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Boundary Element Analysis of Shear Deformable Shallow
Shells Under Harmonic Excitation

J. Useche1

Abstract: In this work, the harmonic analysis of shallow shells using the Bound-
ary Element Method, is presented. The proposed boundary element formulation is
based on a direct time-domain integration using the elastostatic fundamental solu-
tions for both in-plane elasticity and shear deformable plates. Shallow shell was
modeled coupling boundary element formulation of shear deformable plate and
two-dimensional plane stress elasticity. Effects of shear deformation and rotatory
inertia were included in the formulation. Domain integrals related to inertial terms
were treated using the Dual Reciprocity Boundary Element Method. Numerical
examples are presented to demonstrate the efficiency and accuracy of the proposed
formulation.
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1 Introduction

Dynamic plate bending problems appear on civil, mechanical, aerospatial and naval
applications. The complexity involved in the dynamic response of plates turns these
problems in a challenging one from mathematical point of view. In general, numer-
ical methods represent the only way to obtain approximate solutions for dynamic
analysis. However, the use of traditional methods based on domain discretization
requires refined meshes involving a high number of degrees of freedom, which
requires a significant computational effort [Hall (2013); Gao and Davies (2002)].

Nowadays, the Boundary Element Method (BEM) has emerged as an accurate
and efficient numerical method for plate and shear deformable shell static analysis
[Zhang and Atluri (1986); Wrobel and Aliabadi (2002); Rashed (2000); Dirgantara
and Aliabadi (1999); Wen, Aliabadi, and Young (2000a) and Wen and Aliabadi
(2000)]. [Providakis and Beskos (1999)] presents a review of all the work on plate
1 Technological University of Bolívar, Cartagena, Colombia.
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dynamics up to 1998. [Beskos (2003)] deals with the dynamic analysis of vari-
ous structures and soil-structural systems by the direct conventional boundary ele-
ment method (BEM) in both the frequency and time domains. Dynamic analysis of
thin shallow shells using BEM is presented in and Providakis and Beskos (1991).
Time-domain dynamic analysis of shear deformable plates using elastodynamic
fundamental solutions or Laplace or Fourier transformations of these fundamental
solutions were used in [Duddeck (2010); Wen, Aliabadi, and Young (2000b); Wen
and Aliabadi (2006) and Wen, Adetoro, and Xu (2008)]. In those works, harmonic
BEM analysis using direct time integration and elastostatic fundamental solutions
was not performed. In [Nardini and Brebbia (1982)] a time-domain direct formula-
tions for dynamic analysis of plates (plane stress) is presented. [Useche and Albu-
querque (2012); Useche, Albuquerque, and Sollero (2012)] presents a time-domain
direct formulations based on elastostatic fundamental solutions for dynamic analy-
sis of shear deformable plates. However, to the best of the author knowledge, the
Boundary Element Method has not been used for the harmonic analysis of shear
deformable elastic shallow shells.

This work presents the harmonic analysis of shear deformable double-curved shal-
low shells using a boundary element formulation. This formulation is based on
direct time integration and elastostatic fundamental solutions. Effects of shear de-
formation and rotatory inertia are included in the formulation. Shells were modeled
by coupling the boundary element formulation for shear deformable plates based on
the Reissner plate theory and two-dimensional plane stress elasticity, as presented
in Dirgantara and Aliabadi (1999); Wen and Aliabadi (2000)]. The Dual Reci-
procity Boundary Element Method for the treatment of domain integrals involving
inertial mass, was used. Numerical examples are presented and results were com-
pared with those obtained using both analytical and finite element solutions.

2 Shallow shell dynamic equations

Consider a shallow shell of uniform thickness h and mass density ρ , occupying the
area Ω, in the x1x2 plane, bounded by the contour Γ = Γw

⋃
Γq with Γ = Γw

⋂
Γq ≡

0, as presented in figure 1. The dynamic bending response for the shallow shell
was modeled coupling the classical Reissner plate theory and the two-dimensional
plane stress elasticity as presented in [Wen, Aliabadi, and Young (2000a)].

