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Parallel Control-volume Method Based on Compact Local
Integrated RBFs for the Solution of Fluid Flow Problems
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Abstract: In this paper, a high performance computing method based on the In-
tegrated Radial Basis Function (IRBF), Control Volume (CV) and Domain Decom-
position technique for solving Partial Differential Equations is presented. The goal
is to develop an efficient parallel algorithm based on the Compact Local IRBF
method using the CV approach, especially for problems with non-rectangular do-
main. The results showed that the goal is achieved as the computational efficiency
is quite significant. For the case of square lid driven cavity problem with Renoylds
number 100, super-linear speed-up is also achieved. The parallel algorithm is im-
plemented in the Matlab environment using Parallel Computing Toolbox based on
Distributed Computing Engine.
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1 Introduction

Integrated Radial Basis Function (IRBF) method was proposed by Mai-Duy and
Tran-Cong (2001) as an alternative to the RBF interpolation of scattered data by
Kansa (1990), which is here referred to as the differential RBF (DRBF) method.
Thanks to the integration approach, IRBF method is shown to have higher order of
accuracy than the DRBF method. The convergence rate was then boosted by using
local/compact local schemes to form tridiagonal matrix [Hoang-Trieu, Mai-Duy,
and Tran-Cong (2012); Chandhini and Sanyasiraju (2007)].

The IRBF method is further developed in combination with control-volume (CV)
method [Patankar (1980)] to improve the accuracy of the solution in non-rectangular
domains [Mai-Duy and Tran-Cong (2010)]. With the inherent conservation of
mass, momentum and energy over control volumes, this method has been shown to
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be a very effective way to deal with domains with complex boundary. In this paper,
the CV method is employed in combination with two-dimensional (2D) IRBF to
simulate fluid flow in the triangular cavity problem [Kohno and Bathe (2006)].

Since the scale of practical engineering problems is huge in terms of degrees of
freedom, modern computational mechanics has begun to embrace parallel paradigm-
s. With the help of parallelisation, the shortage of memory and computational pow-
er is being addressed. What remains challenging is parallel algorithms, which is
the main focus of this paper. The method being considered is a domain decomposi-
tion (DD) method, which is one of the most popular methods for solving large scale
problems [Quarteroni and Valli (1999)]. The DD method is used to split the compu-
tational domain into smaller sub-domains which are solved separately. Originally,
sub-domains are solved sequentially one after another. In order to improve the
throughput of the simulation, in this work, the sub-domains are solved in parallel.
The DD method being used is the Schwarz additive overlapping DD method and
the communication between parallel sub-domains are handled by Matlab-supported
Message Passing Interface (MPI).

The paper is organised as follows. In Sections 2 and 3, a brief review of Compact
Local IRBF (CLIRBF) and CV method is presented. The DD method is described
in Section 4. Numerical results are then given and discussed in Section 5 with a
conclusion in Section 6.

2 Local methods based on Integrated Radial Basis Function

In this section, a brief review of several IRBF local approaches, including one-
dimension (1D) IRBF and two-dimension (2D) local 9-point IRBF stencils, is pro-
vided.

2.1 1D-IRBF method

Consider Poisson Partial Differential Equation (PDE) of a simple 2D problem as
follows.

∇
2u(x) = f (x),x ∈Ω (1)

where u is the field variable; x the position vector; Ω the considered domain and f
a known function of x.

By means of IRBF, the highest order derivatives of the PDE, second order in this
case, are approximated by a weighted set of RBFs as

∂ 2u(x)
∂x2

j
=

N

∑
i=1

wigi =
N

∑
i=1

wiGi(x), (2)
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where x j is the j-component of x ( j = 1,2); {wi}N
i=1 the set of weights and {gi(x)}N

i=1
the set of RBFs. The multiquadric (MQ) RBF is used in this work and given by

Gi(x) =
√

(x− ci)2 +a2
i ,

where {ci}N
i=1 is a set of centres and {ai}N

i=1 a set of MQ-RBF widths.

To obtain first-order derivatives and field variable, Eq. (2) is integrated successively
with respect to x j as follows.

∂u
∂x j

=
N

∑
i=1

wiG
[1]
i (x)+C1, (3)

u =
N

∑
i=1

wiG
[0]
i (x)+C1x j +C2, (4)

where G[1]
i (x) =

∫
Gi(x)dx j, G[0]

i (x) =
∫

G[1]
i (x)dx j and C1 and C2 are constants of

integration in the sense that Ci =Ci(xk), k 6= i.

Collocating equations (2) - (4) at a set of grid points {xi}N
i=1 yields

∂ 2ũ
∂x j

= G̃[2]w̃, (5)

∂ ũ
∂x j

= G̃[1]w̃, (6)

ũ = G̃[0]w̃, (7)

with

w̃ = (w1,w2, · · · ,wN ,C1,C2)
T ,

ũ = (u1,u2, · · · ,uN)
T ,

∂ kũ
∂xk

j
=

(
∂ ku1

∂xk
j
,
∂ ku2

∂xk
j
, · · · , ∂ kuN

∂xk
j

)T

,

where ui = u(xi) (i = 1,2, · · · ,N); G̃[2],G̃[1] and G̃[0] are known matrices of size
N× (N +2) as presented below.
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G̃[k](k = 1,2,3) =


G[k]

1 (x1) G[k]
2 (x1) · · · G[k]

N (x1) a[k]1 b[k]1

G[k]
1 (x2) G[k]

2 (x2) · · · G[2]
N (x2) a[k]2 b[k]2

...
...

. . .
...

...
...

