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Analytical Solution of Stokes Flow in a Driven Cavity
Using the Natural Boundary Element Method

Peng Weihong1,2, Gao Feng1, Cao Guohua3, Xu Yong2 and Cheng Hongmei1

Abstract: In this paper, the natural boundary element method is used to solve
two-dimensional steady-state incompressible Stokes flows in a driven cavity. The
analytical functions are expressed for the Stokes problem in an exterior circular do-
main under single value conditions, which satisfy the Stokes equations’ solutions
in the form of complex functions. In order to obtain a uniform integral formula,
the velocities on the boundary are expanded into Laurent series, and then com-
pared with the analytical solutions obtained as described above. In this manner,
the coefficients of the analytical solutions in the form of complex function are fur-
ther confirmed. According to the formulae of Fourier series and convolutions, the
boundary integral formulae related only to boundary velocities are obtained for the
Stokes problems in an exterior circular domain. Similarly, the boundary integral
formulae are investigated for the interior circular domain. The formulae are ap-
plied to the Stokes flows in some circular and annular cavities, and the obtained
results are compared with those produced by previous works. The results prove
that the current technique is in very good agreement with previous investigations,
and that the natural boundary element method is an accurate and flexible method
for the solution of Stokes flows.

Keywords: Natural boundary element method, Stokes flow, driven cavity,
Fourier series and convolutions, boundary integral formulae.

1 Introduction

Theoretical studies of Stokes flow in a cavity with rotating boundaries provide
useful information on flow behavior and distributive mixing, which has many in-
dustrial applications. Stokes flow can be considered for a range of engineering
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processes and natural phenomena. Although the flow is dominated only by shear
force, the presence of obstacles and the rotation of cylinders produce eddy zones
and dead zones, which affect the fluid flow and mixing process. For simple flow
configurations involving only a moving wall with a stationary cylinder, the Stokes
equations were solved directly by an analytical method [Jeffrey(1980)]. The prob-
lems of Stokes flow in a driven cavity possess important theoretical and practi-
cal significance. As the flow boundary is clear, the flowing state can be analyzed
theoretically. Accordingly, Stokes flow of this sort can be taken as an accepted
standard when testing a new computational fluid dynamics (CFD) method. The fi-
nite difference method was adopted to study Stokes flow with a single driven plate
[Burggraf(1966); Pan and Acrivos (1967)]. Stokes flow in a rectangular cavity
was used to test the new CFD method [Eid(2005); Fan and Young (2002)]. The
Stokes flow problem with circular boundaries was considered [Chen, Hsiao and
Leu(2008)], and the aim was to study biharmonic problems with circular bound-
aries by using direct and indirect boundary integral equations in conjunction with
degenerate kernels, Fourier series, vector decomposition and the adaptive observer
frame. A method of fundamental solutions was presented to solve Stokes problems
based on the combination of the Laplace equation for velocity potential and vector
bi-harmonic equation for stream function vector by using the Helmholtz decompo-
sition theorem[Young Chen and Fan (2005); Young Chiu, Fan, Tsai and Lin(2006)].
The Stokes problems of circular cavity and circular cavity with eccentric rotating
cylinder were calculated.

As for computational fluid dynamics, the three most well known numerical schemes
are the finite difference method (FDM), finite element method (FEM)[ Katsushi and
Norikazu(2007)] and boundary element method (BEM) [Primo and Wrobel(2000);
Curteanu, Elliott and Ingham(2007); Frangi and Tausch(2005); Frangi(2005);
Frangi, Spinola and Vigna(2006); Zhu(1986); Yan(1986)]. For instance, the bound-
ary integral equation method was proposed [Youngren and Acrivos(1975), which
is based on the hydrokinetics potential theory proposed by a bas bleu from former
Russia. The method can be utilized to deduce Stokes flow problems under arbitrary
boundary conditions; nevertheless it must resolve a mass of integrals, the singular
integrals among which make the workload increase in size. In recent years, a new
computational technique, namely the natural boundary element method (NBEM),
has been developed as a new BEM [Yu(1993)], which is a branch of a number of
boundary element methods. Based on either the Green functions method or Fourier
series method, it induces the Dirichlet value problems of differential equations into
the boundary integral formula, or induces Neumann boundary value problems of
differential equation into a strong singular boundary integral equation. NBEM
has some advantages over traditional computational methods [Liu and Yan(2006);
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Mirela(2007); Young, Jane and Lin(2004)]; Grigoriev and Dargush (2005)], as it
has direct derivation, unique form, small calculation quantity and energy function
being able to remain invariable before and after the boundary reduction [Yu and
Zhao(2005); Dong, Li and Yu(2005)]. The method has been used to resolve some
engineering problems: the semi-plane elasticity problems for the mine pressure
were resolved [Peng, Dong and Li(2005)]; the stress distribution problems of sur-
rounding rock of circular roadways were deduced [Li, Dong and Ma(2011)]; the
bending deflection problems for infinite plates with a unit circle under the bound-
ary load were obtained [Liu, Dong and Li(2009)]; the coupling method for torsion
problems of the square cross-section bar with cracks were settled [Zhao, Dong
and Cao(2000)]; and Stokes problems were studied preliminarily [Peng, Dong and
Zhao(2006); Peng, Dong and Cao(2008); Peng, Cao, Dong and Li(2011)].