Equations of motion for an infinitesimal plate element are given by [Reddy (2004)]:

Lb
ikwk +q∗i = Λ

b
ikẅk +Λ

bm
iα üα (1)

Lm
αβ

uβ = Λ
bm
αβ

ẅβ +Λ
m
αβ

üβ (2)

Indicial notation is used throughout this work. Greek indices vary from 1 to 2 and
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Figure 1: Shallow shell geometry

Latin indices take values from 1 to 3. Einstein’s summation convention is used un-
less otherwise indicated. In these equations, wα represents rotations with respect to
x1 and x2 axes, and w3 represents transverse deflection; ẅα denotes angular acceler-
ations with respect to x1 and x2 axes, respectively, ẅ3 represents the transverse ac-
celeration; uα and üα represents membrane displacements and accelerations along
xα axis, respectively; Tensors Λb

i j, Λbm
i j and Λm

i j are defined as: Λb
αβ

= I2δαβ and
Λb

33 = I0; Λbm
αβ

= I1δαβ ; Λm
αβ

= I0δαβ ; δαβ is the Kronecker’s delta and Ii is the
mass inertias. The differential operator Lik in equation (1), is given by [Dirgantara
and Aliabadi (1999)]:

Lb
αβ

=
D(1+ν)

2

[
(∇2−λ

2)δαβ +
(1+ν)

(1−ν)

∂

∂xα

∂

∂xβ

]
(3)

Lb
α3 =−Lb

3α =−(1−ν)D
2

λ
2 ∂

∂xα

(4)

Lb
33 =−

(1−ν)D
2

λ
2
∇

2 (5)

where D = Eh3/12(1− ν2) is the bending stiffness of the plate, E is the Young
modulus, ν is the Poisson’s ratio and λ 2 = 10/h. In equation (1) qi is the equivalent
body force, which is given by (q∗α=0):

q∗3 = q3−B(κ11 +νκ22)
∂u1

∂x1
−B(κ11 +νκ22)

∂u2

∂x2

−B(κ2
11 +νκ

2
22 +2νκ11κ22)w3 (6)
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where q3 is a distributed transverse load and καβ represents the curvature tensor of
the shell surface. Similarly, in equation (2) Lm

αβ
is the Navier differential operator

for two-dimensional plane stress problems:

Lm
αβ

= B∇
2
δαβ +

B(1+ν)

2
∂

∂xα

∂

∂xβ

(1−2δαβ ) (7)

where B = Eh/(1−ν2) is the in-plane stiffness of the plate.

3 Boundary integral formulation for shallow shells

The derivation of the integral formulation for equations (1) is based on applica-
tion of the boundary element method to the Reissner plate theory as presented in
[VanderWeen (1982)], were the integral representations related to the governing
equations for bending and transverse shear stress resultants are derived by using
the weighted residual method, and making use of the Green’s identity. Thus, by
integration of equations (1), the following equations are obtained:

ci jw j(x′)+
∫

Γ

Pik(x′,x)w j(x)dΓ =
∫

Γ

Wi j(x′,x)p j(x)dΓ

−
∫

Γ

καβ B
1−ν

2

[
uα(x)nβ +uβ (x)nα

+
2ν

1−ν
uγ(x)nγδαβ

]
Wi3(x′,x)dΓ

+
∫

Ω

καβ B
1−ν

2

[
uα(X)Wi3,β (x′,x)+uβ (x)Wi3,α(x′,X)

+
2ν

1−ν
uγ(x)Wi3,γ(x′,X)δαβ

]
dΩ

−
∫

Ω

καβ B[(1−ν)καβ +νδαβ κγγ ]w3(x)Wi3(x′,X)dΩ

+
∫

Ω

Wi3(x′,X)q3(x)dΩ+
∫

Ω

Wi j(x′,x)Λb
i jẅ j(X)dΩ

+
∫

Ω

Wiα(x′,X)Λbm
iα üα(X)dΩ

(8)

In a similar way, the derivation of the integral formulation for equations (2) is based
on application of the boundary element method to the two-dimensional elasticity
equations, as presented in [Dirgantara and Aliabadi (1999)]. Thus, by integration
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of equations (2) the following equations are obtained:

cθα(x′)uα(x′)+
∫

Γ

Tθα(x′,x)uα(x)dΓ

+
∫

Ω

Uθα,β (x′,X)B[καβ (1−ν)+νδαβ κγγ ]w3(X)dΩ

=
∫

Γ

Uθα(x′,x)tα(x)dΓ+
∫

Ω

Uθα(x′,X)Λm
θα üα(X)dΩ

+
∫

Ω

Uθα(x′,X)Λbm
θα ẅα(X)dΩ

(9)