G[k]
1 (xN) G[k]

2 (xN) · · · G[k]
N (xN) a[k]N b[k]N

 ,

where

(
[a][k]

)T
=


(

0 · · · 0
)T

,k = 2(
1 · · · 1

)T
,k = 1(

x1 · · · x9
)T

,k = 0

with (xm,ym)
T = xm and

(
[b][k]

)T
=

{ (
0 · · · 0

)T
,k = 1,2(

1 · · · 1
)T

,k = 0

2.2 2D IRBF local stencil scheme

In this work, a 9-point stencil scheme is employed to overcome the problem of ill-
conditioned system matrix, which is an inherent problem in the global approach.
According to this scheme, a local 9-point stencil for an arbitrary grid-point xi, j

(2≤ i≤ nx−1;2≤ j ≤ ny−1) is described as follows (Fig. 1). xi−1, j+1 xi, j+1 xi+1, j+1
xi−1, j xi, j xi+1, j

xi−1, j−1 xi, j−1 xi+1, j+1

 ,
where nx×ny is a Cartesian grid density of the considered domain. More details can
be found in Hoang-Trieu, Mai-Duy, and Tran-Cong (2012). This approximation,
coupled with the control volume method, will be presented in the next sections.

3 A control volume method based on 2D IRBFs

In this approach, each grid point is surrounded by a CV and the conservative gov-
erning equations are integrated within this volume. Figure 2 shows the CV forma-
tion for a regular 2-D domain. In this figure, CVs are bounded by lines parallel to
grid lines through the middle points between the reference point and its neighbours.
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Figure 1: A 9-point local stencil.

Figure 2: CV formation in 2D.
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Consider the 2-D Poisson equation (1). This equation is integrated over a CV, and
then by applying the divergence theorem to the resultant equation one gets

∮
Γs

∇u(x) · n̂dΓs =

yt∫
yb

∂u(x)
∂x

∣∣∣∣
r

dy−
yt∫

yb

∂u(x)
∂x

∣∣∣∣∣∣
l

dy+
xr∫

xl

∂u(x)
∂x

∣∣∣∣
t
dx−

xr∫
xl

∂u(x)
∂x

∣∣∣∣
b
dx

=
∫
Ωs

f (x)dΩs,

(8)

where Ωs and Γs are the CV under consideration and its surface, respectively; n̂ the
outward normal unit vector and (.)|(s), (s = l,r, t,b) depicts integrals over the left,
right, top and bottom faces of the CV respectively.

Using 5-point Gaussian quadrature scheme to discretise Eq. (8) yields

∆y
2

5

∑
j=1

α j
∂u(y(η j))

∂x

∣∣∣∣
r
− ∆y

2

5

∑
j=1

α j
∂u(y(η j))

∂x

∣∣∣∣
l
+

∆x
2

5

∑
i=1

αi
∂u(x(ηi))

∂y

∣∣∣∣
t

−∆x
2

5

∑
i=1

αi
∂u(x(ηi))

∂y

∣∣∣∣
r
=

∆x∆y
4

5

∑
i=1

5

∑
j=1

αiα j f (x(ηi)y(η j)) ,

(9)

where αk and ηk (k = i, j) are the weights and Gauss points, respectively.

The 2D Local IRBF approximation scheme mentioned in Section 2.2 is used to ap-
proximate the field variable and its derivatives in Eq. (9). Thus, in this approach the
governing equations are forced to be satisfied locally over CVs while the boundary
conditions are directly imposed using the 1D-IRBF approximant. The procedure
leads to an algebraic equation system for unknown nodal values of the field vari-
able as follows.(

ũ
0̃

)
=

[
G

[0]
x , O

G
[0]
x , −G

[0]
y

]
︸ ︷︷ ︸

C

(
w̃x

w̃y

)
= C

(
w̃x

w̃y

)
, (10)

where C is the conversion matrix, w̃x and w̃y the RBF weight vectors of length 15;
ũ the vector of length 9, and 0̃ the zeros vector of length 9; O the zeros matrix
of dimension 9× 15, and G

[0]
x and G

[0]
y the known matrices of dimensions 9× 15.

Furthermore, ũ, w̃x and w̃y are given by

ũ = (u1, . . . ,u9)
T , (11)

w̃x = (wx1 , . . . ,wx9 ,C
x
1(y1),Cx

1(y2),Cx
1(y3),Cx

2(y1),Cx
2(y2),Cx

2(y3))
T , (12)
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w̃y = (wy1 , . . . ,wy9 ,C
y
1(x1),C

y
1(x2),C

y
1(x3),C

y
2(x1),C

y
2(x2),C

y
2(x3))

T , (13)

G
[0]
x =



G[0]
1,x (x1) · · · G[0]

9,x (x1) x1 0 0 1 0 0

G[0]
1,x (x2) · · · G[0]

9,x (x2) 0 x2 0 0 1 0
...

. . .
... 0 0 x3 0 0 1

...
. . .

... x4 0 0 1 0 0
...

. . .
... 0 x5 0 0 1 0

...
. . .

... 0 0 x6 0 0 1
...

. . .
... x7 0 0 1 0 0

...
. . .

... 0 x8 0 0 1 0
G[0]

1,x (x9) · · · G[0]
9,x (x9) 0 0 x9 0 0 1



, (14)

G
[0]
y =



G[0]
1,y (x1) · · · G[0]

9,y (x1) y1 0 0 1 0 0

G[0]
1,y (x2) · · · G[0]

9,y (x2) y2 0 0 1 0 0
...

. . .
... y3 0 0 1 0 0

...
. . .

... 0 y4 0 0 1 0
...

. . .
... 0 y5 0 0 1 0

...
. . .

... 0 y6 0 0 1 0
...

. . .
... 0 0 y7 0 0 1

...
. . .