The purpose of this paper is to study Stokes problems in the circular and annular
cavities using the natural boundary element method. The analytical functions are
expressed for the Stokes problem in an exterior circular domain under single value
conditions, which satisfy the Stokes equations’ solutions in the form of complex
functions. Accordingly, the boundary integral formulae related only to boundary
velocities could be obtained for the Stokes problems in an exterior and interior cir-
cular domain with the Fourier series method. The formulae can be used to calculate
any Stokes flow in a driven cavity. Finally, several examples are presented to show
the simplicity and accuracy of the proposed scheme.

2 Analytical functions of the exterior circular domain

The Dirichlet boundary problems of Stokes equations for an incompressible flow
in an exterior circular domain Ω with the smooth boundary Γ can be represented
by the continuity and momentum equations as follows:
−µ∆~u+ ∇p = 0, in Ω,
∇ ·~u = 0, in Ω,
~u =~u0, on Γ,

(1)

where µ is the dynamic viscosity; the symbols ∆, ∇ and ∇· stand for the Laplacian,
gradient and divergence operators, respectively; ~u = (ux,uy) denotes the velocity
vector; p is the pressure; and~u0 is the given function on Γ.

The velocity vectors and stress tensors of Eq.1 in Ω can be expressed as the follow-
ing real and imaginary parts of the complex functions [Yu(1993)]:{

ux(x,y) = Re[−ϕ ′(z)z̄+ϕ(z)−ψ(z)],
uy(x,y) = Im[ϕ ′(z)z̄+ϕ(z)+ψ(z)],

(2)
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σx(x,y) = 2µRe[2ϕ ′(z)−ϕ ′′(z)z̄−ψ ′(z)],
σy(x,y) = 2µRe[2ϕ ′(z)+ϕ ′′(z)z̄+ψ ′(z)],
τxy(x,y) = 2µIm[ϕ ′′(z)z̄+ψ ′(z)].

(3)

where z, z̄ ∈ Ω, z = x+ iy and z̄ = x− iy; ϕ(z),ψ(z) are the analytical functions
in Ω; and ϕ ′(z), ϕ ′′(z) and ψ ′(z) are the derivative functions of ϕ(z) and ψ(z),
respectively.

Since the exterior circular domain is multi-connective, the analytical functions
ϕ(z),ψ(z) could be multi-values. Commonly, the multi- connectivity may process
m inner boundaries. As the Stokes problems in the circular and annular cavities are
studied in this paper, one inner boundary and one outer boundary are considered.

According to Eq.3, the stress components can be expressed as follows:

σx +σy = 8µReϕ
′(z). (4)

Under the single value condition in a multi-connectivity region, the real part of
ϕ ′(z)must be single-valued, whereas the imaginary part can be multiple valued.
Suppose the increment of imaginary number is 2πAi when making one circuit
around the inner boundary:

ϕ
′(z) = A ln(z− z0)+ϕ

′
∗(z), (5)

where A is real constant coefficients, z0 is the arbitrary point of the exterior in-
ner boundary, and ϕ ′∗(z) is a single-valued and analytic function of the multi-
connectivity domain.

