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Boundary Layer Effect in Regularized Meshless Method
for Laplace Equation

Weiwei Li1 and Wen Chen1,2

Abstract: This paper presents an efficient strategy for the accurate evaluation of
near-boundary solutions in the regularized meshless method (RMM), also known
as the boundary layer effect associated with the boundary element method. The
RMM uses the double layer potentials as its interpolation basis function. When the
field point is close to the boundary, the basis function will present nearly strong-
and hyper-singularities, respectively, for potentials and its derivative. This paper
represents the first attempt to apply a nonlinear transformation, based on sinh func-
tion, to the accurate evaluation of nearly singular kernels associated with the RMM.
The accuracy and efficiency of the proposed strategy are demonstrated through sev-
eral numerical examples, where the solutions at as close as 1.0E–6 distance to the
boundary are accurately evaluated.

Keywords: Regularized meshless method, Double layer potentials, Near singu-
larity, Boundary layer effect, nonlinear transformation.

1 Introduction

The regularized meshless method (RMM) belongs to the family of meshless bound-
ary collocation methods [Young, Chen and Lee (2005)] and can be viewed as a reg-
ularized method of fundamental solutions (MFS) [Fairweather and Karageorghis
(1998)] for the solution of certain boundary value problems. The method circum-
vents the fictitious boundary issue long perplexing the MFS [Ling, Opfer and Sch-
aback (2006)] while being truly free of mesh and integral, and easy-to-program.
Prior to this study, this method has been successfully applied to a variety of phys-
ical problems, such as potential [Young, Chen and Lee (2005)], exterior acoustics
[Young, Chen and Lee (2006)], anti-plane shear [Chen, Chen and Kao (2008)],
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acoustic eigenvalue [Chen, Chen and Kao (2006)] and anti-plane piezoelectricity
problems [Chen, Kao and Chen (2009)]. Like to the other boundary-type numerical
methods, the RMM, however, encounters a dramatic drop of solution accuracy at
the region nearby the boundary, because of singularity of its double layer funda-
mental solutions.

Accurate evaluation of near-boundary solutions plays an important role in solving
many engineering problems [Johnston and Elliott (2005)], such as contact [Aliaba-
di and Martin (2000)], inverse and sensitivity [Zhang, Rizzo and Rudolphi (1999)],
thin- body [Luo, Liu and Berger (1998)], and crack problems [Dirgantara and Ali-
abadi (2000)], just to mention a few. In such cases, the calculation point is often
placed very closely to, but not on, the physical boundary. Theoretically, the values
of singular RMM kernel functions at these boundary-adjacent points are finite but
not smooth at all. Nearby boundary, the kernels may have a sharp peak as the calcu-
lation point approaches closer to the boundary. Consequently, the kernels become
nearly singular and cannot be accurately calculated.

Inspired by the recent work on handling near singularity in the boundary element
method and the singular boundary method [Gu, Chen and Zhang (2013); Gu, Chen
and Zhang (2012)], this study applies an efficient nonlinear transformation [John-
ston and Elliott (2005)], based on the sinh function, to remove or damp out the
near singularity of the double layer fundamental solutions associated with the RM-
M. Compared with a straightforward implementation of the RMM, the transformed
RMM proposed in this paper can improve the numerical accuracy and stability n-
earby boundary by several orders of magnitude in terms of relative errors.

A brief outline of the rest of this paper is as follows. The RMM formulation and its
implementation for potential problems are presented in Section 2. And then Section
3 explains the principle of the nearly singular properties of the RMM formulation,
and introduces the sinh transformation. In Section 4, the accuracy and validity of
the transformed RMM are verified through three 2D potential examples, in which
the solutions at interior points very close to the boundary are investigated in details.
Finally, the conclusions and remarks are provided in Section5.

2 RMM formulation for 2D potential problems

Without a loss of generality, we consider the following Laplace problem:

∇
2u(xxx) = 0, xxx ∈Ω (1)

subject to the following boundary conditions

u(xxx) = ū(xxx), xxx ∈ ΓD (Dirichlet boundary condition) (2)
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q(xxx) = q̄(xxx), xxx ∈ ΓN (Neumann boundary condition) (3)

lim
‖x‖2→∞

u(xxx) = const, (4)

where u is the potential field, Ω represents the computational domain, Γ = ΓD ∪
ΓN = ∂Ω denotes the boundary of the domain Ω, the barred quantities indicate the
given values on the boundary. The flux q(x) along the boundary ΓN is given by

q(xxx)=
∂u(xxx)

∂nnn
(5)

where n denotes the outward normal at the calculation point. In Eq.(4), ‖x‖2 repre-
sents the Euclidean distance, and const stands for a finite constant. It is noted that,
for exterior problems, the potential u(x) satisfies not only boundary conditions (2)
and (3) but also the boundary condition (4) at infinity.