... 0 0 y8 0 0 1
G[0]

1,y (x9) · · · G[0]
9,y (x9) 0 0 y9 0 0 1



, (15)

where G[0]
i,x and G[0]

i,y (i = 1..9) were defined in Section 2.1 in the x and y-directions
and xi,yi two components of xi. It is noted that in (10)

ũ = [G
[0]
x ,O]

(
w̃x

w̃y

)
is obtained by collocating the field variable over a local stencil, and

0̃ = [G
[0]
x ,−G

[0]
y ]

(
w̃x

w̃y

)
is derived from the consistency condition

∫ ∫
∂ 2u
∂x2 dx

∣∣∣∣
xi

=
∫ ∫

∂ 2u
∂y2 dy

∣∣∣∣
xi

.

The conversion of the network-weight space into the physical space is achieved by
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inverting Eq. (10)(
w̃x

w̃y

)
= C−1

(
ũ
0̃

)
. (16)

By substituting Eq. (16) into Eqs. (3) and (4) the first order derivatives of u with
respect to x and y and the function itself over a local stencil are determined.

In the case of non-rectangular domains, the CV formation for interior points is
carried out in a similar way but with some extra treatments for non-rectangular
boundaries, which will be detailed in Section 5.2.

4 Parallel domain decomposition method

Domain decomposition has been successfully used to overcome the resource lim-
itation associated with large-scale problems. Its primary objective is to split a
large problem domain into small ones called sub-domains in which the problem
can be solved more effectively in terms of memory and computing power (Quar-
teroni and Valli, 1999; Tran, Phillips, and Tran-Cong, 2009). A notable advantage
of DD method in solving numerical problems is that it helps to decrease the condi-
tion number of system matrices in sub-domains. As a result, DD method helps to
achieve a more stable and accurate solution. Furthermore, with the advance of par-
allel computing, DD technique finds itself very parallel capable. That potential for
parallelisation further encourages more intensive research in DD method in recent
decades.

Over the last two decades, researchers have developed parallel algorithms owing to
the simplicity of grid generation to significantly increase the throughput of numer-
ical solutions. For example, Singh and Jain (2005) used an Element-Free Galerkin
method with moving least-square approximant to solve fluid flow problems. They
were able to achieve high efficiency, e.g. 91.27% for a 2D problem with 8 CPUs.
Shirazaki and Yagawa (1999) proposed a Mesh-Free method based parallel algo-
rithm to solve incompressible viscous flow. They obtained a stable solution to a
model with three-million degrees of freedom. However, as the speed-up was sep-
arated into two parts, namely the construction of system equations and the time
integration, the efficiency of the first part was very high and even super-linear with
high number of CPUs, the efficiency of the second part was not able to scale to
high number of CPUs. Indeed, the efficiency droped from approximately 98% with
16 CPUs to around 50% with 64 CPUs. Ingber, Chen, and Tanski (2004) com-
bined the method of fundamental solutions and the particular solution method to
solve the transient heat conduction problems. The approach was developed using
a Schwarz Neumann-Neumann DD based parallel scheme. Although the authors
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successfully demonstrated the accuracy of parallel algorithm in comparison with
the non-parallel version, unfortunately, information regarding the efficiency of par-
allelisation was not given.

This work is a further development of the Schwarz Additive Overlapping DD tech-
nique (Pham-Sy, Tran, Hoang-Trieu, Mai-Duy, and Tran-Cong, 2013) using the lo-
cal stencil IRBF approximants. Here, the local stencil 2D-IRBF based CV method,
which is presented in the previous sections, is used to develop the parallel algorithm
for solving fluid flow problems.

The additive overlapping DD method is a rather simple but effective method. It
also has a high potential for parallelisation as the computation in each subdomain
is independent within a time step. In this approach, the original domain is divided
into several overlapping sub-domains. The function values on artificial boundaries
(ABs) are initially unknown and are set to zeros (initial guess). In each iterative
step, the boundary value problem is solved separately in each sub-domain. Then
the function value on the artificial boundary of one sub-domain is updated by the
solution from other sub-domains. This procedure is repeated until a desired toler-
ance is achieved. Several specific details on the use of additive overlapping DD
technique will be presented briefly in the next sections.

4.1 Sub-domain formation and neighbour identification

The sub-domain formation task is straightforward with a rectangular domain as can
be seen in Fig. 3. This formation has been reported in our previous work. However,
it is also presented here for completeness.

The Matlab’s notation will be utilised as follows.

• lab/worker - a computing node in distributed system.

• lab-index - the lab’s identification in distributed system. This lab-index is
used for labs to communicate with each other.

For example, in Fig. 3 the original domain is decomposed into Nx×Ny = 4×3= 12
sub-domains. These sub-domains’ lab-indices are enumerated from 1 to 12 and
from bottom to top and left to right. Each sub-domain also has a 2D index (i, j)
that determines its position in the original domain. In this example, the 2D index
of sub-domain 7 is (3,2). In order to determine neighbours, an arbitrary lab (i, j)
simply checks the following cases

1. if ( j−1)> 0 its left neighbour is lab (i, j−1);

2. if ( j+1)≤ Ny its right neighbour is lab (i, j+1);
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Figure 3: Enumeration in a system of Nx×Ny = 4×3 sub-domains of a rectangular
domain.

3. if (i+1)≤ Nx its top neighbour is lab (i+1, j);

4. if (i−1)> 0 its bottom neighbour is lab (i−1, j).

Unfortunately, with a non-rectangular domain (for example, Fig. 4) the above al-
gorithm will not work because some sub-domains will lie outside the considered
domain. For example, in Fig. 4 sub-domains 8 and 9 are outside of the triangu-
lar domain Ω. To overcome this situation, one first needs to create a list of sub-
domains (LSD), along with their 2D indices (as usual, from bottom to top and left
to right). Then inside each sub-domain the following conditions must be checked
to determine a sub-domain’s neighbours’ lab-index. Consider a sub-domain whose
2D index is (i, j)

1. if lab (i, j−1) exists in LSD then it is the left neighbour of lab (i, j);

2. if lab (i, j+1) exists in LSD then it is the right neighbour of lab (i, j);
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Figure 4: Enumeration in a system of 7 sub-domains of a triangular domain.

