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Numerical Solution of System of N–Coupled Nonlinear
Schrödinger Equations via Two Variants of the Meshless

Local Petrov–Galerkin (MLPG) Method

M. Dehghan1, M. Abbaszadeh2 and A. Mohebbi3

Abstract: In this paper three numerical techniques are proposed for solving the
system of N-coupled nonlinear Schrödinger (CNLS) equations. Firstly, we obtain
a time discrete scheme by approximating the first-order time derivative via the for-
ward finite difference formula, then for obtaining a full discretization scheme, we
use the Kansa’s approach to approximate the spatial derivatives via radial basis
functions (RBFs) collocation methodology. We introduce the moving least squares
(MLS) approximation and radial point interpolation method (RPIM) with their
shape functions, separately. It should be noted that the shape functions of RPIM
unlike the shape functions of the MLS approximation have kronecker delta prop-
erty. Also, we implement the local meshless Petrov-Galerkin (MLPG) and local
RPIM (LRPIM) techniques for obtaining two full discretization schemes for the
numerical solution of the mentioned equation in the two-dimensional case. In the
meshless local weak forms for obtaining an approximate solution for the node i in
every sub-domain we use the shape functions of the moving least squares (MLS)
and RPIM meshless approximations. The main aim of this paper is to show that the
meshless methods based on the global form i.e. radial basis functions collocation
method and local weak form i.e. MLPG and LRPIM techniques are also simple
in implementation and suitable for the treatment of the system of coupled nonlin-
ear Schrödinger equations. We show that the RBFs collocation scheme provides a
simple implementation for computing long-range solitary solutions considered by
coupled nonlinear Schrödinger equations and the conserved quantities mass and
energy almost are constant. Of course selecting small enough time step, obtains
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conserved quantities which are exactly fixed. Also several test problems including
the two-dimensional case are given and numerical simulations are reported. We
compare the obtained numerical results with together. The numerical results con-
firm the efficiency of the proposed schemes.

Keywords: Nonlinear system of coupled nonlinear Schrödinger equations(CNLS),
Kansa’s approach, meshless local Petrov-Galerkin technique(MLPG), moving least
squares (MLS) approximation, radial point interpolation method (RPIM), radial ba-
sis functions(RBFs), forward finite difference scheme.

1 Introduction

Nonlinear phenomena play important roles in applied mathematics, physics and al-
so in engineering [Ganji, Ganji, and Bararnia (2009)]. As said in [Noor, Noor, Wa-
heeda, and Al-Said (2011)], many phenomena in engineering and applied sciences
are modeled by nonlinear evolution equations. Solitary solutions [Helal (2002);
Wazwaz (2009)] of nonlinear evolution equations provide better understanding of
the physical mechanism of phenomena. The knowledge of closed form solution-
s of the nonlinear partial differential equations facilitates the testing of numerical
solvers, aids in the stability analysis of solutions and leads to a better understand-
ing of nonlinear phenomena that have been modeled by these equations [Gomez,
Salas, and Frias (2010)]. Also, the search of exact solution for the nonlinear par-
tial differential equations is very difficult. Therefore, numerical methods are useful
for solving nonlinear partial differential equations. Recently, various analytical
and semi-analytical methods for solving the nonlinear evolution equations have
been developed and are applied for solving several partial differential equation-
s (PDEs) and ordinary differential equations (ODEs) such as the inverse scatter-
ing method [Ablowitz and Clarkson (1991)], the Darboux transform [Matveev and
Salle (1991)], the Hirota bilinear method [Hirota and Satsuma (1981)], the Painlevé
expansion method [Weiss, Tabor, and Carnevale (1983)], the Bäcklund transforma-
tion method [Miura (1978)], the tanh-function method [Fan (2000)], the homo-
geneous balance method [Wang, Zhou, and Li (1996)], the Jacobi elliptic func-
tion expansion method [Liu, Fu, Liu, and Zhao (2001)], the F-expansion method
[Wang and Li (2005)], and etc. Also we refer the interested reader to [Wazwaz
(2008);Wazwaz (2006)] for some other approaches.
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1.1 Application of the Schrödinger models

In this paper, we consider the (CNLS) equations to the following form

i
∂Ψn

∂ t
+αn

∂ 2Ψn

∂x2 +

(
n

∑
m=1

σmn|Ψm|2
)

Ψn = 0, −∞ < x < ∞, n = 1,2, . . . ,N, (1)

where Ψn, n = 1,2, . . . ,N are complex valued wave amplitudes, i is an imagi-
nary number and also x and t represent space and time variables, respectively. The
parameters αn, n = 1,2, . . . ,N are group velocity dispersion (GVD) coefficients,
σnn, n = 1,2, . . . ,N are self-phase modulation (SPM) coefficients, which are also
known as the Landau constants, and σnm, n 6= N are cross phase modulations or
wave-wave interaction coefficients.

Also, we present conservation laws, which are most prominent for testing perfor-
mance of numerical schemes for CNLSE. In the current paper, we only select two
conserved properties i.e. mass and energy.

• mass conservation [Bhatt and Khaliq (2014)]:

Ii =

xR∫
xL

|Ψi|2dx is a constant, i = 1,2, . . . ,N, (2)

• energy conservation [Bhatt and Khaliq (2014)]:

∥∥Ψ j
∥∥

2 =

√
h

M

∑
i=1

Ψ j(xi), j = 1,2, . . . ,N. (3)

The Schrödinger equation was proposed by physicist Erwin Schrödinger in 1926. It
succeeded the quantum theory ideas of Planck which stated the quantization of en-
ergy and the great Einstein. It sparked the quantum mechanical era and disproved
many concepts from classical mechanics 1. Schrödinger was the first person to
write down such a wave equation. Much discussion then centered on what the e-
quation meant. The eigenvalues of the wave equation were shown to be equal to the
energy levels of the quantum mechanical system, and the best test of the equation
happened when it was used to solve the energy levels of the Hydrogen atom, and

1 http://chemwiki.ucdavis.edu/Physical-Chemistry/Quantum-Mechanics/Quantum-
Theory/Principle-of-Quantum-Mechanics/Schrödinger-Equation
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the energy levels were found to be in accord with Rydberg’s Law. It was initially
much less obvious what the wave function of the equation was. After much debate,
the wave function is now accepted to be a probability distribution 2. As mentioned
in 3 the Schrödinger equation integrates both classical mechanics and optics. It uses
conservation of energy from classical mechanics written in terms of its wave func-
tion. It is the basic equation used to solve wave functions of atomic particles such as
electrons, protons, and atoms. The Schrödinger equation is used to find the allowed
energy levels of quantum mechanical systems (such as atoms, or transistors). The
associated wave function gives the probability of finding the particle at a certain
position 4.The nonlinear Schrödinger equation is widely used in basic models of
nonlinear waves in many areas of physics and chemistry [Kavitha, Akila, Prabhu,
Kuzmanovska-Barandovska, and Gopi (2011)]. As mentioned in [Kavitha, Aki-
la, Prabhu, Kuzmanovska-Barandovska, and Gopi (2011)] the considered equation
arises from the study of nonlinear wave propagation in dispersive and inhomoge-
neous media such as plasma phenomena and nonuniform dielectric media. As said
in [Bhatt and Khaliq (2014)] the coupled nonlinear Schrödinger equations are high-
ly used in modeling various phenomena in nonlinear fiber optics, like propagation
of pulses. The system of coupled nonlinear Schrödinger equations (CNLSE) has
been appeared in many areas in engineering and science for example in the area
of hydrodynamics and fiber optics [Kivshar and Agrawal (2003);Mei (1989)]. As
mentioned in [Bhatt and Khaliq (2014)] in nonlinear optics, the CNLSE models an
optical soliton which is a special solitary wave that not only maintains its shape
after wave interaction but travels long distance without any optical loss. This form
of soliton is created by balancing the anomalous group velocity dispersion with the
fiber nonlinearity, called self-phase modulation and offers unmodulated transfer of
pulses from one place to another over a long distance. Also we refer the interest-
ed reader to [Dehghan and Shokri (2007);Dehghan and Mirzaei (2008);Helal and
Seadawy (2009);Helal and Seadawy (2011)].