Accordingly, the analytical functions ϕ(z) can be acquired as follows:

ϕ(z) = Az ln(z− z0)+ γ ln(z− z0)+ϕ∗(z), (6)

where ϕ∗(z) is a single-valued and analytic function of the multi-connectivity do-
main, and γ = α + iβ , and α,β are arbitrary real constants.

Likewise, ψ(z) can be obtained as follows:

ψ(z) = γ
′ ln(z− z0)+ψ∗(z), (7)

where ψ∗(z) is a single-valued and analytic function of the multi-connectivity re-
gion, and γ ′ is a constant, commonly a complex number.

According to Eq.2, the velocity variables are satisfied with the following equation:

ux + iuy = ϕ(z)− zϕ ′(z)−ψ(z). (8)
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Substituting Eqs.5-7 into Eq.8, and utilizing the single value conditions of the ve-
locities, the following conditions should be tenable:

A = 0, γ + γ ′ = 0. (9)

Therefore, ϕ(z) and ψ(z) can be deduced preliminarily as follows:{
ϕ(z) = (α + iβ ) ln(z− z0)+ϕ∗(z),
ψ(z) = (−α + iβ ) ln(z− z0)+ψ∗(z).

(10)

As for the infinite multi-connectivity, the analytical functions ϕ(z),ψ(z) should be
finite. It can be seen from Eq.10 that the following is true:

ln(z− z0) = lnz+ ln(1− z0

z
) = lnz− z0

z
− 1

2
(
z0

z
)2−·· · . (11)

Correspondingly, in order to satisfy the finite property, ϕ(z) and ψ(z) can be written
as follows:{

ϕ(z) = (α + iβ ) ln(z)+ϕ∗∗(z)
ψ(z) = (−α + iβ ) ln(z)+ψ∗∗(z)

, (12)

where ϕ∗∗(z) and ψ∗∗(z) are the complex functions in an exterior circular domain,
which are analytical and can be expanded into Laurent series:

ϕ∗∗(z) =
∞

∑
−∞

anzn, ψ∗∗(z) =
∞

∑
−∞

bnzn , (13)

where n = 0,1,2, · · · ,an and bn are complex coefficients.

Substituting the first formula of Eqs.12-13 into Eq.4, we obtain the following:

σx +σy = 4µ[
α + iβ

z
+

α + iβ
z̄

+
∞

∑
−∞

n(anzn−1 +anzn−1)]. (14)

As for infinite domain, reviewing the right part of Eq.14, the terms of the high-level
power of z rapidly become increscent. The stress tensors could not be infinite, thus
the following terms must be zero:

an = 0 , bn = 0 ,(n≥ 2). (15)

After this stage, the complex functions ϕ(z) and ψ(z) can be expressed as follows:{
ϕ(z) = (α + iβ ) ln(z)+(α ′+ iβ ′)z+ϕ0(z) ,

ψ(z) = (−α + iβ ) ln(z)+(α ′′+ iβ ′′)z+ψ0(z),
(16)
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where α ′,α ′′,β ′andβ ′′ are real constants, and ϕ0(z) and ψ0(z) are analytical func-
tions:

ϕ0(z) =
∞

∑
0

a−nz−n,

ψ0(z) =
∞

∑
0

b−nz−n,
(17)

where a−n and b−n are complex coefficients, n = 0,1,2, · · · . The following can be
yielded by Eq.2:

ux + iuy = φ(z)− zφ ′(z)−ψ(z)

= (α + iβ )ln(z)+ (α ′+ iβ ′)z+φ0(z)

− z[
α + iβ

z
+(α ′+ iβ ′)+φ ′0(z)]

− [(−α + iβ ) ln(z)+(α ′′+ iβ ′′)z+ψ0(z)].

(18)

The velocity vectors could not be infinite, thus the coefficients α,β ,β ′, and α ′′+
iβ ′′ should be zero in Eq.18. Accordingly, the analytical functions of the infinite
exterior circular region can be deduced, which satisfy the complex functions of the
Stokes equations’ solution:{

ϕ(z) = α ′z+ϕ0(z),
ψ(z) = ψ0(z).

(19)

As for a finite region, the velocity vectors and stress tensors satisfy the character-
istic of finiteness. Then, the analytical functions of finite exterior circular domain
can be deduced additionally as follows [Peng, Dong and Cao(2008)]:{

ϕ(z) = α ′z+ϕ0(z)+ϕ1(z),
ψ(z) = ψ0(z) +ψ1(z).