3. if lab (i+1, j) exists in LSD then it is the top neighbour of lab (i, j);

4. if lab (i−1, j) exists in LSD then it is the bottom neighbour of lab (i, j).

A detailed example of this process is provided in Table 1 with 7 sub-domains in a
triangular domain presented in Fig. 4.

4.2 Communication and Synchronisation

In additive overlapping DD method, one of the critical tasks is the communication
between the sub-domains as the function values on the artificial boundary of one
sub-domain are obtained from the solution in its neighbouring sub-domains in the
previous step. In the present implementation, Matlab built-in parallel communica-
tion method is utilised. Matlab communication functions allow to send an array of
data to Matlab workers in a synchronized way, which means the sender must wait
until the receiver fully receives a message. This mechanism itself guarantees the
synchronisation between sub-domains and no extra care is needed to ensure that all
sub-domains are always executing the same iterative step. More information about
Matlab supported MPI implementation can be found in (MATLAB, 2012).
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Table 1: Neighbour sub-domain (NB) determination for a triangular domain

labindex 2d-index left NB right NB top NB bottom NB
1 (2,1) (2,0) ∼ nil (2,2) ∼ 4 (3,1) ∼ 2 (1,1) ∼ nil
2 (3,1) (3,0) ∼ nil (3,2) ∼ 5 (4,1) ∼ nil (2,1) ∼ 1
3 (1,2) (1,1) ∼ nil (1,3) ∼ nil (2,2) ∼ 4 (0,2) ∼ nil
4 (2,2) (2,1) ∼ 1 (2,3) ∼ 6 (3,2) ∼ 5 (1,2) ∼ 3
5 (3,2) (3,1) ∼ 2 (3,3) ∼ 7 (4,2) ∼ nil (2,2) ∼ 4
6 (2,3) (2,2) ∼ 4 (2,4) ∼ nil (3,3) ∼ 7 (1,3) ∼ nil
7 (3,3) (3,2) ∼ 5 (3,4) ∼ nil (4,3) ∼ nil (2,3) ∼ 6

4.3 Termination

Since the parallel algorithm presented in this paper is a Distributed Computing Al-
gorithm, it needs to have a termination detection process. This process has been
investigated and classified into a unique class of algorithm called Distributed Ter-
mination Detection (DTD). In this paper, a bitmap DTD algorithm presented by
Pham-Sy, Tran, Hoang-Trieu, Mai-Duy, and Tran-Cong (2013) is employed. This
algorithm has several advantages such as symmetric detection, decentralized con-
trol and low termination detection delay, and thus ideally suits the implementation
of parallel algorithm in the present work.

4.4 Algorithm of the present procedure

The present parallel method is based on the combination of the local stencil 2D-
IRBF and CV, and the DD technique presented in the previous sections can now be
described in an overall algorithm whose flowchart is shown in Fig. 5.

5 Numerical results

The proposed method is verified through the simulation of the lid driven cavity
(LDC) fluid flow problem for two cases of rectangular and non-rectangular do-
mains. The efficiency of the present method is analyzed.

The lid-driven cavity flow has been commonly used for verification of a numeri-
cal method owing to the availability of benchmark solutions in the literature. The
problem has also been quite popular among meshless community, e.g. Lin and
Atluri (2001) with meshless Local Petrov-Galerkin (MLPG) method; Shu, Ding,
and Yeo (2005) with local RBF-based Differential Quadrature method; Chinchap-
atnam, Djidjeli, and Nair (2007) with RBF; and Kim, Kim, Jun, and Lee (2007)
with Meshfree point collocation method. Therefore, in this paper the lid-driven
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Figure 5: Algorithm of the Parallel domain decomposition method using the local
IRBF based Control Volume approach.
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cavity flow is also employed to investigate the accuracy as well as the efficiency of
the present parallel scheme.

The problem is defined in the stream-function - vorticity formulation as follows.

∂ω

∂ t
+(

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
) =

1
Re

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
, (17)

−ω =
∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 , (18)

where Re is the Reynolds number, ψ the stream function; ω the vorticity and t the

time. The x− and y− velocity components are given by u =
∂ψ

∂y
and v =−∂ψ

∂x
.

The problem is solved using the local 9-point stencil 2D-IRBF scheme as presented
in Section 2.2 with the time derivative being discretised using a first-order Euler
scheme and the diffusive terms being treated implicitly. The boundary condition
for ω is computed through Eq. (18) using 1D global IRBF as described in Section
2.1.

The general procedure for solving a LDC problem is given as follows.

1. Guess the initial values of ω;

2. Solve (18) for ψ;

3. Approximate the values of ω on boundaries and the convective terms;

4. Solve (17) for ω;

5. Check convergence measure for ω .

5.1 Square cavity

For the square cavity problem, the geometry of the analysis domain with the chosen
coordinate system is shown in Fig. 6. The boundary conditions are given in terms
of the stream-function as.

ψ = 0,
∂ψ

∂x
= 0 ∀(x,y) ∈ Γ2∪Γ3; (19)

ψ = 0,
∂ψ

∂y
= 0 ∀(x,y) ∈ Γ4; (20)

ψ = 0,
∂ψ

∂y
= 1 ∀(x,y) ∈ Γ1. (21)
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Figure 6: The square lid driven cavity fluid flow problem. Geometry and boundary
conditions. No slip is assumed between the fluid and solid surfaces. The top lid is
moving from left to right with a speed of 1.