In these equations, x’ and x represents collocation y field points, respectively;
Wik and Pik are fundamental solutions for shear deformable plates [VanderWeen
(1982)]; Tθα and Uθα are the fundamental solutions for plane stress [Wrobel and
Aliabadi (2002)]; nα is the unity vector normal to the boundary at field point. x′ ∈Γ

are source points and x ∈ Γ and X ∈Ω represents field points. The value of ci j(x′)
is equal to 1

2 δi j when x′ is located on a smooth boundary. These equations rep-
resents five integral equations, the first two in (8) (i = α = 1,2) are for rotations,
the third (i = 3) is for the out-of-plane displacement and two in (9) (α = 1,2) for
in-plane displacements, which can be used to solve shear deformable plate shallow
shell bending problems.

4 Transformation of domain integrals

Only uniform distributed pressure is considered as external loads acting on the shell
surface. In this way, considering a uniform load q3 = p(t), the third to last integral
in (8) can be transfered to a boundary integral by applying the divergence theorem
[Rashed (2000)]. For sake of simplicity, domain integrals in equations (8) and
(9) related with curvature terms, are treated using the Cell Method as presented in
[Dirgantara and Aliabadi (1999)].

In order to transform domain integrals related to inertial terms into boundary inte-
grals, the Dual Reciprocity Boundary Element Method (DRM) was used [Partridge,
Bebbia, and Wrobel (1992)]. Then, the two last integrals in equations (8) and (9)
can be re-written as:

∫
Ω

Wi j(x′,x)Λb
i jẅ j(X)dΩ =

NDR

∑
n=1

α̈
n
l (t)

[
ci jŴ n

l j−
∫

Γ

Wi j(x′,x)P̂n
l jdΓ

+
∫

Γ

Pi j(x′,x)Ŵ n
l jdΓ

]
(10)
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∫
Ω

Wiα(x′,X)Λbm
iα üα(X)dΩ =

NDR

∑
n=1

β̈
n
l (t)

[
ciαŴ n

lα −
∫

Γ

Wiα(x′,x)P̂n
lαdΓ

+
∫

Γ

Piα(x′,x)Ŵ n
lαdΓ

]
(11)

∫
Ω

Wiα(x′,X)Λm
iα üα(X)dΩ =

NDR

∑
n=1

γ̈
n
l (t)

[
ciαŴ n

lα −
∫

Γ

Wiα(x′,x)P̂n
lαdΓ

+
∫

Γ

Piα(x′,x)Ŵ n
lαdΓ

]
(12)

∫
Ω

Uθα(x′,X)Λbm
θα ẅα(X)dΩ =

NDR

∑
n=1

χ̈
n
l (t)

[
cθαÛn

lα −
∫

Γ

Uθα(x′,x)T̂ n
lαdΓ

+
∫

Γ

Tθk(x′,x)Ûn
lαdΓ

]
(13)

In these equations, NDR represents the number of total dual reciprocity colloca-
tions points used in the plate; Ŵ m

lk , P̂m
lk are the particular solutions to equivalent

homogeneous equation (1) and Ûm
lα , T̂ m

lα are the particular solutions to equivalent
homogeneous equation (2). These particular solutions were obtained considering
the function fm = 1−λ 2r3

m/9 for the approximation of angular accelerations and
the function fm = 1+ rm for the approximation of the transversal and in-plane ac-
celerations. Coefficients α̈m

l , β̈ m
l , γ̈m

l and χ̈m
l are related to Λb

i jẅk, Λbm
iα üα , Λm

iα üα

and Λbm
θα

ẅα respectively, through expressions:

Λ
b
i jẅk(t) = Aklα̈

m
l (t); Λ

bm
iα üα(t) = Bαl β̈

m
l (t) (14)

Λ
m
iα üα(t) = Dαl γ̈

m
l (t); Λ

bm
θα ẅα(t) =Cαl χ̈

m
l (t) (15)

with l = 1,2 . . . ,NDR and Akl , Bαl , Cαl and Dαl are matrices of coefficients, ob-
tained by taking the value of ẅk(t) and üα(t) at different DRM points.