(20)

where ϕ1(z) = α ln(z)+α1z2; ψ1(z) =−α ln(z); and α,α1 are real constants.

3 Application of the natural boundary element method (NBEM)

3.1 Boundary integral formula of an annular domain

In order to obtain uniform boundary integral formula for Stokes problems of the ex-
terior circular region, the Stokes equations are calculated according to the analytic
functions ϕ(z) and ψ(z) of the finite region. For briefness, Let z = reiθ hereinafter,
in which r and θ stand for the radial and circumferential coordinates. As Eq.2
shows, the solutions of Stokes equations are described as the real and image parts
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of the complex functions. The sum of a pair complex functions conjugated divided
by 2 is their real part, and the difference divided by 2i is their image part. There-
fore, suppose that an = ā−nbn = b−n of Eq.17, and substitute Eq.20 into Eq.2, then
the velocity equations in an exterior circular domain can be obtained according to
the real and image part characteristics of the complex functions:

ux(r,θ) =Re(a0−b0)+
1
2r

[(a−1−b−1)e−iθ +(a1−b1)eiθ ]

+
1
2

∞

∑
−∞

[(|n|

n6=0,±1

-2)a(|n|−2)signnr2 +(an−bn)]r−|n|einθ

+Re[−φ
′
1(z)z̄+φ1(z)−ψ1(z)],

(21)

uy(r,θ) =Im(a0 +b0)+
i

2r
[(a1 +b1)eiθ − (a−1 +b−1)e−iθ ]

+
i
2

∞

∑
−∞

[(2−|n| )

n6=0,±1

a(|n|−2)signnr2 +(an +bn)]r−|n|einθ

+ Im[φ ′1(z)z̄+φ1(z)+ψ1(z)],

(22)

where

Re[−ϕ
′
1(z)z̄+ϕ1(z)−ψ1(z) = [α1r2−α]cos(2θ)+α ln(r2)−2α1r2;

Im[ϕ ′1(z)z̄+ϕ1(z)+ψ1(z)] = (α1r2−α)sin(2θ).

Substituting r = 1 into Eqs.21-22, the expressions of the boundary velocities in the
exterior unit circle are deduced. Furthermore, suppose the boundary velocities in
the exterior unit circle are described as follows:

ux(1,θ) =
∞

∑
−∞

cneinθ , cn = c−n,

uy(1,θ) =
∞

∑
−∞

dneinθ , dn = d−n,
(23)

where c0,d0 are real constants; ci,di are complex constants; and i 6= 0. Comparing
Eq.23 with the boundary velocity of an exterior unit circle, and noting that cos2θ =

ei2θ+e−i2θ

2 , sin2θ = ei2θ−e−i2θ

2i , the following equations are obtained:
c0 = Re(a0−b0)−2α1,
c1 =

a1
2 −

b1
2 ,

c2 =
a2
2 −

b2
2 + α1−α

2 ,
cn =

1
2 [(|n|−2)a(|n|−2)signn +an−bn],



140 Copyright © 2014 Tech Science Press CMES, vol.100, no.2, pp.133-155, 2014


d0 = Im(a0−b0),

d1 = i a1
2 + i b1

2 ,
d2 = i a2

2 + i b2
2 + α1−α

2i ,

dn =
i
2 [(2−|n|)a(|n|−2)signn +an +bn].

By the above two equations, the coefficients can be obtained as follows:
Re(a0−b0) = c0 +2α1,
a1 = c1− id1,
a2 = c2− id2,
an = cn− idn,
Im(a0 +b0) = d0,
b1 =−(c1 + id1),
b2 =−(c1 + id1)+ (α1-α),
bn = [(n−2)cn−2− cn]− i[dn +(n−2)dn−1],

where n = 3,4, · · · ; an = ā−n; bn = b−n; cn = c−n; dn = d−n.