1.2 The literature review

Authors of [Ismail and Alamri (2004)] developed a numerical method for solving
the CNLSE, which is fourth-order in space and second-order in time, uncondi-
tionally stable and studied the interaction of two solitons of different amplitudes.
The finite difference schemes for solving a system of the nonlinear Schrödinger
(NLS) equations were investigated in [Kurtinaitis and Ivanauska (2004)]. Also

2 http://answers.yahoo.com/question
3 http://chemwiki.ucdavis.edu/Physical-Chemistry/Quantum-Mechanics/Quantum-

Theory/Principle-of-Quantum-Mechanics/Schrödinger-Equation
4 http://answers.yahoo.com/question
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several types of schemes, including explicit, implicit, Hopscotch-type and Crank-
Nicolson-type are defined and cubic spline interpolation is used for solving time-
shifting part of equations in the mentioned paper. Authors of [Sheng, Khaliq, and
Al-Said (2001)] have concerned with a new conservative finite difference method
for solving the generalized nonlinear Schrödinger (GNLS) equation and a numer-
ical scheme is constructed through the semi-discretization approach and an appli-
cation of the quartic spline approximation is presented. A linearly implicit scheme
for solving the coupled nonlinear Schrödinger equations was developed in [Ismail
and Taha (2007)]. The new six-point scheme for solving the coupled nonlinear
Schrödinger system is proposed to study the collision behaviors of the soliton waves
in [Sun, Gu, and Ma (2004)]. Author of [Ismail (2008a)] developed a fourth-order
finite difference scheme in both directions i.e. space and time variables for solving
coupled nonlinear Schrödinger equations. Also see [Ismail (2008b)]. Five method-
s for the integration in time of a semi-discretization of the nonlinear Schrödinger
equation are extensively tested in [Sanz-Serna and Verwer (1986)]. The solution
of coupled nonlinear Schrödinger equations based on pseudospectral collocation
method with domain decomposition algorithm for approximating the spatial vari-
able was proposed in [Dehghan and Taleei (2011)]. In [Kol and Woafo (2013)]
the (G′/G)-expansion method is used for solving a system of two coupled discrete
nonlinear Schrödinger equations with a saturable nonlinearity. Authors of [Fei,
Perez-Garcia, and Vazquez (1995)] proposed conservative finite difference scheme
for nonlinear Schrödinger systems. The new scheme shows some clear advan-
tages over the previously proposed integration methods. Authors of [de la Hoz and
Vadillo (2008)] studied the exponential time differencing fourth-order Runge-Kutta
(ETDRK4) method for solving a wide range of nonlinear wave equations such as
Burger’s, one and two-dimensional nonlinear Schrödinger equations. Authors of
[Cox and Matthews (2002)] studied and tested a class of numerical methods for
systems with stiff linear parts, based on combining exponential time differencing
for the linear terms with a method similar to Adams-Bashforth for the nonlinear
terms. Authors of [Zhang, Meng, Xu, Li, and Tian (2007)] presented the Hiro-
ta method and symbolic computation for obtaining the analytical bright one and
two-soliton solutions of the (2+1)-dimensional CNLS equations under certain con-
straints.

1.3 A brief review of the meshless method

In recent years radial basis functions (RBFs) have been extensively used in differ-
ent context and emerged as a potential alternative in the field of numerical solution
of PDEs. The use of RBFs in the numerical solution of partial differential equa-
tions (PDEs) has gained popularity in engineering and science community as it
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is meshless and can readily be extended to multi-dimensional problems. A truly
meshless method, called the Meshless Local Petrov-Galerkin (MLPG) method was
discussed in depth in [Atluri (2004)]. A local symmetric weak form (LSWF) for
linear potential problems is developed, and a truly meshless method, based on the
LSWF and the moving least squares approximation, is presented for solving poten-
tial problems with high accuracy in [Atluri and Zhu (1998)]. Authors of [Atluri and
Shen (2002)] studied the efficiency and accuracy of a variety of meshless trial and
test functions based on the general concept of the meshless local Petrov-Galerkin
(MLPG) method. Five types of trial functions, and six types of test functions are
introduced in [Atluri and Shen (2002)]. The key idea of the meshless methods
is that they can obtain accurate and stable solutions of integral equations or par-
tial differential equations with various boundary conditions with a set of particles
without using any mesh [Mirzaei and Dehghan (2010a)]. Authors of [Mirzaei and
Dehghan (2010b)] presented the MLPG method for numerically solving the non-
linear two–dimensional sine–Gordon (SG) equation. Authors of [Abbasbandy and
Shirzadi (2011)] presented a new approach based on the meshless local Petrov-
Galerkin (MLPG) and collocation methods to treat the parabolic partial differential
equations with Neumann and non–classical boundary conditions. A meshless local
Petrov-Galerkin (MLPG) method is applied in [Sladek, Sladek, Krivacek, Wen, and
Zhang (2007)] to solve dynamic plate bending problems described by the Reissner-
Mindlin theory. The meshless local Petrov-Galerkin (MLPG) method is used in [S-
ladek, Sladek, and Hon (2006)] to solve stationary and transient heat conduction
inverse problems in 2-D and 3-D axisymmetric bodies. Authors of [Sladek, S-
ladek, Zhang, and Schanz (2006)] employed a meshless method based on the local
Petrov-Galerkin approach for the numerical solution of quasistatic and transien-
t dynamic problems in two-dimensional (2D) nonhomogeneous linear viscoelastic
media. Also see [Abbasbandy, Ghehsareh, Alhuthali, and Alsulami (2014)]. The
most important advantages of meshless methods compared to finite element meth-
ods are: their high-order continuous shape functions, simpler incorporation of h-
and p-adaptivity and certain advantages in crack problems.

Recently, many fractional partial differential equations are solved using meshless
approach based on the radial basis functions and moving least squares (MLS) ap-
proximation. In [Gu, Zhuang, and Liu (2011)] authors presented an implicit mesh-
less collocation technique for solving time-fractional diffusion equation. Also, the
stability and convergence of this meshless method are investigated theoretically
and numerically in [Gu, Zhuang, and Liu (2011)]. Authors of [Gu, Zhuang, and
Liu (2010)] presented an implicit meshless technique based on the radial basis
functions for the numerical simulation of the anomalous sub-diffusion equation.



Meshless Local Petrov–Galerkin (MLPG) Method 405

Also, they discussed the stability and convergence of their method. Authors of
[Liu, Gu, Zhuang, Liu, and Nie (2011)] presented an implicit meshless method
based on the radial basis functions for the numerical simulation of time-fractional
diffusion equation. Authors of [Zhuang, Liu, Anh, and Turner (2008)] presented
an implicit meshless approach based on the moving least squares (MLS) approx-
imation for the numerical simulation of fractional advection-diffusion equation.
Authors of [Mohebbi, Abbaszadeh, and Dehghan (2013)] proposed a numerical
method for the solution of the time-fractional nonlinear Schrödinger equation in
one and two dimensions which appears in quantum mechanics. The meshless
method has already proved successful in standard quantum mechanics as well as
for several other engineering and physical problems [Abbasbandy, Ghehsareh, and
Hashim (2013);Dehghan and Salehi (2011);Dehghan and Tatari (2008);Dehghan
and Nikpour (2013);Tatari and Dehghan (2010)]. The aim of the current paper is to
show that the meshless methods based on the radial basis functions and collocation
approach and also meshless local Petrov-Galerkin technique [Sladek, Stanak, Han,
Sladek, and Atluri (2013)] are also suitable for the treatment of some nonlinear
partial differential equations.

1.4 The main aim and structure of this paper

In this paper, in case of one-dimensional, we apply the RBFs collocation meshless
method for the solution of Eq. (1) and in case of two-dimensional, we use meshless
local Petrrov-Galerkin approach and local RPIM for obtaining two numerical algo-
rithms to solve Eq. (1). Firstly, we obtain a time semi-discretization scheme using
the forward finite difference formula. In case of one dimension, we build a full
discretization scheme using the meshless method based on radial basis functions
(RBFs) and Kansa’s approach. Then, in case of two-dimension using time discrete
scheme, we obtain a local weak form. Now, in the local weak form, we have two
space functions that one of them is test function and another is trial function. In our
meshless local weak form, the test functions are weight functions of moving least
squares approximation but the trial functions in the MLPG [Salehi and Dehghan
(2014)] and LRPIM methods [Dehghan and Ghesmati (2010)] are shape functions
of MLS and shape functions of RPIM, respectively. The aim of this paper is to
show that the meshless method based on the radial basis functions and collocation
approach is also suitable for the treatment of system of coupled nonlinear partial
differential equations.

The outline of this paper is as follows. In Section 2 we explain the basic concepts of
RBFs approximation method. In Section 3, we introduce the system of 4-coupled
nonlinear Schrödinger equations and obtain a time discrete scheme which employs



406 Copyright © 2014 Tech Science Press CMES, vol.100, no.5, pp.399-444, 2014

the forward finite difference formula and implements the RBFs meshless colloca-
tion method. Also, in Section 4, we explain the system of 2-coupled nonlinear
Schrödinger equations and obtain a time discrete technique using forward finite d-
ifference scheme and a full discretization scheme using RBFs meshless method.
The two-dimensional coupled damped nonlinear system of Schrödinger equations
is introduced in Section 5. Also, we present a time discrete scheme using the for-
ward finite difference formula and obtain a full discretization scheme using RBFs
meshless method for the model introduced in this section. The MLS approximation
and RPIM and their shape functions for the MLPG and LRPIM methods are intro-
duced in Section 5. Also, in this section we explain how to implement the MLPG
and LRPIM methods for solving the mentioned model. In Section 6 we solve sev-
eral test problems and report some numerical simulations. Finally a conclusion is
given in Section 7.