5 Boundary element formulation

Quadratic isoparametric boundary elements were used to describe the geometry
and the unknows functions along the boundary. Discontinuous elements are used
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to avoid difficulties with discontinuity of the traction between elements. In this
way, equations (8) and (9) can be rewritten in a discretised way as:

ci j(x′)w j(x′)+
Ne

∑
n=1

3

∑
m=1

wnm
j

∫
ξ=+1

ξ=−1
Pi j(x′,x)Φm(ξ )Jn(ξ )dξ

=
Ne

∑
n=1

3

∑
m=1

pnm
j

∫
ξ=+1

ξ=−1
Wi j(x′,x)Φm(ξ )Jn(ξ )dξ

−
Ne

∑
n=1

3

∑
m=1

καβ B
1−ν

2

(
unm

α nnm
β

+unm
β

nnm
α +

2ν

1−ν
unm

γ nnm
γ δαβ

)
×
∫

ξ=+1

ξ=−1
Wi3(x′,x)Φm(ξ )Jn(ξ )dξ

+
Nc

∑
k=1

καβ B
1−ν

2
uk

α

∫
η=+1

η=−1

∫
ξ=+1

ξ=−1
Wi3,β (x′,x)Jc

k (ξ ,η)dξ dη

+
Nc

∑
k=1

καβ B
1−ν

2
uk

β

∫
η=+1

η=−1

∫
ξ=+1

ξ=−1
Wi3,α(x′,x)Jc

k (ξ ,η)dξ dη

+
Nc

∑
k=1

καβ Bνuk
γ

∫
η=+1

η=−1

∫
ξ=+1

ξ=−1
Wi3,γ(x′,x)Jc

k (ξ ,η)dξ dη

−
Nc

∑
k=1

καβ B[(1−ν)καβ +νδαβ κγγ ]wk
3

∫
η=+1

η=−1

∫
ξ=+1

ξ=−1
Wi3(x′,X)Jc

k (ξ ,η)dξ dη

+ p(t)
Ne

∑
n=1

∫
ξ=+1

ξ=−1
Vi,α(x′,x)nα(ξ )Jn(ξ )dξ

+
NDR

∑
n=1

α̈
n
l (t)

[
ci jŴ n

l j−
Ne

∑
k=1

3

∑
r=1

∫
ξ=+1

ξ=−1
Wi j(x′,x)P̂n

l jΦ
r(ξ )Jk(ξ )dΓ

+
Ne

∑
k=1

3

∑
r=1

∫
ξ=+1

ξ=−1
Pi j(x′,x)Ŵ n

l jΦ
r(ξ )Jk(ξ )dΓ

]
+

NDR

∑
n=1

γ̈
n
l (t)

[
ciαŴ n

lα −
Ne

∑
k=1

3

∑
r=1

∫
ξ=+1

ξ=−1
Wiα(x′,x)P̂n

lαΦ
r(ξ )Jk(ξ )dΓ

+
Ne

∑
k=1

3

∑
r=1

∫
ξ=+1

ξ=−1
Piα(x′,x)Ŵ n

lαΦ
r(ξ )Jk(ξ )dΓ

]
(16)
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Similarly, equation (9) can be written as:

cθα(x′)uα(x′)+
Ne

∑
n=1

3

∑
m=1

unm
α

∫
ξ=+1

ξ=−1
Tθα(x′,x)Φm(ξ )Jn(ξ )dξ

=−
Nc

∑
k=1

B[καβ (1−ν)+νδαβ κγγ ]wk
3

∫
η=+1

η=−1

∫
ξ=+1

ξ=−1
Uθα,β (x′,X)Jc

k (ξ ,η)dξ dη

+
NDR

∑
n=1

γ̈
n
l (t)

[
ciαŴ n

lα −
Ne

∑
k=1

3

∑
r=1

∫
ξ=+1

ξ=−1
Wiα(x′,x)P̂n

lαΦ
r(ξ )Jk(ξ )dΓ

+
NDR

∑
n=1

χ̈
n
l (t)