By using the radial basis function (RBF) method [Cheng, Young and Tsai (2000);
Li, Lu, Hu and Cheng (2008); Liu (2007)], the solutions u(x) and q(x) for interior
problems can be approximated by:

u(xxxi) =
N

∑
j=1

α
jA(I)(xxxi,sss j), (6)

q(xxxi) =
N

∑
j=1

α
jB(I)(xxxi,sss j), (7)

where A(I)(xxxi,sss j) and B(I)(xxxi,sss j) are RBF of choice, xi the ith collocation point, s j

the jth source point,
{

α j
}N

j=1 denote the unknown coefficients to be determined,
and N represents the numbers of source points.

The kernel basis function of the RMM are the following double layer potentials

A(I)(xxxi,sss j) =
−((xxxi− sss j),nnn j)

r2
i j

, (8)

B(I)(xxxi,sss j) =
2((xxxi− sss j),n j)((xxxi− sss j), n̄nni)

r4
i j

−
(nnn j, n̄nni)

r2
i j

, (9)

where (,) respresents the product of two vectors, r2
i j=
∥∥sss j− xxxi

∥∥
2 denotes the distance

between the collocation and source points, nnn j is the normal vector at sss j, n̄nni the
normal vector at xxxi, superscript (I) denotes interior domain problems. The unknown
coefficients {α j}N

j=1 can be determined by collocating at N observation points with
the boundary conditions Eqs.(6) and (7). Then, physical quantities at interior points
can be evaluated using Eq.(6).
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Similarly, the representation of the solution of exterior problem can be approximat-
ed as

u(xxxi) =
N

∑
j=1

α
jA(E)(xxxi,sss j), (10)

q(xxxi) =
N

∑
j=1

α
jB(E)(xxxi,sss j), (11)

where the superscript (E) denotes the exterior problems.

It is noted that, in the traditional MFS, the source points are placed on the fictitious
boundary, for example, see Fig.1(a) and (b), outside the problem domain to avoid
the singularity of kernel functions. However, the placement of fictitious bound-
ary is largely based on experiences, especially for complex geometric and high
dimensional problems [Berger and Karageorghis (2001); Fan, Chan, Kuo and Yeih
(2012); Marin (2010)]. Overcoming the abovementioned shortcoming, the source
points of the RMM are distributed on the physical boundary, coincident with the
collocation points, see Fig.1(c) and (d).

Figure 1: Problem sketch and nodes distribution using the conventional MFS and
the RMM for interior and exterior problems: (a) interior problems (MFS), (b) ex-
terior problems (MFS), (c) interior problems (RMM), and (d) exterior problems
(RMM).
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2.1 The RMM formulation for interior problems

When the collocation point xi approaches the source point s j, the distance between
these two nodes tends to zero, and the basis function kernels in Eqs.(6) and (7)
present singular and hyper-singular. The RMM uses a subtracting and adding-back
technique to remove the singularities of Eqs.(6) and (7) [Young, Chen and Lee
(2005)]. The diagonal elements of influence matrices can be derived from null-
field integral equations [Song and Chen (2009)] or the boundary integral equations
(BIEs) [Sun, Chen and Zhang (2013)] at the domain point. The main results for 2D
interior problems are summarized hereafter.

According to Ref. [Sun, Chen and Zhang (2013)], Eqs.(6) and (7) can be desingu-
larized as follows:

u(xxxi) =
N

∑
j=1, j 6=i

α
jA(I)(xxxi,sss j)+

α i

li

(
2π−

N

∑
j=1, j 6=i

A(I)(xxxi,sss j)l j

)
, (12)

q(xxxi) =
N

∑
j=1, j 6=i

α
jB(I)(xxxi,sss j)− α i

li

(
N

∑
j=1, j 6=i

B(I)(xxxi,sss j)l j

)
. (13)

where l jis half distance between the source points sss j−1and sss j+1, and can be ob-
tained by numerical integration, for example, the 8-points Gaussian quadrature.