2 Basic concepts for RBFs approximation method

As mentioned in [Liu and Gu (2005)] the definition of a meshfree method is:

A meshfree method is a method used to establish system algebraic equations for
the whole problem domain without the use of a predefined mesh for the domain
discretization.

Also, as said in [Liu and Gu (2005)] meshfree methods use a set of nodes scat-
tered within the problem domain as well as sets of nodes scattered on the bound-
aries of the domain to represent (not discretize) the problem domain and its bound-
aries. These sets of scattered nodes are called field nodes, and they do not form
a mesh, meaning it does not require any a priori information on the relationship
between the nodes for the interpolation or approximation of the unknown function-
s of field variables. In this paper, we use the meshfree method based on RBFs
collocation approach. The reason we use the RBFs collocation method is that it
works for arbitrary geometry with high dimensions and it does not require a mesh
at all. The meshfree method using RBFs is the so-called Kansa’s method [Kansa
(1990b);Kansa (1990a);Kansa, Aldredge, and Ling (2009)], where the RBFs are di-
rectly implemented for the approximation of the solution of PDEs. Kansa’s method
was developed in 1990, in which the concept of solving PDEs by using RBFs, e-
specially MQ, was initiated. As mentioned in [Vanani and Aminataei (2008)], the
MQ approximation scheme was first introduced by Hardy [Hardy (1971)] who suc-
cessfully applied this method for approximating surface and bodies from field data.
In this section we introduce the basic definitions of radial basis functions in the
general case and we express some basic theorems for the interpolation error using
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the radial basis functions.
Definition 1. [Wendland (2005)] A symmetric function φ ∈ Rd ×Rd −→ R is
strictly conditionally positive definite of order m, if for all sets X = {x1, . . . ,xN} ⊂
Rd of distinct points, and all vectors λ ∈ Rd satisfying ∑

N
i=1 λi p(xi) = 0 for any

polynomial p of degree at most m−1, the quadratic form

λ
T Aλ =

N

∑
i=1

N

∑
j=1

λiλ jφ(xi− x j),

is positive, whenever λ 6= 0.
We interpolate a continuous function f : Rd −→ R on a set X = {x1, . . . ,xN} with
choosing the radial basis function for φ : Rd −→ R that is radial in the sense that
φ(x) = Ψ(‖x‖), where ‖.‖ is the usual Euclidean norm on Rd as we will explain in
the next section. Now, we assume φ to be strictly conditionally positive definite of
order m, then the interpolation function has the following form

I f (x) =
N

∑
i=1

λiφ(x− xi)+
l

∑
j=1

γ j p j(x),

where l =
(

d +m−1
m−1

)
and {p1, p2, . . . , pl} is a basis of ud

m. The basis problem

is to find N + l unknown coefficients λi and γ j in which N interpolation conditions
are to the following form

I f (xi) = fi, i = 1, . . . ,N,

and for l remaining conditions we use the following equations

N

∑
i=1

λi p j(xi) = 0, 1≤ j ≤ l.

Definition 2.[Wendland (2005)] The shifted surface splines are defined as

φ(x) =


(−1)dm−

d
2e(x2 + c2)m− d

2 , d odd,

(−1)m− d
2+1(x2 + c2)m− d

2 log
√

x2 + c2, d even,

where d,m ∈ N and m > d/2.

Definition 3.[Wendland (2005)] The density of X in Ω is the number

h = h(Ω,X) = sup
x∈Ω

min
x j∈X

∣∣x− x j
∣∣ .
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Theorem 3.[Kazemi and Ghoreishi (2013);Wendland (2005)] Suppose that φ ∈
C(Rd) is an even conditionally positive definite function of order m and has a con-
tinuous generalized transform φ̂ of order m on Rd\{0}. Let Fφ be the real vector
space consisting of all functions f ∈ C(Rd that are slowly increasing and have a

generalized Fourier transform f̂ of order m/2 that satisfies f̂√
φ̂
∈ L2(Rd). Equip

Fφ with the symmetric bilinear form

( f ,g)φ =
1

(2π)d/2

∫
Rd

f̂ (η)ĝ(η)

φ̂(η)
dη .

Then for the given basis function φ , function space Fφ is called the native space
for φ , with semi-norm |.|φ .

Now, we assume that domain Ω has Lipschitz boundary [Dacorogna (2004)] and
also has the uniform interior cone property [Wendland (2005)]. Approximation
function error bound in radial basis functions interpolation can be estimated using
the following theorem.
Theorem 4.[Yoon (2003)] Let I f (x) be an interpolant of f on X using radial
basis function φ in Definition 3 and f be a function in the space Fφ . Then for
every function f ∈W m

2 we have

| f −I f |m,2 ≤ | f −I f |
φ
≤ | f |

φ
.

Also, as mentioned in [Mohyud-Din, Negahdary, and Usman (2012)], the exponen-
tial convergence proof in applying RBFs in Sobolov space is given by Yoon [Yoon
(1999)], spectral convergence of the method in the limit of flat RBFs is shown by
Fornberg et al. [Fornberg, Wright, and Larsson (2004)]. Some popular choices
of RBFs [Shokri and Dehghan (2010)] are listed in the following table where the
free parameter c is called the shape parameter [Shokri and Dehghan (2012)] of the
RBFs.

Name of function Definition
Linear r
Cubic r3

Multiquadratics(MQ)
√

r2 + c2

Gaussian(GS) e−cr2

polyharmonic splines r2n ln(r), r2n−1
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A mentioned in [Rippa (1999)] the accuracy of many schemes for interpolating s-
cattered data with radial basis functions depends on a shape parameter, c, of the
radial basis function. Author of [Rippa (1999)] showed, numerically, that the opti-
mal value of c depends on the number and distribution of data points, on the data
vector, and on the precision of the computation and he presented an algorithm for
selecting a good value for c that implicitly takes all the above considerations into
account [Rippa (1999)]. Also, authors of [Huang, Yen, and Cheng (2010)] showed,
numerically, that RBFs in fact perform better than polynomials, as the optimal
shape parameter exists not in the limit, but at a finite value.

3 System of 4-coupled nonlinear Schrödinger equations

We consider system of four coupled nonlinear Schrödinger equations under the
assumptions 0≤ t ≤ T and XL ≤ x≤ XR.

3.1 Time discretization

We presented a spatial discretization procedure for system (1) for N = 4. We put
αn =

1
µ
, σnn = σ , n = 1,2,3,4, and σnm = e, n 6= m in system (1) for N = 4 so

that, for our numerical study we consider the following system [Bhatt and Khaliq
(2014)]:

i
∂Ψ1

∂ t
+

1
µ

∂ 2Ψ1

∂x2 +
[
σ |Ψ1|2 + e

(
|Ψ2|2 + |Ψ3|2 + |Ψ4|2

)]
Ψ1 = 0,

i
∂Ψ2

∂ t
+

1
µ

∂ 2Ψ2

∂x2 +
[
σ |Ψ2|2 + e

(
|Ψ1|2 + |Ψ3|2 + |Ψ4|2

)]
Ψ2 = 0,

i
∂Ψ3

∂ t
+

1
µ

∂ 2Ψ3

∂x2 +
[
σ |Ψ3|2 + e

(
|Ψ1|2 + |Ψ2|2 + |Ψ4|2

)]
Ψ3 = 0,

i
∂Ψ4

∂ t
+

1
µ

∂ 2Ψ4

∂x2 +
[
σ |Ψ4|2 + e

(
|Ψ1|2 + |Ψ2|2 + |Ψ3|2

)]
Ψ4 = 0,

(4)

with initial condition

Ψn(x,0) = gn(x), n = 1,2,3,4, (5)

and assume that we have no flux boundary conditions

∂Ψn(x, t)
∂x

= 0, n = 1,2,3,4, at x = xL,xR, t ≥ 0. (6)
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For discretization of time variable, we need some preliminary. We define

tk = kτ, k = 0,1, . . . ,NT ,

where τ = T/NT is the step size of time variable. In this section, we discretize
the time variable using the forward finite difference procedure for the first-order
derivative on time variable. We consider Eq. (4) in point (x, tn), then we have

iΨn
1+

τ

µ

∂ 2Ψn
1

∂x2 = iΨn−1
1 −τ

[
σ
∣∣Ψn−1

1

∣∣2 + e
(∣∣Ψn−1

2

∣∣2 + ∣∣Ψn−1
3

∣∣2 + ∣∣Ψn−1
4

∣∣2)]Ψn−1
1 ,

iΨn
2+

τ

µ

∂ 2Ψn
2

∂x2 = iΨn−1
2 −τ

[
σ
∣∣Ψn−1

2

∣∣2 + e
(∣∣Ψn−1

1

∣∣2 + ∣∣Ψn−1
3

∣∣2 + ∣∣Ψn−1
4

∣∣2)]Ψn−1
2 ,

iΨn
3+

τ

µ

∂ 2Ψn
3

∂x2 = iΨn−1
3 −τ

[
σ
∣∣Ψn−1

3

∣∣2 + e
(∣∣Ψn−1

1

∣∣2 + ∣∣Ψn−1
2

∣∣2 + ∣∣Ψn−1
4

∣∣2)]Ψn−1
3 ,

iΨn
4+

τ

µ

∂ 2Ψn
4

∂x2 = iΨn−1
4 −τ

[
σ
∣∣Ψn−1

4

∣∣2 + e
(∣∣Ψn−1

1

∣∣2 + ∣∣Ψn−1
2

∣∣2 + ∣∣Ψn−1
3

∣∣2)]Ψn−1
4 .

