and Tadjeran (2004)] to solve the direct problem in this study. All
the programs are run in Matlab 2011b environment, Windows 7, 32 bits, P6000
@1.87GHz, RAM 2.00GB.

3 Examples

To reflect the goodness-of-fit, we employ the coefficient of determination r2and the
root mean square error (RMSE)

r2 = 1−

N
∑

i=1

[
C̃p(ti)−C̃obs(ti)

]2

N
∑

i=1

[
C̃obs(ti)−Cobs

]2
(26)

RMSE =

√
1
N

N

∑
i=1

[
C̃p(ti)−C̃obs(ti)

]2
(27)

where Cobs is the average value of the observations C̃obs(ti), i = 1,2, · · ·N, N is the
number of observed concentration data at a particular observation point.

Example 1
To examine the convergence of the homotopy method with initial guess value, we
test different initial guess values in this example. Firstly, we choose the exact
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parameter vector as p = (α,D,v)T = (1.78,0.55,1.05)T , the distance L=100cm,
the total time T=270 minutes, calculate the breakthrough curve value at every 5
minutes by using the implicit finite difference method, which can be considered
as the measured data. Then we employ the homotopy method under the measured
data to determine the unknown parameters α , D, v. In this example, the homotopy
parameter is chosen as λ (k) = 1

1+e−0.5k , and the iteration termination RMSE = 10−12.

Tab. 1 shows the results under different initial guess values. From Tab. 1, the
parameters can be obtained very well under five initial guess values expect the last
one. From the results of the first five groups, RMSE reaches 10−13 under appro-
priate initial guess value and the determination coefficient tends to 1. But the last
one may be a local optimal solution of this problem. Thus, choosing an appropriate
initial guess value is very necessary for the present method. The homotopy method
is a wide-ranged convergence method, but sometime it converges to a local optimal
solution. In our study, we test variety of initial guess values to insure the results
correct.

Fig. 2 shows the iterative process when we choose the first initial guess value in
Tab. 1: the fractional derivative order α , the diffusion coefficient D, the average
pore velocity v and the RMSE changes with the iteration step (the maximum itera-
tions is 60 steps). From Fig. 2, we can see that the iterative process is stable and
fast-convergent. Fig. 3 shows the inversion result compares to the measured data,
which shows that the fitted curve is well-fitted with the measured data.

Table 1: The inversion results under different initial guess values.

No.
Initial guess value

Iterations
Inverse results

RMSE r2
α D v α D v

1 1.500 1.010 1.000 21 1.780 0.550 1.050 7.9794e-014 1.000
2 1.500 0.010 0.300 21 1.780 0.550 1.050 3.1874e-013 1.000
3 1.500 5.010 4.300 22 1.780 0.550 1.050 4.1221e-014 1.000
4 1.800 9.010 10.300 22 1.780 0.550 1.050 7.5221e-013 1.000
5 1.800 20.000 1.000 24 1.780 0.550 1.050 3.3619e-014 1.000
6 1.800 1.100 10.500 300 1.065 0.470 1.408 0.0014 1.000

Example 2
We consider a laboratory experiment conducted through 1250cm long, horizontally
placed column packed with heterogeneity sandy soil [Huang K et al. (1995)]. NaCl
was used as the tracer, the concentrations of Cl− were measured with electrical
conductivity at 100cm intervals in the column. We consider the second experi-
ment, i.e., a tracer injection (transport) experiment in the heterogeneous sandy soil



Homotopy Method 95

Figure 2: The fractional derivative order α , the diffusion coefficient D, the av-
erage pore velocity v and the RMSE changes with the iteration step (the max-
imum iterations is 60 steps) under the initial guess value p(0) = (α,D,v)T =
(1.500,1.010,1.000)T .

Figure 3: The inversion result compares to the measured data under the initial guess
value p(0) = (α,D,v)T = (1.500,1.010,1.000)T .
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column by replacing inflowing tap water with a NaCl solution of concentration C0
= 6 g/L at the coarse end. The details of this experiment can be referred to [Huang
K et al. (1995)]. In term of the analysis by Gao [Garcia and Zangwill (1981)] and
Pachepsky [Pachepsky et al. (2000)], the solute transport in the soil column can
be modeled by a symmetrical spatial fractional advection-dispersion equation as
follows


∂C
∂ t =−v ∂C

∂x +D ∂ αC
∂xα ,0 < x < L,1 < α < 2

C(0, t) = 0
C(0, t) =C0
∂C
∂x

∣∣∣
x=L

= 0

(28)

We employ the homotopy method to determine the fractional derivative order α , the
diffusion coefficient D and the average pore-water vecolcity v in different distances
by using the measured breakthrough curves (BTCs). In this example, set the spatial
step dx = 10cm and the time step dt = 10 mins for the finite difference method. Set
the maximum iteration as 200 steps for the termination condition.