[
cθαÛn

lα −
Ne

∑
k=1

3

∑
r=1

∫
ξ=+1

ξ=−1
Uθα(x′,x)T̂ n

lαΦ
r(ξ )Jk(ξ )dΓ

+
Ne

∑
k=1

3

∑
r=1

∫
ξ=+1

ξ=−1
Tθk(x′,x)Ûn

lαΦ
r(ξ )Jk(ξ )dΓ

]
(17)

In these equations, Ne and Nc are number of boundary elements and internal cells
respectively; nα are the boundary normal vector components; J represents the Jaco-
bian of the transformation dΓ = J(ξ )dξ for boundary elements; Jc

r is the Jacobian
of the transformation dΩc = J(ξ ,η)dξ dη for cells; ξ and η are the local coor-
dinates; Φr with (r = 1,2,3) are the quadratic shape functions. In order to obtain
α̈m

l , β̈ m
l , γ̈m

l and χ̈m
l relation (15) are inverted and replaced into Equations (??) and

(17). Applying this equation at each collocation point, these equations will give the
following linear system of equations:[

Mb Mu

Mw Mp

]{
ẅ
ü

}
+

[
Hb Hu

Hw Hp

]{
w
u

}

=

[
Gb 0
0 Gp

]{
p
t

}
+

{
q
0

}
(18)

where u = {u1,u2}T , w = {w1,w2,w3}T , p = {p1, p2, p3}T and t = {t1, t2}T are
displacement and traction vectors for plane stress and plate bending formulations,
respectively; ü = {ü1, ü2}T , ẅ = {ẅ1, ẅ2, ẅ3}T are the in-plane and bending ac-
celeration vectors; q = {0,0,q0}T is the domain load vectors; Ms, Mp are mass
matrices for plane stress and plate bending formulations, respectively; Hp, Hp, Gb

and Gb are boundary element influence matrices for plane stress and plate bend-
ing formulations, respectively, and Mu, Mw, Hu, Hw are matrices which contain
coupled terms between shell bending and plane stress formulations.

Equations (18) can be rewritten:

Mẅs +Hws = Gps + fs (19)
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Figure 2: Rectangular shallow shell geometry

where, ẅs = {ẅ, ü}T , ws = {w,u}T , ps = {p, t}T and fs = {q,0}T , where subindex
s intends for shell.

Boundary integral equations discussed above contain integrands with several dif-
ferent orders of singularities. These singular integrals are treated separately based
on their order of singularity [Dirgantara (2002)]. In this work, all of the regular
integrals are evaluated numerically using the standard Gauss quadrature formula.
The influence matrix G contains weakly singular integrals, which are treated using
Telles’s nonlinear coordinate transformation method. However, for better numer-
ical accuracy, a suitable number of element sub divisions must be used with the
Telles transformation. In this work, four element subdivisions are used. The influ-
ence matrix H contains strongly singular integrals, and in this work these integrals
are computed indirectly by considering the generalised rigid body movements.

In order to obtain the harmonic response using equation (19), the system was ini-
tially partitioned according to the type of applied boundary condition, and stati-
cally condensed in such way that the final equation system could be solved for
unknown displacements only [Partridge, Bebbia, and Wrobel (1992)]. Partitioning
the boundary Γ = Γ1

⋃
Γ2, and considering us = ws = 0 and üs = ẅs = 0 in Γ1 and

ps = 0 in Γ2, equation (19) can be written as:

M̂ẅ2 + Ĥw2 = f (20)

where,

M̂ = M22−G12G−1
11 M12

Ĥ = H22−G12G−1
11 H12

(21)

(In these equations subindex s was dropped for the sake of simplicity). Assuming
that displacements and distributed forces are harmonic functions of time, τ , they
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Figure 3: Harmonic analysis of a cylindrical shallow shell. Left: Harmonic response for
SSSS boundary conditions. Right: Harmonic response for CCCC boundary conditions.

can be expanded in the form:

w(τ) = ΦΦΦe−iωτ , ẅ(τ) =−ω2ΦΦΦe−iωτ , f(τ) = Fe−iωτ (22)

with ω being frequency of excitation, ΦΦΦ and F are the amplitude of displacements
and distributed forces, respectively. Replacing these expressions into equation (20)
we obtain:

(Ĥ−ω
2M̂)ΦΦΦ = F (23)

This equation is solved by incrementing ω in small steps from an initial value. At
each step, equation (23) is solved and the plate displacements and rotations for each
frequency are obtained.