(7)

3.2 Implementation of RBFs meshless method

We assume that, Ω is an arbitrary interval in R. The approximate expansion of
u(xk, tn) form p = 1,2,3,4, is as follows

Ψp(xk, tn) =
M

∑
j=1

cn
j,(p)ϕ(rk j), (8)

in which

ϕ(rk j) =

√
(xk− x j)

2 + c2 =
√

r2 + c2.

For the use of Kansa’s method, we let {xk}M
k=1 be M collocation points in Ω in

which {xk}M−1
k=2 are interior points and {xk}k=1,M are boundary points. For each

point xk, let us denote

ϕ j(x) =
√
(x− x j)

2 + c2.

Substituting (8) into (6) and (7) results the following matrix form

ACn = Bn,
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in which the coefficient matrix is to the following form
(A1)M×M 0 0 0

0 (A2)M×M 0 0
0 0 (A3)M×M 0
0 0 0 (A4)M×M


4M×4M

,

where for p = 1,2,3,4,


(Ap)i, j =

∂ϕ(ri j)

∂x
, i = 1,M, j = 1,2, . . . ,M,

(Ap)i, j = iϕ(ri j)+
τ

µ

∂ 2ϕ(ri j)

∂x2 , i = 2, . . . ,M−1, j = 1,2, . . . ,M.

Also, Cn and Bn are

Cn=

cn
1,(1),c

n
2,(1),. . .,c

n
M,(1)︸ ︷︷ ︸

p=1

,cn
1,(2),c

n
2,(2),. . .,c

n
M,(2)︸ ︷︷ ︸

p=2

,cn
1,(3),c

n
2,(3),. . .,c

n
M,(3)︸ ︷︷ ︸

p=3

,cn
1,(4),c

n
2,(4),. . .,c

n
M,(4)︸ ︷︷ ︸

p=4


T

,

Bn=

b1,(1),b2,(1),. . .,bM,(1)︸ ︷︷ ︸
p=1

,b1,(2),b2,(2),. . .,bM,(2)︸ ︷︷ ︸
p=2

,b1,(3),b2,(3),. . .,bM,(3)︸ ︷︷ ︸
p=3

,b1,(4),b2,(4),. . .,bM,(4)︸ ︷︷ ︸
p=4


T

,

in which

bk,(p) = 0, k = 1,M, p = 1,2,3,4,

br,(p)=i
M

∑
j=1

cn−1
j(p)ϕ(rr j)−τ

σ ∣∣∣∣∣ M

∑
j=1

cn−1
j(p)ϕ(rr j)

∣∣∣∣∣
2

+e

 4

∑
q=1
q 6=p

∣∣∣∣∣ M

∑
j=1

cn−1
j(q)ϕ(rr j)

∣∣∣∣∣
2

× M

∑
j=1

cn−1
j(p)ϕ(rr j),

r = 2,3, . . . ,M−2,M−1, p = 1,2,3,4.

After solving the algebraic system of equations ACn =Bn at each time step, we can
construct the solution using the approximation (8). Also, the coefficient matrix is
ill-conditioned, therefore, we use the LU decomposition method for solving linear
system of algebraic equations ACn = Bn.
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4 System of 2-coupled nonlinear Schrödinger equations

We consider system of 2-coupled nonlinear Schrödinger equations under the as-
sumptions 0 ≤ t ≤ T and XL ≤ t ≤ XR. In this section, we solve system (1) for
N = 2 with α1 = α2 =

1
µ

which is to the following form [Bhatt and Khaliq (2014)]


i
∂Ψ1

∂ t
+

1
µ

∂ 2Ψ1

∂x2 +
[
σ11|Ψ1|2 +σ12|Ψ2|2

]
Ψ1 = 0,

xL ≤ x≤ xR,

i
∂Ψ2

∂ t
+

1
µ

∂ 2Ψ2

∂x2 +
[
σ21|Ψ1|2 +σ22|Ψ2|2

]
Ψ2 = 0,

(9)

in which in the case of single soliton with the initial conditions we have

Ψ1(x,0) =
√

µα

1+ e
sech

(√
µαx

)
eivx,

Ψ2(x,0) =
√

µα

1+ e
sech

(√
µαx

)
eivx,

(10)

and in the case of interaction of two solitons with the initial conditions we have
Ψ1(x.0) =

√
2r1 sech(r1x+ x0)exp(iv1x),

Ψ2(x.0) =
√

2r2 sech(r2x+ x1)exp(iv2x),
(11)

and boundary conditions

∂Ψ1(x, t)
∂x

=
∂Ψ2(x, t)

∂x
= 0, x = xL,xR, t ≥ 0, (12)

where α , v, r1, r2, x0, x1 and e are constants.

4.1 Time discretization

We presented a spatial discretization procedure for system (9) for N = 2. For dis-
cretization of time variable, we need some preliminary. We define

tk = kτ, k = 0,1, . . . ,NT ,

where τ = T/NT is the step size of time variable. In this section, we discretize the
time variable using the forward finite difference formula for the first-order deriva-
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tive on time variable. We consider Eq. (9) at point (x, tn), then we have
iΨn

1 +
τ

µ

∂ 2Ψn
1

∂x2 = iΨn−1
1 − τ

[
σ11
∣∣Ψn−1

1

∣∣2 +σ12
∣∣Ψn−1

2

∣∣2]Ψ
n−1
1 ,

iΨn
2 +

1
µ

∂ 2Ψn
2

∂x2 = iΨn−1
2 − τ

[
σ21
∣∣Ψn−1

1

∣∣2 +σ22
∣∣Ψn−1

2

∣∣2]Ψ
n−1
2 .

(13)

4.2 Implementation of RBFs meshless method

We assume that, Ω is an arbitrary interval in R. The approximate expansion of
u(xk, tn) form p = 1,2, is as follows

Ψp(xk, tn) =
M

∑
j=1

cn
j,(p)ϕ(rk j), (14)

in which
ϕ(rk j) =

√
(xk− x j)

2 + c2 =
√

r2 + c2.

For the use of Kansa’s method, we let {xk}M
k=1 be M collocation points in Ω in

which {xk}M−1
k=2 are interior points and {xk}k=1,M are boundary points. For each

point xk, let us denote

ϕ j(x) =
√
(x− x j)

2 + c2.

Substituting (14) into (12) and (13) results the following matrix form

ACn = Bn,

in which the coefficient matrix is to the following form[
(A1)M×M 0

0 (A2)M×M

]
2M×2M

,

where for p = 1,2,
(Ap)i, j =

∂ϕ(ri j)

∂x
, i = 1,M, j = 1,2, . . . ,M,

(Ap)i, j = iϕ(ri j)+
τ

µ

∂ 2ϕ(ri j)

∂x2 , i = 2, . . . ,M−1, j = 1,2, . . . ,M.

Also, Cn and Bn are
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Cn =

cn
1,(1),c

n
2,(1), . . . ,c

n
M,(1)︸ ︷︷ ︸

p=1

,cn
1,(2),c

n
2,(2), . . . ,c

n
M,(2)︸ ︷︷ ︸

p=2


T

,

Bn =

b1,(1),b2,(1), . . . ,bM,(1)︸ ︷︷ ︸
p=1

,b1,(2),b2,(2), . . . ,bM,(2)︸ ︷︷ ︸
p=2


T

,

in which



bk,(p) = 0, k = 1,M, p = 1,2,

br,(1)=i
M

∑
j=1

cn−1
j(1)ϕ(rr j)−τ

σ11

∣∣∣∣∣ M

∑
j=1

cn−1
j(1)ϕ(rr j)

∣∣∣∣∣
2

+σ12

∣∣∣∣∣ M

∑
j=1

cn−1
j(2)ϕ(rr j)

∣∣∣∣∣
2
× M

∑
j=1

cn−1
j(1)ϕ(rr j),

br,(2)=i
M

∑
j=1

cn−1
j(2)ϕ(rr j)−τ

σ21

∣∣∣∣∣ M

∑
j=1

cn−1
j(1)ϕ(rr j)

∣∣∣∣∣
2

+σ22

∣∣∣∣∣ M

∑
j=1

cn−1
j(2)ϕ(rr j)

∣∣∣∣∣
2
× M

∑
j=1

cn−1
j(2)ϕ(rr j),

r = 2,3, . . . ,M−2,M−1.