Then the diagonal elements of the RMM interpolation matrix for interior problems
can be derived by

A(I)(xxxi,sssi) =
1
li

(
2π−

N

∑
j=1, j 6=i

A(I)(xxxi,sss j)l j

)
, (14)

B(I)(xxxi,sssi) =−1
li

(
N

∑
j=1, j 6=i

B(I)(xxxi,sss j)l j

)
. (15)

2.2 The RMM formulation for exterior problems

For exterior problems, the diagonal elements can be determined via null-field in-
tegral equations [Song and Chen (2009)]. Eqs.(10) and (11) can be regularized as
follows:

u(xxxi) =
N

∑
j=1, j 6=i

α
jA(E)(xxxi,sss j)− α i

li

(
N

∑
j=1, j 6=i

A(E)(xxxi,sss j)l j

)
, (16)

q(xxxi) =
N

∑
j=1, j 6=i

α
jB(E)(xxxi,sss j)− α i

li

(
N

∑
j=1, j 6=i

B(E)(xxxi,sss j)l j

)
. (17)
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The diagonal elements of the RMM interpolation matrix for exterior problems can
be obtained by

A(E)(xxxi,sssi) =−1
li

(
N

∑
j=1, j 6=i

A(E)(xxxi,sss j)l j

)
, (18)

B(E)(xxxi,sssi) =−1
li

(
N

∑
j=1, j 6=i

B(E)(xxxi,sss j)l j

)
. (19)

By collocating BCs from Dirichlet boundary Eq. (2) and Neumann boundary Eq.
(3) at N observation points, the unknown coefficients {α j}N

j=1 can be calculated by
linear solvers.

A technique using the moment condition can be implemented in the RMM to reme-
dy the wrong solution for the problem whose solution includes a constant potential
[Chen, Fu and Wei (2009)]. The potential at the point y inside the domain is given
by

u(yyy) =
N

∑
j=1

α
jA(yyy,xxx j)+ c, (20)

with the constraint

∑
N
j=1 α j = 0. (21)

where x j ∈ Γ, A(y,x j) = A(I)(y,x j) and A(y,x j) = A(E)(y,x j) correspond to interior
or exterior problems, respectively.

3 A sinh transformation for nearly singular kernels in the RMM

From mathematical point of views, the RMM is equivalent to the indirect BEM
(IBEM) and can be derived from a discretization formulation of the IBEM via a
quadrature rule, as shown below

u(yyy) =
∫

Γx

σ(xxx)A(yyy,xxx)dΓx ≈
N

∑
j=1

α
jA(yyy,xxx j), (22)

where σ(xxx) denotes the unknown density function.

If the calculation point yyy is far away from the boundary, the numerical results by
a straight forward application of the boundary integral equation(BIE) (22) will be
sufficient to obtain accurate numerical results. However, if the calculation yyy moves
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closer to the boundary, the distance function r approaches to zero. Consequent-
ly, the BIE (22) will present nearly singularity. From the mathematical point of
view, the integrand remains regular because it is finite at all points. However, in-
stead of being smooth, the integrand may have a finite but very large gradient as
the calculation point gets closer to the boundary. The whole integral, therefore,
cannot accurately be calculated using the standard Gauss-quadrature. As a result,
the RMM-expansion fails to yield reliable results nearby boundary.

As shown in Fig.2, we assume the calculation point yyy is close to the boundary Γk
containing the point xk, then Eq. (22) can be rewritten as

u(yyy) =
N

∑
j=1, j 6=k

α
jA(yyy,xxx j)+α

kuk, (23)

where uk is defined as the nearly singular factor, which should be evaluated via
special treatments. In this work, the nearly singular factor uk is directly calculated
as an average value of the kernel functions over Γk by

uk =
1
lk

∫
Γk

A(yyy,xxx)dΓk(xxx) (24)

where lk is half distance between the source nodes xxxk−1 and xxxk+1(see Fig.2).

Figure 2: A field point near the boundary.

In order to numerically calculate the above integral equation (24), the integral can
be transformed and mapped onto the interval [1, 1] in terms of some intrinsic co-
ordinate ξ . If a quadratic boundary element is used, Eq. (24) can be rewritten as
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follows [Gu, Chen and Zhang (2013)]

uk =
1
lk

∫
Γk

f (xxx)
r2 dΓk(xxx) =

1
lk

∫ 1

−1

f (ξ )J(ξ )
(ξ −η)2g(ξ )+b2 dξ (25)

where η ∈ [−1,1] stands for the position of the projection of the field point onto
the element (see Fig.2), b represents the shortest distance from the field point to
the element, g(ξ )is a low order and non-negative polynomial, J(ξ ) represents the
Jacobian of the transformation from the quadratic boundary element to the interval
[1, 1], f (·)is a low-order polynomial which is a part of the kernel function. Further
details can be found in Ref. [Gu, Chen and Zhang (2013)].