6 Numerical examples

6.1 Analysis of a cylindrical shallow shell

In this example a cylindrical shallow shell as shown in figure 2 is analysed. The
geometric properties of shell are as follows: a/b = 0.75, h/a = 0.0043, a/R = 0.1,
κ11 = 1/R11 = 0.033, = κ22 = 1/R22 = 0 with elastic constants E = 61670 MPa,
ν = 0.3 and mass density ρ=2.375 ×10−3 Kgm/m3. Two kinds of boundary con-
ditions were considered here: simply supported (SSSS) and fully clamped (CCCC)
at four edges.
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Figure 4: Square shallow spherical shell geometry

A uniform load of 1 N/m2 is considered as the applied load. Figure 3 shows the con-
vergence analysis for the FRS in the range from 500 to 2000 Hz for SSSS bound-
ary condition and from 500 to 3000 Hz for CCCC condition. FRS were obtained
plotting deflection at the center of the shell versus frequency of excitation. The
boundary element convergent solution for the first two resonance frequencies was
obtained using 28 boundary elements with a total of 525 DRM points. Again, the
analysis was also carried out using the commercial code ANSYSr. A finite ele-
ment convergent solution for the FRS was found with a mesh of 400 elements and
1281 nodes.

An inspection of figure 3 demonstrates a good correlation for the first and second
resonance frequencies, between convergent boundary element and finite element
solutions for both SSSS and CCCC conditions. For the third resonance frequency
a convergent behaviour in BEM solution is observed, however mesh refinement is
needed for the SSSS condition.Results obtained using BEM show good agreement
with those obtained using the FEM and with the analytical solution presented in
[Reddy (2004)].

6.2 Analysis of a square shallow spherical shell

In this example a square shallow spherical shell as shown in figure 4 is analysed.
Again, an harmonic uniform load of 1 N/m2 is considered. The properties of the
shell are. a = b = 1, h/b = 0.1, a/R = 0.5, k11 = k22 = 0.5, R1/R2 = 1. Elastic
constants are E = 210000 MPa, ν = 0.3 and mass density ρ=5×10−4 Kgm/m3. As
in previous examples, two kinds of boundary conditions were considered: simply
supported (SSSS) and fully clamped (CCCC) at four edges.

Figure 5 shows the convergence analysis in the range from 0 to 6000 Hz for the
FRS. The boundary element convergent solution was obtained using 32 bound-
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Figure 5: Harmonic analysis of a square shallow spherical shell. Left: Harmonic response
for SSSS boundary conditions. Right: Harmonic response for CCCC boundary conditions.

ary elements with a total of 600 DRM points for both SSSS and CCCC boundary
conditions. A finite element convergent solution, using ANSYSr, for the FRS
was found with a mesh of 300 elements and 961 nodes. An inspection of figure 5
demonstrates a good correlation for the resonance frequency, between convergent
boundary element and finite element solutions.BEM results show good agreement
with those obtained using the FEM and and with the analytical in [Reddy (2004)].

7 Conclusions

The Boundary Element Method applied to harmonic and modal analysis of shear
deformable shallow shells was presented. A boundary element formulation based
on a direct time-domain formulation using the elastostatic fundamental solution of
the problem was used. Shell was modeled coupling the classical Reissner plate
theory and the two-dimensional plane stress elasticity. Effects of shear deforma-
tion and rotatory inertia were included in the formulation. The Dual Reciprocity
Boundary Element Method was used to treat domain integrals involving inertial
mass forces. Integrals involving curvature terms were treated using the Cell In-
tegration Method. Divergence Theorem was used to transform domain integrals
related with distributed domain forces. Results show good agreement with those
obtained from analytical and finite element models, turning the proposed formula-
tion on an alternative numerical engineering tool for the dynamic analysis of shear
deformable shallow shells.
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