Substituting the coefficients into Eqs.21-22, the velocities are obtained as follows:

ux(r,θ) =
∞

∑
−∞

cnr−|n|einθ +(1− 1
r2 ){

1
2

cos2θ

∞

∑
−∞

(|n|cn− indn)r−|n|einθ

+
1
2

sin2θ ×
∞

∑
−∞

(incn + |n|dn)r−|n|einθ}+u′x(r,θ),
(24)

uy(r,θ) =
∞

∑
−∞

dnr−|n|einθ +(1− 1
r2 ){

1
2

sin2θ

∞

∑
−∞

(|n|cn− indn)r−|n|einθ

− 1
2

cos2θ ×
∞

∑
−∞

(incn + |n|dn)r−|n|einθ}+u′y(r,θ),
(25)

where

u′x(r,θ) = [(α−α1)r−2 +α1r2−α]cos(2θ)+2α1(1− r2)+α ln(r2);

u′y(r,θ) = [(α−α1)r−2 +α1r2−α]sin(2θ).

Utilizing the following convolution integral properties: if u =
∞

∑
−∞

aneinθ , v =

∞

∑
−∞

bneinθ , that u ∗ v =
∞

∑
−∞

(2πanbn)einθ , and using the basic formula of the Fourier

series:

1
2π

∞

∑
−∞

r−|n|einθ =
r2−1

2π(1+ r2−2r cosθ)
≡ P(r,θ),r > 1,
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the boundary integral formulae in an exterior circular domain with radius Rin a
Cartesian coordinate system are deduced as follows:

ux(r,θ) =P(r,θ)∗ux(R,θ)+
r2−R2

2r2 {cos2θ [(−r
∂

∂ r
P(r,θ))

∗ux(R,θ)−
∂

∂θ
P(r,θ)∗uy(R,θ)]+ sin2θ [

∂

∂θ
P(r,θ)

∗ux(R,θ)+(−r
∂

∂ r
P(r,θ))∗uy(R,θ)]}+[(α−α1)r−2

+α1r2−α]cos(2θ)+2α1(1− r2)+α ln(r2),

(26)

uy(r,θ) =P(r,θ)∗uy(R,θ)+
r2−R2

2r2 {sin2θ [(−r
∂

∂ r
P(r,θ))

∗ux(R,θ)−
∂

∂θ
P(r,θ)∗uy(R,θ)]− cos2θ [

∂

∂θ
P(r,θ)

∗ux(R,θ)+(−r
∂

∂ r
P(r,θ))∗uy(R,θ)]}

+[(α−α1)r−2 +α1r2−α]sin(2θ).

(27)

Finally, using coordinate transforming expressions, the boundary integral formula
in an exterior circular domain with radius R in a polar coordinate system are easily
obtained as follows:

ur(r,θ) ={cosθP(r,θ)+
r2−R2

2r2 [cosθ(−r
∂

∂ r
P(r,θ))

+ sinθ
∂

∂θ
P(r,θ)]}∗ur(R,θ)+{sinθP(r,θ)+

r2−R2

2r2

× [sinθ(−r
∂

∂ r
P(r,θ))− cosθ

∂

∂θ
P(r,θ)]}∗uθ (R,θ)

+ [(α−α1)r−2−α1r2−α +2α1 +α ln(r2)]cos(θ),

(28)

uθ (r,θ) ={−sinθP(r,θ)+
r2−R2

2r2 [sinθ(−r
∂

∂ r
P(r,θ))

− cosθ
∂

∂θ
P(r,θ)]}∗ur(R,θ)+{cosθP(r,θ)− r2−R2

2r2

× [cosθ(−r
∂

∂ r
P(r,θ))+ sinθ

∂

∂θ
P(r,θ)]}∗uθ (R,θ)

− [(α1−α)r−2−3α1r2 +α +2α1 +α ln(r2)]sin(θ),

(29)

where * is the convolution integral.

According to the above two formulae, the Stokes problem can be calculated in
an annular domain, and the coefficients α,α1 can be computed by the boundary
conditions.
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3.2 Boundary integral formula of a circular domain

Likewise, the boundary integral formulae of the interior circular domain with radius
R in a Cartesian coordinate system can be obtained with the Fourier series method:

ux(r,θ) =P′(r,θ)∗ux(R,θ)+
R2− r2

2r2 {cos2θ [(r
∂

∂ r
P′(r,θ))

∗ux(R,θ)+
∂

∂θ
P′(r,θ)∗uy(R,θ)]+ sin2θ [− ∂

∂θ
P′(r,θ)