The Dirichlet boundary condition on ψ is used to solve Eq. (18) in step 2, while
the Neumann boundary condition on ψ is used to approximate the value of ω on
boundaries. The values of ω on boundaries, in turn, are used as boundary condi-
tions to solve Eq. (17) in step 4 above.

The iterative procedure for solving the square cavity problem with parallel DD
method is as follows.

1. Divide the analysis domain into a number of sub-domains. Guess initial
boundary condition on ABs;

2. Solve the fluid flow problem in each and every sub-domain as described
above;

3. Exchange the values of ψ and ω at interfaces with neighbours;

4. Calculate convergence measure on all interfaces;

5. Check for termination condition.
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In this paper, the square cavity problem is simulated for a range of Reynolds num-
bers (Re = 100,400,1000 and 3200). Figure 7 depicts streamlines of the flow ob-
tained by the present parallel method using a grid of 151×151 collocation points,
∆t = 1.E−03, DDTol = 1.E−06, CMTol = 1.E−06 and β = 2, 4 sub-domains
associated with 4 CPUs for Re = 100,400,1000 (Figs. 7(a) - 7(c)) and 2 sub-
domains for Re = 3200 (Fig.7(d)). The results are in very good agreement with
those presented in Ghia, Ghia, and Shin (1982) as well as in Botella and Peyret
(1998). Similar results can be found for vorticity contours in Fig. 8. Furthermore,
Fig. 9 provides the profiles of the velocities along the vertical and horizontal cen-
trelines by the present method along with the benchmark values from Ghia, Ghia,
and Shin (1982). As can be seen, the results match up very well with the benchmark
solution.

(a) Re=100 (b) Re=400 (c) Re=1000

(d) Re=3200

Figure 7: The square LDC fluid flow problem. Stream-function (ψ) contours of
the flow for several Reynolds numbers (Re = 100, 400, 1000 and 3200) by the
present parallel CV method using 4 sub-domains for Re = 100,400,1000 and 2
sub-domains for Re = 3200 with the specifications: grid 151×151, ∆t = 1.E−03,
DDTol = 1.E−06, CMTol = 1.E−06 and β = 2.
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(a) Re=100 (b) Re=400

(c) Re=1000 (d) Re=3200

Figure 8: The square LDC fluid flow problem. Vorticity (ω) contours of the flow
for several Reynolds numbers (Re = 100, 400, 1000 and 3200) by the present par-
allel CV method using 4 sub-domains for Re = 100,400,1000 and 2 sub-domains
for Re = 3200. The other parameters are given in Fig. 7.

The efficiency of the present parallel method is assessed using the following crite-
ria: the number of iterations (i), computation time (t), speed-up (spd) (ratio of the
computation times using one processor and multi processors) and efficiency (eff)
(the ratio of speed-up and the number of CPUs used). A fixed grid 151× 151 is
chosen to run the problem with various number of CPUs and the results are pro-
vided in Tables 2 - 5 for different Reynolds numbers. Results described in the
left hand side of Tables 2 - 5 show that the computation time of the present par-
allel method (the P-CV method) for the time-dependent square lid driven cavity
problem decrease tremendously as the number of sub-domains increases. An inter-
pretation on the significant improvement of throughput can be found in Pham-Sy,
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Figure 9: The square LDC fluid flow problem. Profiles of the u velocity along the
vertical centreline and the v velocity along the horizontal centreline (solid lines) for
several Reynolds numbers (Re = 100, 400, 1000 and 3200) by the present parallel
CV method in comparison with the corresponding Ghia’s results (� for u velocity
and # for v velocity). The parameters of the present method are given in Fig. 7.
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Tran, Hoang-Trieu, Mai-Duy, and Tran-Cong (2013) for the parallel collocation
method; a similar interpretation is applicable here. Again, there are always some
thresholds (called cpusopt) over which the increase of number of CPUs influences
insignificantly on the efficiency based on all criteria (t, spd and eff). For example,
the improvement of efficiency (eff) of computation is not significant anymore as
the number of CPUs is more than 49, 64, 30 and 49 (Tables 2 - 5) for Re numbers
100, 400, 1000 and 3200, respectively using the grid of 151× 151. Furthermore,
the tendency of computational efficiency can be found similarly with the present
parallel algorithm using the collocation method (named P-C method) (right hand
side of the Tables 2 - 5).

Table 2: The square LDC fluid flow problem. Comparison between parallel CV
(P-CV) and parallel collocation (P-C) methods with Re = 100, grid = 151× 151,
dt = 1.E− 03, DDTol = 1.E− 06, CMTol = 1.E− 06, β = 2. CPUs: number of
CPUs (sub-domains); i: number of iterations; t(m): elapsed time (minutes); spd:
speed-up; eff: efficiency. The observed super-linear speed up can be explained in
terms of reduced matrix condition numbers (see main text).

P-CV method P-C method
CPUs i t(m) spd eff i t(m) spd eff

1 8814 132.25 1.00 100.00 8814 130.50 1.00 100.00
2 1578 127.34 1.04 51.93 1574 126.62 1.03 51.53
4 1687 63.88 2.07 51.76 1682 63.31 2.06 51.53
6 1703 42.83 3.09 51.47 1698 44.33 2.94 49.06
9 1727 27.74 4.77 52.98 1722 27.82 4.69 52.11
12 1719 17.11 7.73 64.42 1713 16.60 7.86 65.51
16 1710 10.36 12.77 79.82 1703 10.07 12.95 80.96
20 1699 7.81 16.93 84.64 1691 7.73 16.88 84.39
25 1683 6.13 21.59 86.34 1675 5.98 21.81 87.24
30 1629 4.34 30.47 101.57 1619 4.43 29.44 98.12
36 1544 3.32 39.87 110.75 1531 3.25 40.14 111.49
42 1494 2.82 46.89 111.64 1479 2.80 46.65 111.08
49 1456 2.33 56.65 115.61 1446 2.32 56.13 114.55
56 2150 2.78 47.49 84.81 2146 2.70 48.32 86.29
64 2687 2.73 48.48 75.75 2682 2.76 47.36 74.00
72 2816 2.68 49.39 68.60 2811 2.66 48.98 68.03
81 2937 2.49 53.11 65.57 2932 2.45 53.28 65.78
90 3038 2.33 56.83 63.15 3032 2.29 56.95 63.28