Due to the peaked nature of the integral, the above integral is difficult to numerically
evaluate as b→ 0. To improve the accuracy of the numerical results in the RMM,
a sinh transformation [Gu, Chen and Zhang (2013)] is used in this study

ξ = η +bsinh(k1t− k2), (26)

where

k1 =
1
2

{
arcsinh

(
1+η

b

)
+ arcsinh

(
1−η

b

)}
, (27)

k1 =
1
2

{
arcsinh

(
1+η

b

)
− arcsinh

(
1−η

b

)}
. (28)

Then, the integral is changed as

uk =
k1

lkb

∫ 1

−1

f (t)J(t)cosh(k1t− k2)

sinh2(k1t− k2)g(t)+1
dt, (29)

As mentioned above, g(t) is a non-negative function, and thus the function sinh2(k1t−
k2)g(t)+ 1 in Eq.(29) is always greater than 1. Thus, an oscillating integrand is
smoothed, and can now be accurately evaluated via the standard Gaussian quadra-
ture, even if the value of b, distance between boundary source and inner collocation
points, is very small.

4 Numerical examples and discussions

To verify the scheme developed above, three 2D potential problems are investigated
in this section. The numerical results will be compared with exact solutions by the
relative error defined below

Relative error =

[
1
M

M

∑
k=1

(
Ik
numerical− Ik

exact

Ik
exact

)2]1/2

, (30)

where Ik
numerical and Ik

exact represent the numerical and analytical solutions at the kth

calculation point, respectively.
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4.1 Interior Dirichlet problem with gear wheel domains

First, we consider a bounded domain with gear wheel shape which is defined by

Γ =

{
(r cosθ ,r sinθ) : r =

1
9
[17−8cos(3θ)] , 0≤ θ ≤ 2π

}
. (31)

Problem sketch and the nodes distribution are depicted in Fig.3. The analytical
solution is given by the global function

u(x1,x2) = ex1 cosx2 + x1, (32)

For the numerical implantation, N=1000 source points are selected on the boundary.
Tab.1 and 2 list the potential results at calculation points A and B in terms of the
function of distance b from the boundary. The results using the original RMM are
also given for a fair comparison.

As shown in Tab.1 and 2, when the calculation point A and B are not very close to
the boundary, the original RMM can obtain accurate results. However, if A and B
get closer to the boundary, i.e., when the distance b is less than 1.0E-1, the RMM
performs less accurate or even inaccurate. In contrast, results using the present
transformed RMM are accurate and stable, even when the distance b is as small as
1.0E-6. This clearly shows that the transformed RMM performs much better than
the original RMM in near-boundary regions.

Fig.4 shows the relative error curves of the potentials at point A and B with b=1.0E-
6, against the number of boundary nodes. As illustrated in this figure, the trans-
formed RMM converges quickly with an increasing number of boundary nodes
even when the distance from the field point to the boundary is as small as 1.0E-6.

Table 1: Results of potential u at the calculation point A
b Exact Original

RMM
Relative

error
Transformed

RMM
Relative error

0.5 2.1487 2.1490 1.2965e-04 2.1490 1.2196e-04
1.0E-1 3.3596 3.3609 3.7753e-04 3.3607 3.2483e-04
1.0E-2 3.6812 3.6851 1.0001e-03 3.6298 1.3978e-02
1.0E-3 3.7146 13.0602 2.5159e+00 3.4582 6.9020e-02
1.0E-4 3.7179 1.5558e+02 4.0845e+01 3.6888 7.8212e-03
1.0E-5 3.7182 1.5923e+03 4.2724e+02 3.7149 8.9817e-04
1.0E-6 3.7183 1.5961e+04 4.2915e+03 3.7175 2.0483e-04
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Table 2: Results of potential u at the calculation point B.
b Exact Original

RMM
Relative

error
Transformed

RMM
Relative error

0.5 -
2.1753

-2.1753 1.2549e-06 -2.1753 1.9806e-06

1.0E-1 -
2.6091

-2.6091 2.7271e-05 -2.6088 1.0571e-04

1.0E-2 -
2.7050

-2.8718 6.1674e-02 -2.5760 4.7692e-02

1.0E-3 -
2.7145

-16.7623 5.1750e+00 -2.6756 1.4337e-02

1.0E-4 -
2.7155

-168.9075 6.1201e+01 -2.7115 1.4559e-03

1.0E-5 -
2.7156

-
1.6920e+03

6.2206e+02 -2.7152 1.5497e-04

1.0E-6 -
2.7156

-
1.6923e+04

6.2307e+03 -2.7139 6.3903e-04

 Figure 3: A bounded domain with gear wheel boundary shape.
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Figure 4: Relative error curves of the transformed RMM.