After solving the algebraic system of equations ACn =Bn at each time step, we can
construct the solution using the approximation (8). Also, the coefficient matrix is
ill-conditioned, therefore, we use the LU decomposition method for solving linear
system of algebraic equations ACn = Bn.

5 The two-dimensional coupled damped nonlinear system of Schrödinger e-
quations

We consider the coupled damped nonlinear system of Schrödinger equations with
additional convection term (CDNSEC) of the form [Asadzadeh, Rostamy, and Z-
abihi (2013)]

i
∂Ψ1

∂ t
+β ·∇Ψ1 +

1
2

∆Ψ1 + ε

(
|Ψ1|2 +α|Ψ2|2

)
Ψ1 = 0,

i
∂Ψ2

∂ t
+β ·∇Ψ2 +

1
2

∆Ψ2 + ε

(
α|Ψ1|2 + |Ψ2|2

)
Ψ2 = 0,

(x, t) ∈Ω× [0,T ],

(15)
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with initial conditions

Ψ1(x,0) = g1(x), Ψ2(x,0) = g2(x), x ∈Ω, (16)

and boundary conditions

∇Ψ1(x, t) = ∇Ψ2(x, t) = 0, ∀x ∈ {x ∈ ∂Ω : n(x) ·β < 0} , (17)

where n(x) is the outward unit normal to ∂Ω at the point x ∈ ∂Ω. We assume
that the solution of the system (15) is negligibly small outside the d-dimensional
domain [xL,xR]

d .

5.1 Time discretization

We presented a spatial discretization procedure for system (9) for N = 2. For dis-
cretization of time variable, we present some preliminary. We define

tk = kτ, k = 0,1, . . . ,NT ,

where τ = T/NT is the step size of time variable. In this section, we discretize
the time variable using the forward finite difference technique for the first-order
derivative on time variable. We consider Eq. (15) at point (x, tn), then we obtain

iΨn
1 + τβ ·∇Ψn

1 +
τ

2 ∆Ψn
1 = iΨn−1

1 − τε

(∣∣Ψn−1
1

∣∣2 +α
∣∣Ψn−1

1

∣∣2)Ψ
n−1
1 ,

iΨn
2 + τβ ·∇Ψn

2 +
τ

2 ∆Ψn
2 = iΨn−1

2 − τε

(
α
∣∣Ψn−1

1

∣∣2 + ∣∣Ψn−1
2

∣∣2)Ψ
n−1
2 .

(18)

5.2 Implementation of RBFs meshless method

In this case, Ω is an arbitrary interval in R. The approximate expansion of u(xk, tn)
for p = 1,2, is as follows

Ψp(xk, tn) =
M

∑
j=1

cn
j,(p)ϕ(rk j), (19)

in which
ϕ(rk j) =

√
(xk−x j)

2 + c2 =
√

r2 + c2.

For the use of Kansa’s method, we let {xk}M
k=1 be M collocation points in Ω in

which {xk}M
k=MB+1 are interior points and {xk}MB

k=1 are boundary points. For each
point xk, let us denote

ϕ j(x) =
√

(x−x j)
2 + c2.
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Now substituting (19) into (17) and (18) results the following matrix form

ACn = Bn,

in which the coefficient matrix is to the following form[
(A1)M×M 0

0 (A2)M×M

]
2M×2M

,

where for p = 1,2, we can write
(Ap)i, j = ∇ϕ(ri j), i = 1,2, . . . ,MB, j = 1,2, . . . ,M,

(Ap)i, j = iϕ(ri j)+τβ ·∇ϕ(ri j)+
τ

2 ∆ϕ(ri j), i = MB +1, . . . ,M, j = 1,2, . . . ,M.

Also, Bn and Cn are

Bn =

b1,(1),b2,(1), . . . ,bM,(1)︸ ︷︷ ︸
p=1

,b1,(2),b2,(2), . . . ,bM,(2)︸ ︷︷ ︸
p=2


T

,

Cn =

cn
1,(1),c

n
2,(1), . . . ,c

n
M,(1)︸ ︷︷ ︸

p=1

,cn
1,(2),c

n
2,(2), . . . ,c

n
M,(2)︸ ︷︷ ︸

p=2


T

,

in which

bk,(p) = 0, k = 1,2, . . . ,MB, p = 1,2,

br,(1) = i
M

∑
j=1

cn−1
j(1)ϕ(rr j)−τε

∣∣∣∣∣ M

∑
j=1

cn−1
j(1)ϕ(rr j)

∣∣∣∣∣
2

+α

∣∣∣∣∣ M

∑
j=1

cn−1
j(2)ϕ(rr j)

∣∣∣∣∣
2
× M

∑
j=1

cn−1
j(1)ϕ(rr j),

br,(2) = i
M

∑
j=1

cn−1
j(2)ϕ(rr j)−τε

α

∣∣∣∣∣ M

∑
j=1

cn−1
j(1)ϕ(rr j)

∣∣∣∣∣
2

+

∣∣∣∣∣ M

∑
j=1

cn−1
j(2)ϕ(rr j)

∣∣∣∣∣
2
× M

∑
j=1

cn−1
j(2)ϕ(rr j),

r = MB +1, . . . ,M.

After solving the algebraic system of equations ACn = Bn at each time step, we
can construct the solution using (19). Also, the coefficient matrix is ill-conditioned,
therefore, we use the LU decomposition method for solving linear system of alge-
braic equations ACn = Bn.
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5.3 Shape function of radial point interpolation method (RPIM)

This subsection is taken from book of Liu and Gu [Liu and Gu (2005)]. The radial
point interpolation method (RPIM) shape functions are used for meshless weak
form and strong form methods. An approximation of unknown function u is as
follows

u(x) =
n

∑
i=1

biRi(x)+
m

∑
j=1

θ j p j(x) = RT (x)b+pT (x)θ , (20)

where Ri(x) is a radial basis function (RBF), n is number of RBFs, p j(x) is poly-
nomial in the Cartesian space xT = [x,y] and m is number of polynomial basis
functions. Also, coefficient bi and θ j must be computed. For evaluating bi and θ j

in Eq. (10), we consider a support domain for the point of interest at x in which n
field nodes are located inside of this support domain. Collocating Eq. (10) in these
n nodes we obtain the following matrix form

Us = R0b+Pmθ , (21)

where Us is the vector of function values as follows

Us = [u1 u2 . . . un]
T . (22)

The moment matrix of RBFs is

R0 =


R1(r1) R2(r1) . . . Rn(r1)
R1(r2) R2(r2) Rn(r2)

...
...

. . .
...

R1(rn) R2(rn) . . . Rn(rn)

 , (23)

where rk in Ri(rk) is rk =

√
(xk− xi)

2 +(yk− yi)
2, and the polynomial moment

matrix is

PT
m =


1 1 . . . 1
x1 x2 · · · xn

y1
...

y2
...

· · ·
...

yn
...

pm(x1) pm(x2) · · · pm(xn)

 , (24)

and also the vector of coefficients is to the following form

bT = [b1 b2 . . . bn]
T , θ

T = [θ1 θ2 . . . θm]
T . (25)
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Here, There are n + m number of unknown coefficients in Eq. (15), therefore,
we need the additional m equations. So we can add the following m constraint
conditions

n

∑
i=1

p j(xi)bi = PT
mb = 0, j = 1,2, . . . ,m. (26)

Considering Eqs. (15) and (26) we have the following vector-matrix form

Ũs =

[
Us

0

]
=

[
(R0)n×n (Pm)n×m(
PT

m
)

m×n (0)m×m

][
b
θ

]
= Mb, (27)

where

bT = [b1 b2 . . . bn θ1 θ2 . . . θm] , (28)

Ũs = [u1 u2 . . . un 0 0 . . . 0] . (29)

Solving Eq. (27) to obtain the unknown coefficients arrives at

b = M−1Ũs. (30)

We consider Eq. (10) to the following form

u(x) = RT (x)b+pT (x)θ =
[
RT (x) pT (x)

][ b
θ

]
, (31)

now using Eq. (30) we get

u(x) =
[
RT (x) pT (x)

]
M−1Ũs, (32)

where the RPIM shape functions can be expressed as

Φ̃(x) =
[
RT (x) pT (x)