100 3144 2.11 62.75 62.75 3138 2.05 63.76 63.76
110 3916 2.53 52.36 47.60 3904 2.43 53.77 48.88
121 4111 2.57 51.47 42.54 4098 2.51 52.00 42.98
132 4306 2.34 56.45 42.76 4291 2.24 58.18 44.08
144 4459 2.42 54.65 37.95 4445 2.38 54.88 38.11
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Table 3: The square LDC fluid flow problem. Comparison between P-CV and P-C
methods with Re= 400, grid = 151×151. CPUs: number of CPUs (sub-domains);
i: number of iterations; t(m): elapsed time (minutes); spd: speed-up; eff: efficiency.
Other parameters are given in Table 2.

P-CV method P-C method
CPUs i t(m) spd eff i t(m) spd eff

1 22122 324.98 1.00 100.00 22107 338.55 1.00 100.00
2 3347 292.51 1.11 55.55 3340 240.24 1.41 70.46
4 3469 131.45 2.47 61.81 3459 130.46 2.60 64.88
6 3606 97.93 3.32 55.31 3593 90.65 3.73 62.25
9 3757 67.73 4.80 53.31 3742 58.94 5.74 63.83
12 3786 38.32 8.48 70.66 3768 34.32 9.86 82.21
16 3845 23.77 13.67 85.45 3826 23.05 14.69 91.80
20 3844 17.67 18.39 91.96 3824 17.85 18.96 94.81
25 3955 14.06 23.12 92.46 3932 13.90 24.35 97.41
30 4162 11.29 28.78 95.94 4134 10.69 31.68 105.60
36 4550 9.86 32.97 91.59 4520 9.11 37.16 103.23
42 4619 8.24 39.46 93.95 4589 8.02 42.24 100.56
49 4699 7.05 46.12 94.12 4671 7.14 47.42 96.78
56 4953 6.32 51.43 91.84 4917 6.07 55.79 99.62
64 5265 5.22 62.23 97.23 5218 5.09 66.47 103.86
72 5405 4.86 66.86 92.86 5345 4.80 70.58 98.03
81 5540 4.53 71.71 88.53 5471 4.49 75.36 93.04
90 5763 4.27 76.12 84.57 5694 4.14 81.73 90.81
100 5832 3.80 85.50 85.50 5758 3.74 90.51 90.51
110 5808 3.43 94.89 86.26 5753 3.46 97.90 89.00
121 5978 3.60 90.29 74.62 5919 3.55 95.48 78.91
132 6154 3.22 100.87 76.42 6053 3.22 105.05 79.58
144 6286 3.32 97.79 67.91 6222 3.30 102.73 71.34

The efficiency, speed-up and throughput of the present parallel method can be seen
visually in Figs. 10(a), 10(c) and 10(e). These figures also depict the influence
of the Reynolds number on the mentioned criteria of the present parallel algorithm
with respect to the number of CPUs. For example, the efficiency of the present
parallel method is higher for the lower Reynolds numbers. While the throughput
increases gradually with respect to the number of sub-domains/CPUs (Fig. 10(e)),
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Table 4: The square LDC fluid flow problem. Comparison between P-CV and
P-C methods with Re = 1000, grid = 151× 151. CPUs: number of CPUs (sub-
domains); i: number of iterations; t(m): elapsed time (minutes); spd: speed-up;
eff: efficiency. Other parameters are given in Table 2.

P-CV method P-C method
CPUs i t(m) spd eff i t(m) spd eff

1 30536 453.65 1.00 100.00 30442 400.02 1.00 100.00
2 5016 429.95 1.06 52.76 5081 407.46 0.98 49.09
4 4763 178.57 2.54 63.51 4824 179.80 2.22 55.62
6 4661 121.38 3.74 62.29 4655 119.21 3.36 55.93
9 4684 72.85 6.23 69.19 4671 79.54 5.03 55.88

12 5214 51.39 8.83 73.56 5129 51.00 7.84 65.36
16 6211 37.53 12.09 75.55 6139 38.45 10.40 65.02
20 6498 29.17 15.55 77.75 6428 28.54 14.02 70.09
25 6765 22.87 19.84 79.36 6699 22.90 17.47 69.87
30 7452 18.38 24.69 82.29 7397 18.76 21.32 71.07
36 8580 17.78 25.52 70.89 8517 17.02 23.50 65.28
42 8709 15.09 30.07 71.60 8660 15.25 26.24 62.48
49 8593 13.35 33.98 69.34 8543 13.17 30.37 61.97
56 9299 11.47 39.57 70.65 9207 11.21 35.69 63.74
64 10750 10.61 42.76 66.81 10628 10.28 38.91 60.80
72 11542 10.21 44.45 61.73 11410 10.15 39.42 54.76
81 11922 9.39 48.32 59.66 11789 9.19 43.51 53.72
90 12122 8.42 53.85 59.83 11959 8.56 46.75 51.95
100 11637 7.32 62.01 62.01 11475 7.20 55.53 55.53
110 12025 7.01 64.68 58.80 11863 7.08 56.48 51.34
121 12315 7.23 62.77 51.88 12121 7.10 56.36 46.58
132 13058 6.69 67.76 51.33 12874 6.69 59.77 45.28
144 13359 6.76 67.12 46.61 13159 6.81 58.78 40.82
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Table 5: The square LDC fluid flow problem. Comparison between P-CV and
P-C methods with Re = 3200, grid = 151× 151. CPUs: number of CPUs (sub-
domains); i: number of iterations; t(m): elapsed time (minutes); spd: speed-up;
eff: efficiency. Other parameters are given in Table 2.