4.2 Exterior Dirichlet problem with amoeba-like domain

Next, we consider an infinite domain with amoeba-like shape which is defined by

Γ =
{
(r cosθ ,r sinθ) : r = esinθ sin2(2θ)+ ecosθ cos2(2θ), 0≤ θ ≤ 2π

}
. (33)

Figure 4 shows the profile of the ameba-like shape boundary and the distribution of
the source points. The symbols · and + represent the source points and computed
points, respectively.

The exact solution is given by

u(x1,x2) = ex1/x2
1+x2

2 cos
(

x1

x2
1 + x2

2

)
(34)

To solve the problem numerically, N=1000 source points are placed on the bound-
ary. The numerical solution accuracies are examined on a total of M=90 calculation
points with the off-boundary distance b, as shown in Fig. 5.

The relative error curves of the original and transformed RMMs are given in Fig.6
as functions of the off-boundary distance b. We can observe from Fig.6 that the
transformation technique increases a large degree of the accuracy near boundary
solutions. It also illustrates that the relative errors decrease greatly, when the field
point is far from the boundary, because the peak of integrand is becoming smooth.
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 Figure 5: The profile of an infinite domain with amoeba-like boundary shape.

Figure 6: Relative error curves of potentials at interior points near the boundary
using the transformed RMM and original RMM.
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4.3 Multiply-connected domain with mixed boundary conditions

Finally, consider a multiply-connected domain problem. The shape of the domain
and the nodes distribution are depicted in Fig.7. The symbols · and+represent
source points and computation points, respectively. The boundary Γ is composed
of the outer curve Γ1 and the two inner curves Γ2∪Γ3 as

Γ1 =
{
(r cosθ ,r sinθ) : r =

√
82−18cos(8θ), 0≤ θ ≤ 2π

}
, (35)

Γ2 = {(r cosθ ,r sinθ) : r = 1} , (36)

Γ3 = {(r cosθ +4,r sinθ) : r = 0.5} , (37)

The mixed boundary conditions are given by{
u(x1,x2) = sinx1 coshx2 (x1,x2) ∈ Γ1,
∂u(x1,x2)

∂nnn = cosx1 coshx2nx1 + cosx1 coshx2nx2 (x1,x2) ∈ Γ2∪Γ3,
(38)

where (nx1 ,nx2) is a unit normal vector, and the analytical solution is given by
u(x1,x2) = sinx1 coshx2.

Figure 7: Multiply-connected domain with mixed boundary conditions.

Taking N=800, 80 and 40 source points on the outer boundary and two inner bound-
ary, respectively. Selecting the same number of calculation points distributed inside
the domain near the physical boundaries, whose distance b to the physical bound-
ary varies from 0.5 to 1.0E-6. Fig. 8 shows the relative error curves of potential
results at the calculation points as functions of various values of b.
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Figure 8: Relative error curves of the potentials at interior points near the boundary
using the transformed RMM and original RMM.

As shown in Fig.8, when the distance b is greater than 0.1, the results of the original
RMM and the transformed RMM are both accurate. However, when the calculation
points get closer to the boundary, the original RMM tends less accurate and stable.
In stark contrast, the results using the proposed method remain accurate and nu-
merically stable. It is also noting that when the distance to the boundary researches
1.0E-6, application of the transformation yields an improvement in relative error
by about six orders of magnitude. As in the previous examples, the relative error of
the proposed scheme is generally independent of the distance b from the boundary.

5 Conclusions

This paper introduces an efficient transformation technique to circumvent the bound-
ary layer effect associated with the RMM formulation. Compared with a straight
forward implementation of the original RMM, the present transformed RMM pro-
duces an improvement in terms of relative error by several orders of magnitude. In
general, the accuracy of the present RMM is less sensitive to the location of the n-
early singular point and the distance between the field point and the boundary. The
numerical experiments verify that accurate and stable results can be obtained using
the proposed strategy even when the distance between the calculation point and the
boundary is as small as1.0E-6. It is also observed from the foregoing numerical ex-
periments that the proposed scheme performs numerically stable and its accuracy
is largely independent of the distance from the calculated point to the boundary.
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