]
M−1

= [φ1(x) φ2(x) . . . φn(x) φn+1(x) φn+2(x) . . . φn+m(x)] .
(33)

So the RPIM shape functions corresponding to the nodal fields are

Φ(x) = [φ1(x) φ2(x) . . . φn(x)] . (34)

Finally, we have the following approximation

u(x) = Φ
T (x)Us =

n

∑
i=1

u(xi)φi(x). (35)
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5.4 Moving least squares (MLS) shape functions

This subsection is taken from book of Liu and Gu [Liu and Gu (2005)]. We consider
an unknown scalar function of a field variable u(x) in the domain Ω. The MLS
approximation of u(x) is defined at x as

uh(x) =
m

∑
j=1

p j(x)a j(x) = pT (x)a(x), (36)

where p(x) is the basis function of the spatial coordinates and m is the number
of the basis functions. When p(x) = [x,y]T we usually select the following basis
functions

p(x) = [1, x, y], p(x) = [1, x, y, xy, x2, y2],

also this basis function is built using monomials from the Pascal triangle to ensure
minimum completeness. In Eq. (36), a(x) is the following vector of coefficients

aT (x) = {a1(x) a2(x) · · · am(x)} . (37)

We can obtain the coefficient a by minimizing the following weighted discrete L2-
norm

J =
M

∑
i=1

W (x−xi)
[
pT (xi)a(x)−ui

]2
, (38)

in which M is the number of nodes in the support domain of x for which the weight
function W (x− xi) 6= 0 and ui is value of u at x = xi. The stationarity of J with
respect to a(x) gives

∂J
∂a

= 0, (39)

which leads to the following set of linear equations

A(x)a(x) = B(x)Us, (40)

in which the vector Us is to the following form

Us = {u1 u2 · · · uM} , (41)

and A(x) is called the weighted moment matrix defined as

A(x) =
M

∑
i=1

W (x)p(xi)p(xi)
T . (42)
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Also the matrix B in Eq. (40) is to the following form

B(x) = [W1(x)p(x1) W2(x)p(x2) · · · WM(x)p(xM)] . (43)

Now, we solve Eq. (40) for a(x) and we arrive at

a(x) = A−1(x)B(x)Us. (44)

Substituting the above relation in Eq. (36) we get

uh(x) =
M

∑
i=1

φi(x)ui = Φ
T (x)Us, (45)

where Φ(x) is the vector of MLS shape functions corresponding to M nodes in the
support domain of the point x and we can get

Φ
T (x) = [φ1(x) φ2(x) · · · φM(x)] = pT (x)A−1(x)B(x). (46)

The shape function φi(x) for the ith node is defined by

φi(x) =
m

∑
j=1

p j(x)
(
A−1(x)B(x)

)
ji = pT (x)

(
A−1B

)
i. (47)

We use the quartic spline function as the wight function in MLS approximation

W (x−xi) =


1−6r2

i +8r3
i −3r4

i , ri ≤ 1,

0, ri > 1,
(48)

in which ri =
‖x− xi‖

rw
, is the size of the support domain for the weight function.

5.5 Formulation of meshless methods based on local weak form

The MLPG method is constructed based on the weak form over local sub-domain
such as Ωs that is a small region considered for any point in the global domain.

We have Ω =
n⋃

s=1
Ωs in which the local sub-domains overlap each other. The local

sub-domains for any region have different geometric shapes such as circle and rect-
angular. In this paper we use rectangular shape for any sub-domain according to
Figure 1. The local weak form of the time discrete scheme (18) is to the following
form:
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Figure 1: Local boundaries and the domain of definition of MLS approximation


i
∫

Ωi
s

Ψn
1wdΩ+τβ·

∫
Ωi

s

∇Ψn
1wdΩ+τ

2
∫

Ωi
s

∆Ψn
1wdΩ=i

∫
Ωi

s

Ψ
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1 wdΩ−τε

∫
Ωi

s

(∣∣Ψn−1
1

∣∣2+α
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2

∣∣2)Ψn−1
1 wdΩ,

i
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Ψn
2wdΩ+τβ·
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∇Ψn
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Ψ
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(
α
∣∣Ψn−1

1

∣∣2+∣∣Ψn−1
2

∣∣2)Ψn−1
2 wdΩ,

(49)

where w is the test function and we consider the quartic spline function (48). Using
the divergence theorem we have

i
∫
Ωi

s

Ψ
n
1wdΩ+ τβ ·

∫
Ωi

s

∇Ψ
n
1wdΩ+

τ

2

 ∫
∂Ωi
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∂Ψn
1

∂
−→n

wdΓ−
∫
Ωi

s

∇Ψ
n
1∇wdΩ


= i
∫
Ωi

s

Ψ
n−1
1 wdΩ− τε

∫
Ωi

s

(∣∣Ψn−1
1

∣∣2 +α
∣∣Ψn−1

2

∣∣2)Ψ
n−1
1 wdΩ,

i
∫
Ωi

s

Ψ
n
2wdΩ+ τβ ·

∫
Ωi

s

∇Ψ
n
2wdΩ+

τ

2

 ∫
∂Ωi

s

∂Ψn
2

∂
−→n

wdΓ−
∫
Ωi

s

∇Ψ
n
2∇wdΩ


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∫
Ωi

s

Ψ
n−1
2 wdΩ− τε

∫
Ωi
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∣∣2 + ∣∣Ψn−1
2

∣∣2)Ψ
n−1
2 wdΩ,

(50)
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where Ωi
s is a rectangular domain over the point i. Now, we select M nodal points

on the considered domain that some of them are on the boundary of domain. Con-
sidering the homogenous Neumann boundary conditions and substituting the ap-
proximate formula (45) or (35) into the local integral equation (50) yield

i
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φ jwdΩ+ τβ ·
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s
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2
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Ωi

s

∇φ j∇wdΩ

Ψ
n
1, j

= i
M
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∫
Ωi

s
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Ψn−1
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M
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s
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∑
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2
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(51)

in which Ψn
r, j =Ψ1(x j, tn) for r = 1,2 and j = 1,2, . . . ,M. Now, doing the numerical

integrations we can obtain the following N by N system[
A1

A2

]
N×N

[
Ψn

1
Ψn

2

]
N×1

=

[
B1

B2

]
N×N

[
Ψ

n−1
1

Ψ
n−1
2

]
N×1

.

Note for evaluating the integrals that appear in the MLPG method, we use the 8-
points Gauss integration quadrature.

6 Numerical results

In this section we present the numerical results of the proposed methods on four
test problems. We test the accuracy and stability of the methods described in this
paper by performing the mentioned schemes for different values of h and τ . We
performed our computations using Matlab 7 software on a Pentium IV, 2800 MHz
CPU machine with 2 Gbyte of memory. In this paper, we use the following error
norms

|Ψ|Error
1 =

∥∥∥∣∣∣ΨNT ,
τ

2
1

∣∣∣− ∣∣∣ΨNT ,τ
1

∣∣∣∥∥∥
∞

, |Ψ|Error
2 =

∥∥∥∣∣∣ΨNT ,
τ

2
2

∣∣∣− ∣∣∣ΨNT ,τ
2

∣∣∣∥∥∥
∞

,
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where Ψ
NT ,τ
j for j = 1,2, are approximate solution at τ time. Also, ‖•‖∞ denotes

the vector infinity norm.

6.1 Test Problem 1.

6.1.1 System of two nonlinear Schrödinger equations; Single soliton:

In this test problem, we solve system (9) and σ11 = σ22 = 1, σ12 = σ21 = e, where
α , v and e are constants. The analytical solution to this problem with µ = 2 is given
by [Bhatt and Khaliq (2014)]

Ψ j(x, t) =

√
2α

1+ e
sech(

√
2α(x− vt))ei

{
vx−

[
v2
2 −α

]
t
}
, j = 1,2. (52)

Figure 2 shows graphs of |Ψ1|+ |Ψ2| at time T = 10 using the RBFs collocation
method with h= 1/40, τ = 10−4 and c= 0.43 for Test problem 1. Figure 3 presents
graphs of exact and approximation solutions and absolute error for |Ψ1| using the
RBFs collocation method at time T = 10 with h = 1/40, τ = 10−4 and c = 0.43 for
Test problem 1. Graphs of exact and approximation solutions and absolute error for
|Ψ2| using the RBFs collocation method at time T = 10 with h = 1/40, τ = 10−4

and c = 0.43 for Test problem 1 are displayed in Figure 4.
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Figure 2: Graphs of single solitons at time T = 10 (left panel) and surface of
approximation solution at different time using the RBFs collocation method with
h = 1/40, τ = 10−4 and c = 0.43 for Test problem 1.
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Figure 3: Graphs of exact and approximation solutions and absolute error for |Ψ1|
using the RBFs collocation method at time T = 10 and with h = 1/40, τ = 10−4

and c = 0.43 for Test problem 1.
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Figure 4: Graphs of exact and approximation solutions and absolute error for |Ψ2|
using the RBFs collocation method at time T = 10 and with h = 1/40, τ = 10−4

and c = 0.43 for Test problem 1.
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Table 1: Error obtained and conserved quantities energy and mass for single soli-
tons for Test problem 1.