∗ux(R,θ)+(r
∂

∂ r
P′(r,θ))∗uy(R,θ)]}−

R2− r2

2πRr
×∫ 2π

0
[ux(R,θ ′)cos(θ +θ

′)+uy(R,θ ′)sin(θ +θ
′)]dθ

′,

(30)

uy(r,θ) =P′(r,θ)∗uy(R,θ)+
R2− r2

2r2 {sin2θ [(r
∂

∂ r
P′(r,θ))

∗ux(R,θ)+
∂

∂θ
P′(r,θ)∗uy(R,θ)]− cos2θ [− ∂

∂θ
P′(r,θ)

∗ux(R,θ)+(r
∂

∂ r
P′(r,θ))∗uy(R,θ)]}+

R2− r2

2πRr
×∫ 2π

0
[−ux(R,θ ′)sin(θ +θ

′)+uy(R,θ ′)cos(θ +θ
′)]dθ

′.

(31)

Using coordinate transforming expressions, the boundary integral formulae of the
interior circular region with radius R in a polar coordinate system are acquired:

ur(r,θ) ={cosθP′(r,θ)+
R2− r2

2r2 [cosθ(r
∂

∂ r
P′(r,θ))

− sinθ
∂

∂θ
P′(r,θ)]− R2− r2

2πRr
}∗ur(R,θ)+{sinθP′(r,θ)

+
R2− r2

2r2 [sinθ(r
∂

∂ r
P′(r,θ))+ cosθ

∂

∂θ
P′(r,θ)]}∗uθ (R,θ),

(32)

uθ (r,θ) ={−sinθP′(r,θ)+
R2− r2

2r2 [sinθ(r
∂

∂ r
P′(r,θ))

+ cosθ
∂

∂θ
P′(r,θ)]}∗ur(R,θ)+{cosθP′(r,θ)− R2− r2

2r2

× [cosθ(r
∂

∂ r
P′(r,θ))− sinθ

∂

∂θ
P′(r,θ)]+

R2− r2

2πRr
}∗uθ (R,θ),

(33)

where P′(r,θ) = R2−r2

2π[R2+r2−2rRcosθ ]
.
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4 Model verifications and application

4.1 Model verifications

The boundary integral formulae related only to boundary velocities with the NBEM
obtained above are applied to test two problems to verify the feasibility and accu-
racy of the method. The test problems are the classical problems for which many
analytical and numerical model results are available in literature concerning 2D
Stokes flows. All of the examples adopt the international system of units.

4.1.1 Stokes flow in an annular cavity with rotating boundaries

The first model problem is a rotating cylinder with unit velocity in the incompress-
ible viscous fluid. For the sake of convenience, the radius of the cylinder is taken as
1. This is a Stokes problem in an annular cavity, and the velocity boundary condi-
tions of the inner boundary can be described as ur(1,θ) = 0, uθ (1,θ) = 1. Thereby,
the Stokes problem can be calculated directly using the boundary integral formulae
(28)-(29). The velocity fields can be expressed analytically as follows:

ur(r,θ) ={sinθP(r,θ)+
r2−1

2r2 [sinθ(−r
∂

∂ r
P(r,θ))− cosθ

∂

∂θ
P(r,θ)]}∗1

=
∫ 2π

0
sin(θ −θ

′) · r2−1
2π(1+ r2−2r cos(θ −θ ′))

dθ
′

− r2−1
2r
·
∫ 2π

0
sin(θ −θ

′)·
{

r
π[r2−2r cos(θ −θ ′)+1]

+
[2cos(θ −θ ′)−2r] · (r2−1)
2π[r2−2r cos(θ −θ ′)+1]2

}
dθ
′+

r2−1
2r2 ·∫ 2π

0
cos(θ −θ

′) · r sin(θ −θ ′) · (r2−1)
π[r2−2r cos(θ −θ ′)+1]2

dθ
′ ,

(34)

uθ (r,θ) ={cosθP(r,θ)− r2−1
2r2 [cosθ(−r

∂

∂ r
P(r,θ))+ sinθ

∂

∂θ
P(r,θ)]}∗1

=
∫ 2π

0
cos(θ −θ

′) · r2−1
2π(1+ r2−2r cos(θ −θ ′))

dθ
′

+
r2−1

2r
·
∫ 2π

0
cos(θ −θ

′)·
{

r
π[r2−2r cos(θ −θ ′)+1]

+
[2cos(θ −θ ′)−2r] · (r2−1)
2π[r2−2r cos(θ −θ ′)+1]2

}
dθ
′− r2−1

2r2 ·∫ 2π

0
sin(θ −θ

′) · r sin(θ −θ ′) · (r2−1)
π[r2−2r cos(θ −θ ′)+1]2

dθ
′.