Tabl. 2 shows the inversion results under different initial guess values at different
distances L=600, 800, 1000cm. The optimal solutions under different initial guess
values are obtained by several iterations at a fixed distance. It’s seen that the iter-
ative process fast converges to a stable value. The RMSE is less than 5% and the
determination coefficient reaches 0.97.

Fig. 4 shows the fractional derivative order α , the diffusion coefficient D, the
average-water pore velocity v and the RMSE changes with the iteration step un-
der the initial guess value p(0) = (α,D,v)T = (1.400,5.500,1.500)T at the distance
L=600cm. Fig. 6 shows the fractional derivative order α , the diffusion coefficient
D, the average pore-water velocity v and the RMSE changes with the iteration step
under the initial guess value p(0) = (α,D,v)T = (1.500,60.680,0.220)T at the dis-
tance L=800cm. Fig. 7 shows the fitted BTC and the measured BTC at the distance
L=800cm. Fig. 8 shows the fractional derivative order α , the diffusion coefficient
D, the average pore-water velocity v and the RMSE changes with the iteration step
under the initial guess value p(0) = (α,D,v)T = (1.400,0.500,0.500)T at the dis-
tance L=1000cm. Fig. 9 shows the fitted BTC and the measured data at the distance
L=1000cm.

From these results, we can see that the homotopy method is feasible and stable for
this parameter determination problem.
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Table 2: The inversion results under different initial values at the distances
L=600,800,1000cm.

L(cm) Initial guess value
p(0) = (α,D,v)T

Inversion result
p = (α,D,v)T

r2 RMSE

600
1.400 5.500 1.500

1.760 5.781 1.226 0.977 0.0371.500 15.500 1.500
1.800 1.500 0.300

800
1.630 1.680 1.220

1.931 49.110 1.151 0.972 0.0481.630 4.680 1.220
1.500 60.680 0.220

1000
1.500 60.680 0.220

1.865 15.489 0.967 0.980 0.0301.500 6.000 1.000
1.500 0.500 0.500

Figure 4: The fractional derivative order α , the diffusion coefficient D, the average
pore-water velocity v and the RMSE changes with the iteration step under the initial
guess value p(0) =(α,D,v)T =(1.400,5.500,1.500)T at the distance L=600cm, the
maximum iterations equals to 200 steps.
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Figure 5: The fitted BTC compares to the measured BTC at L=600cm.

Figure 6: The fractional derivative order α , the diffusion coefficient D, the average
pore-water velocity v and the RMSE changes with the iteration step, under the initial
guess value p(0) = (α,D,v)T = (1.500,60.680,0.220)T at the distance L=800cm,
the maximum iterations equals to 200 steps.
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Figure 7: The fitted BTC compares to the measured BTC at L=800cm.

Figure 8: The fractional derivative order α , the diffusion coefficient D, the average
pore-water velocity v and the RMSE changes with the iteration step under the initial
guess value p(0) = (α,D,v)T = (1.400,0.500,0.500)T at the distance L=1000cm,
the maximum iterations equals to200 steps.
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Figure 9: The fitted BTC compares to the measured BTC at L=1000cm.

4 Some remarks

As we known, the homotopy method is a large-scale convergence method for solv-
ing nonlinear inverse problems. We employ the method to determine the unknown
parameters of the spatial fractional derivative advection-dispersion equation for so-
lute transport in soil column. From the analysis of this study, it is confirmed that
the homotopy method is a fast-convergent and efficient method for this kind of pa-
rameter inversion problems. In particular, it can be easily developed to solve the
problems without analytical solutions.

For the homotopy method, the iteration should be convergent and the unknown
parameters can be obtained well under an appropriate initial guess value. Other-
wise, the iterative process may trap into local optimum or evenly diverge. It shows
that the method is still sensitive for the initial guess value and should be further
improved.
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