T I1 ‖Ψ1‖2 L∞ L2

0 1.69704 3.6846 − −
1 1.69707 3.6846 1.2375×10−4 4.3254×10−3

2 1.69711 3.6847 3.0339×10−4 1.0844×10−3

3 1.69712 3.6747 5.8337×10−4 2.1040×10−3

4 1.69720 3.6747 9.6864×10−4 3.6462×10−3

5 1.69724 3.6748 1.9124×10−3 6.4223×10−3

Table 1 presents the error obtained and conserved quantities energy and mass for
single solitons for Test problem 1 with h = 1/8, τ = 1/20000, c = 0.43, v = 1,
µ = 2 and α = 1 on Ω = [−10,10]. It is clear from Table 1 that the presented
method namely RBFs collocation algorithm also conserves the conserved quantities
exactly, to at least five decimal places.

6.1.2 System of two nonlinear Schrödinger equations; Interaction of two solitons:

We analyze the interaction scenario of two solitons moving in opposite direction-
s with different wave amplitudes with the RBFs collocation method. Hence, we
consider system (9) with µ = 1 together with initial condition [Bhatt and Khaliq
(2014)]


Ψ1(x,0) =

√
2r1 sech(r1x+ x10)exp(iv1x),

Ψ2(x,0) =
√

2r2 sech(r2x+ x20)exp(iv2x),

with σ11 = σ22 = 1, σ12 = σ21 = e, v1 =−v2 =
v
4 , r1 = 1.2 and r2 = 1. Now, we

choose v = 1, e = 1, µ = 1, α = 1, xR =−xL = 40 and x10 =−x20 = 20.

Figure 5 shows graphs of two solitons interaction at different time T using the
RBFs collocation method with h = 1/2, τ = 2.5−4 and c = 0.5 for Test problem 1.
Figure 5 presents that the two waves moving in opposite directions collide and
separate after the interaction, moving forward in the same directions with the
same shape and velocity, as the initial one.
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Figure 5: Graphs of two solitons interaction at different time T using the RBFs
collocation method and with h = 1/2, τ = 2.5−4 and c = 0.5 for Test problem 1.

6.1.3 System of two nonlinear Schrödinger equations; Collision of triple solitons:

In order to show the interactions of three solitons, we solve the system (9) with the
following initial conditions [Ismail (2008b)]

Ψ1(x,0) =
3

∑
j=1

√
2α j

1+β
sech

(√
2α jx j

)
exp(iv jx j) ,

Ψ2(x,0) =
3

∑
j=1

√
2α j

1+β
sech

(√
2α jx j

)
exp(iv jx j) ,
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in which x1 = x, x2 = x−25 and x3 = x−50. Also, we put v1 = 1, v2 = 0, v3 =−1,
α1 = 1, α2 = 0.6, α3 = 0.3, and e = 2/3.

Table 2: Conserved quantities energy and mass for triple solitons on interval
[−40,40] for Test problem 2.

T I1 I2 I3 ‖Ψ1‖2 ‖Ψ2‖2 ‖Ψ3‖2

0 20.0000 20.0000 20.0000 6.3443 6.3443 6.3443
1 20.0549 20.2060 20.4061 6.3660 6.3936 6.4288
2 20.0549 20.2060 20.4061 6.3660 6.3936 6.4288
3 20.0549 20.2060 20.4061 6.3660 6.3936 6.4288
4 20.0549 20.2060 20.4061 6.3660 6.3936 6.4288
5 20.0549 20.2060 20.4061 6.3660 6.3936 6.4288
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Figure 6: Graphs of three solitons interaction at different time t using the RBFs
collocation method and with h = 1/2, τ = 40/40000 and c = 0.43 on [−20,60] for
Test problem 1.

Table 2 shows the conserved quantities energy and mass for triple solitons for Test
problem 2. Figure 6 presents the graphs of three solitons interaction at different
time t using the RBFs collocation method with h= 1/2, τ = 40/40000 and c= 0.43
on [−20,60] for Test problem 1. Figure 6 shows the time evolution of the three-
soliton interactions at different times. Two of the three solitons are moving in
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their direction with different velocities and the third one is moving in opposite
direction. It is observed that three waves interacting and leaving the interac-
tion region unchanged in shape and velocity.

6.2 Test problem 2.

6.2.1 System of four nonlinear Schrödinger equations; Interaction of four solitons

We solve system (4) to analyze the interaction scenarios of four solitons with dif-
ferent wave amplitudes and different velocities. Also, we consider µ = 1 with the
following initial conditions [Bhatt and Khaliq (2014)]



Ψ1(x,0) =
√

2r1 sech(r1x+ x10)exp(iv1x),

Ψ2(x,0) =
√

2r2 sech(r2x− x10)exp(iv2x),

Ψ3(x,0) =
√

2r3 sech(r3x+ x30)exp(iv3x),

Ψ4(x,0) =
√

2r4 sech(r4x− x30)exp(iv4x),

and boundary conditions

∂Ψ j

∂x
= 0, j = 1,2,3,4, x = xL,xR, ∀t ≥ 0,

where r j and v j, j = 1,2,3,4 are arbitrary constants and x10 = 10 and x30 = 30 are
initial phase constants. We select r1 = 1.2, r2 = 1.2, r3 = 1.3, r4 = 1.4, v1 = v2 =

v
8 ,

v3 = v4 =
v
4 and −xL = xR = 40.

Table 3: Conserved quantities mass for four solitons for Test problem 2.

T I1 I2 I3 I4

0 4.7977 4.7977 5.2015 5.6079
1 4.7980 4.7980 5.2002 5.5974
2 4.7984 4.7984 5.1969 5.5928
3 4.7987 4.7987 5.1957 5.5970
4 4.7990 4.7990 5.1988 5.6070
5 4.7994 4.7994 5.2042 5.6078

Tables 3 and 4 present the conserved quantities mass and energy, respectively, for
four solitons for Test problem 2 with h = 1/2, τ = 25× 10−6, c = 0.43, r1 = 1.2,
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Table 4: Conserved quantities energy for four solitons for Test problem 2.

T ‖Ψ1‖2 ‖Ψ2‖2 ‖Ψ3‖2 ‖Ψ4‖2

0 3.0984 3.0984 3.2249 3.3467
1 3.0984 3.0984 3.2250 3.3468
2 3.0985 3.0985 3.2250 3.3469
3 3.0985 3.0985 3.2251 3.3470
4 3.0986 3.0986 3.2252 3.3471
5 3.0986 3.0986 3.2253 3.3472

r2 = 1.2, r3 = 1.3, r4 = 1.4. Also, we set v = 1, e = 1, µ = 2, α = 1, v1 = v2 = v/8,
v3 = v4 = v/4, x10 = 10, x30 = 30 on Ω = [−40,40]. Similar to the previous test
problems, it is clear from Tables 3 and 4 that the presented method namely RBFs
collocation method also conserves the conserved quantities exactly, to at least five
decimal places.

Figure 7 shows graphs of four solitons interaction at different time T using the
RBFs collocation method and with h = 1/2, τ = 2.5−5 and c = 0.43 for Test prob-
lem 2.

Figure 7 shows that the amplitude of the pulses at time T = 100 located exactly
around the amplitude of the pulses at T = 0, where as the amplitude of the
pulses at T = 40 reached at the highest point. Also, in this figure, we can
see that the amplitudes of the pulses are being separated [Bhatt and Khaliq
(2014)].

6.3 Test problem 3.

The coupled time-dependent Schrödinger equations arise in ultrafast laser dynam-
ics. In this test problem, we consider the initial conditions [Asadzadeh, Rostamy,
and Zabihi (2013)]

Ψ1(x,y,0) = Ψ2(x,y,0) =

√
2α

1+π
sech [(x− x1,L)(y− y2,L)(x− x1,R)(y− y1,R)] ,

and boundary conditions

∂Ψ j

∂x
= 0, j = 1,2, ∀t ≥ 0,

where x1,L = x2,L =−1 and y1,L = y2,L =−1.
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Figure 7: Graphs of four solitons interaction at different time T using the RBFs
collocation method and with h = 1/2, τ = 2.5−5 and c = 0.43 for Test problem 2.