P-CV method P-C method
CPUs i t(m) spd eff i t(m) spd eff

1 69367 1003.93 1.00 100.00 69712 999.36 1.00 100.00
2 16057 1257.83 0.80 39.91 16590 1382.11 0.72 36.15
4 17139 622.24 1.61 40.34 16500 578.98 1.73 43.15
6 17033 439.62 2.28 38.06 16755 433.14 2.31 38.45
9 17023 289.41 3.47 38.54 17386 285.37 3.50 38.91
12 15755 154.36 6.50 54.20 15437 145.97 6.85 57.05
16 16630 101.29 9.91 61.95 16835 102.68 9.73 60.83
20 17404 78.81 12.74 63.69 17283 77.67 12.87 64.33
25 16376 57.55 17.45 69.78 15759 55.19 18.11 72.43
30 15305 39.14 25.65 85.50 14071 36.78 27.17 90.56
36 19120 39.43 25.46 70.72 17046 35.32 28.29 78.59
42 16089 27.98 35.88 85.43 16799 29.59 33.77 80.40
49 17182 25.98 38.64 78.86 17667 26.87 37.19 75.90
56 22360 27.24 36.86 65.82 22660 27.31 36.60 65.35
64 26652 25.62 39.19 61.23 26790 25.65 38.96 60.87
72 27080 24.21 41.47 57.60 27573 24.45 40.88 56.77
81 28656 22.26 45.09 55.67 29246 22.39 44.64 55.11
90 31817 22.13 45.37 50.41 31127 21.51 46.46 51.62
100 32548 19.76 50.80 50.80 31885 19.68 50.77 50.77
110 33739 19.18 52.36 47.60 32418 18.82 53.11 48.28
121 26585 16.46 61.01 50.42 33365 19.68 50.78 41.97
132 34222 16.60 60.49 45.83 33334 16.86 59.27 44.90
144 35285 17.35 57.87 40.19 34716 17.44 57.29 39.79

the gradients of time curves decrease as the number of CPUs is more than around
20. This is also indicated by the efficiency curves given in Fig. 10(a). Similar trends
of the efficiency, speed-up and throughput are also obtained by the present parallel
algorithm using the collocation method and given in Figs. 10(b), 10(d) and 10(f).
It shows that the choice of the scale for sub-domains/CPUs plays an important role
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Table 6: The square LDC fluid flow problem. Condition numbers CNω and CNψ in
single and parallel solutions with Re = 100 and grid = 151× 151. CPUs: number
of CPUs (sub-domains).

CPUs CNω CNψ CPUs CNω CNψ

1 2.6341 1.29E+04 49 1.1581 3.02E+02
2 1.1799 5.33E+03 56 1.1581 2.44E+02
4 1.1581 3.49E+03 64 1.1581 2.06E+02
6 1.1581 2.18E+03 72 1.1581 1.83E+02
9 1.1581 1.61E+03 81 1.1581 1.64E+02
12 1.1581 1.12E+03 90 1.1581 1.44E+02
16 1.1581 8.71E+02 100 1.1567 1.28E+02
20 1.1581 6.99E+02 110 1.1581 1.19E+02
25 1.1581 5.87E+02 121 1.1581 1.12E+02
30 1.1581 4.65E+02 132 1.1567 1.03E+02
36 1.1581 3.87E+02 144 1.1567 9.56E+01
42 1.1581 3.39E+02

in the performance of parallel computation schemes for a given problem.

It is observed that a super-linear speed-up is achieved using a range of numbers of
CPUs 30, 36, 42 and 49 with corresponding efficiencies 101%, 110%, 111% and
115% for the Reynolds number Re = 100 (Table 2). This is an exclusive behavior
and sometimes controversial in classical parallel computing, when the speed-up
is higher than the number of CPUs used in a parallel algorithm. For these cases,
the super-linear speed-up is considered to be related to the decrease of condition
number of each subdomain which plays a crucial role for the stability of a numerical
method. Indeed, by decomposing the domain, sub-problem in each sub-domain is
not only smaller in terms of degrees of freedom but also has smaller condition
number (see Table 6).

The efficiency of the algorithm in large scale problems is also investigated. For
testing purposes, the fluid with Re = 1000 is simulated using very fine grids in-
cluding grid-1 = 401× 401 and grid-2 = 601× 601 with the following parameters
DDTol = 1.E − 06, CMTol = 1.E − 06, β = 2 and ∆t = 1.E − 03 for grid-1 and
5.E−04 for grid-2.

While Fig. 11(a) points out a gradual increase of throughput with respect to the
number of CPUs for different scales by the present P-CV method, Fig. 11(b) depicts
the influence of the grid density on the efficiency with respect to the number of
CPUs. Indeed, the gradient of time curves of finer gridsize is steeper, which again
indicates that the efficiency of the present parallel method will be higher for larger
scale problems.
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(f) P-C method - throughput

Figure 10: The square LDC fluid flow problem. Comparison between the par-
allel performance of the P-C and P-CV methods for several Reynolds numbers
(Re = 100, 400, 1000 and 3200) with a grid of 151×151: the efficiency, speed-up
and throughput of the two methods as a function of the number of CPUs. Other
parameters are given in Tables 2 - 5.
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Figure 11: The square LDC fluid flow problem. Throughput of the P-CV method
with Re = 1000 using different grids: 151× 151, 401× 401 and 601× 601 as a
function of the number of CPUs.
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5.2 Triangular cavity

The triangular cavity has been proposed as a test case for the numerical algorithm
in the case of non-rectangular domain. The domain is an equilateral triangle with
the left and right sides being fixed and the top side (also called the lid) moving
at a constant velocity from left to right. The problem’s geometry and boundary
condition can be seen visually in Fig. 12.