(35)
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Based on Eqs.34-35, the velocity vector near the inner boundary is shown in Fig.
1, and the distribution of tangential velocity varied with the radial position r is
depicted in Fig. 2. In order to make the figure clear, the range of the radial position
in this figure ranges from 1 to 50. Good agreement is observed when comparing
with the analytical solution w2R/r, where w is the rotational angular velocity of the
cylinder.

Figure 1: Velocity vector.

4.1.2 Stokes flow in a circular cavity with a counter-clockwise driving

The second model problem consists of a recirculating flow in a 2D circular cavity.
The radius of the circular cavity is assumed as 1. The configuration and boundary
conditions of this problem are depicted in Fig. 3. In the upper half of the boundary,
the velocity uθ = 1 in a counter-clockwise direction and ur = 0are prescribed. In
the lower half, the tangential velocity and radial velocity are taken as 0.

The velocity vector is observed in Fig. 4. The present computations give very good
results as compared to the other solutions. The curves of the tangential velocities
along the radial position r at different directions are depicted as Fig. 5, and the
tangential velocities varied with the direction θ at different radial positions are
depicted as Fig. 6. Likewise, Fig. 7 depicts the radial velocity profile varied with
the radial position r at different directions, and Fig. 8 describes the tangential
velocity profile varied with the direction θ at different radial positions.
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Figure 2: Tangential velocity varied with the radial position.

Figure 3: Boundary conditions.

Fig. 9 depicts the x-component velocity profile on the vertical centerline, and Fig.
10 describes the y-component velocity profile on the horizontal centerline. The
results are compared with the numerical solution [Young, Jane and Lin(2004)],
which also show good agreements.

4.2 Model application

The third model problem consists of a 2D circular cavity filled with incompress-
ible viscous fluid moving on the upper half of the boundary. The moving velocity
is equal in size and opposite in direction. The other configuration and boundary
conditions of the problem are the same as 4.1.2, which are depicted in Fig. 11. The
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Figure 4: Velocity vector.

Figure 5: Tangential velocity varied with the radial position.
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Figure 6: Tangential velocity varied with the direction.

Figure 7: Radial velocity varied with the radial position.
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Figure 8: Radial velocity varied with the direction.

Figure 9: Comparison of the x-component velocity profile.
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Figure 10: Comparison of the y-component velocity profile.

velocity vector is observed in Fig. 12.

The tangential velocities varied with the radial position r and direction θ are de-
picted as Figs. 13 and 14. Likewise, Fig. 15 depicts the radial velocity profile
varied with the radial position r, and Fig. 26 describes the tangential velocity pro-
file varied with the direction θ . The natural boundary element method may be
used to easily compute the Stokes flow in a circular cavity with arbitrary velocity
boundary conditions.

5 Conclusions

The boundary integral formulae of velocities for Stokes equations in interior and ex-
terior circular domains are deduced by the natural boundary element method. The
formulae are successfully used to solve Stokes flow problems in the circular and
annular cavity, provided that the velocity values on the boundary are given. As the
boundary integral formulae of the velocities are analytical, the results have a high
computational accuracy. In addition, owing to the brevity of the formulae, the cal-
culating process is simple and convenient compared with analytical solutions and
other numerical solutions. The good performance of the natural boundary element
method shows that it is a powerful tool for the numerical solution of incompress-
ible viscous fluid flows. Although in this study mainly 2D Stokes flow problems
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Figure 11: Boundary conditions.

Figure 12: Velocity vector.

are solved, we expect that the natural boundary element method will have great
potential for solving 3D incompressible viscous flow problems which are currently
under study.

Acknowledgement: This study is supported by the “Fundamental Research



Analytical Solution of Stokes Flow in a Driven Cavity 151

Figure 13: Tangential velocity varied with the radial position.

Figure 14: Tangential velocity varied with the direction.
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Figure 15: Radial velocity varied with the radial position.

Figure 16: Radial velocity varied with the direction.
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