It is noted that while implementing CVs with non-rectangular domains, one needs
to take extra care regarding points closed to boundary to make sure that CVs do not
intersect with each other nor with the boundary. Figure 13 shows an example of
control volume formation for a triangular domain.

The boundary conditions are given in terms of the stream function as

ψ = 0,
∂ψ

∂y
= 1 ∀(x,y) ∈ Γ1; (22)

ψ = 0,
∂ψ

∂x
= 0,

∂ψ

∂y
= 0 ∀(x,y) ∈ Γ2∪Γ3, (23)

where the variables are defined before. The solving procedure remains the same as
for the square cavity problem. However, when approximate the boundary value for
ω two following cases must be considered.

First, for boundary points that lie on both x grid-line and y grid-line the approxima-
tion can be carried out normally by using 1D IRBF in two directions following Eq.
(18).

Second, for boundary points, that lie only on x grid-line or y grid-line, its approx-
imation, thus, is available only in one direction. In this case, equivalent formulas
provided by Le-Cao, Mai-Duy, and Tran-Cong (2009) are used as follows.

ωb =−

[
1+
(

tx
ty

)2
]

∂ 2ψb

∂x2 , (24)

for points on x-grid line and

ωb =−

[
1+
(

ty
tx

)2
]

∂ 2ψb

∂y2 , (25)

for points on y-grid line, where tx and ty are the x- and y-components of the unit
vector tangential to the boundary.

In this paper, a range of Reynolds numbers (100, 200, 500, 1000) is investigated.
Again, the streamline (Fig. 14), vorticity contours (Fig. 15) and velocity profiles
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Figure 12: Triangular lid driven cavity flow problem: geometry and boundary con-
ditions. P =

√
3, Q = 3. No slip is assumed between the fluid and solid surfaces.

The top lid is moving from left to right with a speed of 1.
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Figure 13: CV formation in 2D.
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along central horizontal line y = 2 and vertical line x = 0 (Fig. 16) by the present
CV method with 4 sub-domains agree very well with ones by Kohno and Bathe
(2006) using flow-conditioned-based finite element method.

(a) Re=100 (b) Re=200

(c) Re=500 (d) Re=1000

Figure 14: The triangular LDC fluid flow problem. Stream-function (ψ) contours
of the flow for several Reynolds numbers by the present parallel CV method us-
ing 4 sub-domains with grid of 24697 nodes, ∆t = 5.E − 04, DDTol = 1.E − 06,
CMTol = 1.E−06 and β = 1.
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(a) Re=100 (b) Re=200

(c) Re=500 (d) Re=1000

Figure 15: The triangular LDC fluid flow problem. Vorticity (ω) contours of the
flow for several Reynolds numbers by the present parallel CV method. Other pa-
rameters are given in Fig. 14.

.
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Figure 16: The triangular LDC fluid flow problem. Vorticity profiles along vertical
line (x = 0) and horizontal line (y = 2) for several Reynolds numbers by the present
parallel CV method in comparison with the corresponding Kohno and Bathe’s re-
sults (� for u velocity and # for v velocity). Other parameters of the present method
are given in Fig. 14.
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Figure 17: The triangular LDC fluid flow problem. Parallel performance of the
P-CV methods for several Reynolds numbers using a grid of 24607 nodes: the
efficiency, speed-up and throughput as a function of the number of CPUs. Other
parameters are given in Table 7.
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In terms of parallel efficiency, Table 7 gives detailed results of the parallel algo-
rithm for several Reynolds numbers and with a grid of 205× 205 (or 24697 grid
points). Visual forms can be found in Fig. 17. For each Reynolds number, although
results showed that the computation time decrease gradually as the number of sub-
domains (CPUs) increases (Fig. 17(c)), the optimum number of CPUs cpusopt of
the parallel method described by the efficiency (eff) for each case is not clear (Fig.
17(a)). This can be explained as the influence of the domain decomposition for a
non-rectangular domain problem where the numbers of collocations/CVs in sub-
domains are not equal, resulting in significant variation of the amount of work to
be completed from sub-domain to sub-domain. Thus, the results show that the
sub-domain formation plays an important role in parallel computation schemes.

6 Conclusion

In this paper, we proposed a DD parallel distributed method coupled with a local
IRBF CV approach. The proposed method is successfully implemented to simu-
late the lid driven cavity flow in rectangular and non-rectangular domains. It has
been shown that results produced by the method are in excellent agreement with
the spectral benchmark solutions by Botella and Peyret (1998) and Ghia, Ghia, and
Shin (1982) for the square domain and by Kohno and Bathe (2006) for the triangu-
lar domain. A very important achievement of this paper is the high time-efficiency
of the parallel algorithm including the speed-up. It is shown that the speedup grows
steadily with the increase of the number of CPUs. This indicates excellent scalabil-
ity of the method. Moreover, a super-linear efficiency has been observed for several
cases; this phenomenon is best explained by the decrease of condition numbers in
sub-domains. The parallel algorithm performs well in both collocation and CV
methods. Indeed, the trend in efficiency with increasing number of CPUs for sever-
al Reynolds numbers is consistent with results achieved by the collocation method
reported in Pham-Sy, Tran, Hoang-Trieu, Mai-Duy, and Tran-Cong (2013).
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