Since in the current example and the next test problem, there is not an exact so-
lution, we consider the obtained solution with hRS = 2/15 as a reference solution
(as an exact solution) and then we run our MATLAB program for different values of
h that results the numerical solution SN

h (numerical solution using presented meth-
ods in the current paper). Now, interpolating the reference solution at the points
with step size of h, we obtain the numerical solution SI

h (numerical solution using
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interpolating). Finally, we define the following error relation

E∞ =
∥∥SN

h −SI
h

∥∥
∞
.
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Figure 8: Graphs of approximation solution at time T = 1 using the RBFs meshless
collocation and with h = 1/5, τ = 1/5120, α = 0.1, ε = 0.9 and c = 0.9 for Test
problem 3.
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Figure 9: Graphs of approximation solution at time T = 5 using the RBFs meshless
collocation and with h = 1/5, τ = 5/5120, α = 0.1, ε = 0.9 and c = 0.9 for Test
problem 3.
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Table 5: Errors obtained with h= 1/5 and c= 0.9 for Test problem 3 on rectangular
domain Ω = [−1,1]× [−1,1]

RBFs collocation method MLPG method
τ |Ψ|Error

1 |Ψ|Error
2 |Ψ|Error

1 |Ψ|Error
2

1/10 − − − −
1/20 2.7141×10−2 2.7140×10−2 3.3581×10−2 3.3581×10−2

1/40 2.0378×10−2 2.0375×10−2 2.0529×10−2 2.0529×10−2

1/80 1.0723×10−2 1.0720×10−2 1.5039×10−2 1.5039×10−2

1/160 7.7969×10−3 7.7965×10−3 1.2650×10−2 1.2650×10−2

1/320 4.9947×10−3 4.9943×10−3 8.5175×10−3 8.5175×10−3

Table 6: Errors obtained with τ = 1/80 and T = 1 for Test problem 3 on rectangular
domain Ω = [−1,1]× [−1,1]

RBFs method MLPG method LRPIM
h E∞ E∞ E∞

2/4 2.3315×10−1 1.1587×10−1 6.2272×10−2

2/8 9.0668×10−2 6.6387×10−2 5.8682×10−2

2/10 6.0127×10−2 5.4254×10−2 2.6558×10−2

2/14 1.0583×10−2 1.7577×10−2 8.6296×10−3

Table 5 presents errors obtained with h = 1/5 and c = 0.9 for Test problem 3 on
rectangular domain Ω = [−1,1]× [−1,1]. Table 5 describes that the absolute error
between two successive time steps is decreasing and we can conclude that the ap-
proximate solution for the small enough time steps is tending to the exact solution.
Table 6 shows errors obtained with τ = 1/80 and T = 1 for Test problem 3. From
Table 6 we can conclude that the numerical solution is convergent to the exact so-
lutio. Figure 8 shows graphs of approximation solution at time T = 1 using the
RBFs meshless collocation technique with h = 1/5, τ = 1/5120, α = 0.1, ε = 0.9
and c = 0.9 for Test problem 3. Also, the graphs of approximation solution at time
T = 5 using the RBFs meshless collocation technique with h = 1/5, τ = 5/5120,
α = 0.1, ε = 0.9 and c = 0.9 for Test problem 3 are presented in Figure 9. Figure
10 shows the graph and contour of approximate solution using LRPIM on the do-
main Ω = [−1,1]× [−1,1] with h = 2/15, τ = 1/80 and final time T = 1 for Test
problem 3. The graphs of approximation solution at time T = 1 using the MLPG
method and with h = 1/10, τ = 1/80, α = 0.1 and ε = 0.9 for Test problem 3 are
shown in Figure 11.
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Figure 10: Graph and contour of approximate solution using LRPIM on the domain
Ω= [−1,1]× [−1,1] with h= 2/15, τ = 1/80 and final time T = 1 for Test problem
3.
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Figure 11: Graphs of approximation solution at time T = 1 using the MLPG method
and with h = 1/10, τ = 1/80, α = 0.1 and ε = 0.9 for Test problem 3.
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Figure 12: Graphs of approximation solution at time T = 1 using the MLPG method
and with h = 1/10, τ = 1/80, α = 0.1 and ε = 0.9 for Test problem 4.
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Figure 13: Graphs of approximation solution at time T = 1 using the RBFs mesh-
less collocation and with h = 1/10, τ = 1/5120, α = 0.1, ε = 0.9 and c = 0.9 for
Test problem 4.
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Figure 14: Graphs of approximation solution at time T = 10 using the RBFs mesh-
less collocation and with h = 1/10, τ = 10/5120, α = 0.1, ε = 0.9 and c = 0.9 for
Test problem 4.
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Figure 15: Graph and contour of approximate solution using LRPIM on the domain
Ω= [−1,1]× [−1,1] with h= 2/15, τ = 1/80 and final time T = 1 for Test problem
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6.4 Test problem 4.

The coupled time-dependent Schrödinger equations arise in ultrafast laser dynam-
ics. In this test problem, we consider the initial conditions [Asadzadeh, Rostamy,
and Zabihi (2013)]

Ψ1(x,y,0) = Ψ2(x,y,0) =

√
2α

1+π
cosh [(x− x1,L)(y− y2,L)(x− x1,R)(y− y1,R)] ,

and boundary conditions

∂Ψ j

∂x
= 0, j = 1,2, ∀t ≥ 0,

where x1,L = x2,L =−1 and y1,L = y2,L =−1.

Table 7: Errors obtained with h= 1/5 and c= 0.9 for Test problem 4 on rectangular
domain Ω = [−1,1]× [−1,1]

RBFs collocation method MLPG method
τ |Ψ|Error

1 |Ψ|Error
2 |Ψ|Error

1 |Ψ|Error
2

1/10 − − − −
1/20 3.9664×10−2 3.9670×10−2 4.2158×10−2 4.2158×10−2

1/40 2.9384×10−2 2.9389×10−2 2.6541×10−2 2.6541×10−2

1/80 1.6694×10−2 1.6650×10−2 1.9677×10−2 1.9677×10−2

1/160 1.1548×10−2 1.1548×10−2 1.6548×10−2 1.6548×10−2

1/320 6.9938×10−3 6.9940×10−3 1.1061×10−2 1.1061×10−2

Table 8: Errors obtained with τ = 1/80 and T = 1 for Test problem 4 on rectangular
domain Ω = [−1,1]× [−1,1]

LRPIM MLPG method RBFs method
h E∞ E∞ E∞

2/4 8.1069×10−2 1.5621×10−1 2.3933×10−1

2/8 7.4774×10−2 8.6884×10−2 1.3214×10−1

2/10 3.3936×10−2 7.3649×10−2 8.1218×10−2

2/14 1.2600×10−2 2.4929×10−2 1.4984×10−2
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Table 7 presents errors obtained with h = 1/5 and c = 0.9 for Test problem 4 on
rectangular domain Ω = [−1,1]× [−1,1]. Similar to the previous test problem, in
Table 7, the absolute error between two successive time steps is decreasing and
we can conclude that the approximate solution for the small enough time steps is
tending to the exact solution. Table 8 demonstrates errors obtained with τ = 1/80
and T = 1 for Test problem 4 on rectangular domain Ω = [−1,1]× [−1,1]. Also,
Figure 12 presents the graphs of approximation solution at time T = 1 using the
MLPG method with h = 1/10, τ = 1/80, α = 0.1 and ε = 0.9 for Test problem 4.
Figure 13 shows graphs of approximation solution at time T = 1 using the RBFs
meshless collocation with h = 1/10, τ = 1/5120, α = 0.1, ε = 0.9 and c = 0.9
for Test problem 4. Also, the graphs of approximation solution at time T = 10
using the RBFs meshless collocation method with h = 1/5, τ = 10/5120, α = 0.1,
ε = 0.9 and c = 0.9 for Test problem 4 are presented in Figure 14. Figure 15
demonstrates the graph and contour of approximate solution using LRPIM on the
domain Ω = [−1,1]× [−1,1] with h = 2/15, τ = 1/80 and final time T = 1 for
Test problem 4.

7 Conclusion

In this paper, we solved the N-coupled nonlinear Schrödinger (CNLS) equations
using the meshless method of radial basis functions and the meshless local Petrov-
Galerkin (MLPG) technique and local RPIM approach. Firstly, we discretized the
time derivative using the forward finite difference formula and obtained a time
semi–discrete scheme. We obtained a full discrete scheme using a global form
of the meshless method based on radial basis functions and Kansa’s approach.
Also, using a local weak form of the meshless methods based on meshless local
Petrov-Galerkin (MLPG) and LRPIM techniques, we proposed another full dis-
cretization scheme. For implementing the MLPG and LRPIM methods, firstly, we
introduced the moving least squares (MLS) approximation and radial point interpo-
lation method (RPIM) with their shape functions for approximating the solution in
any subdomain. Moreover, for evaluating the integrals which appear in the MLPG
and LRPIM methods, we used the 8-points Gauss quadrature rule. Since the co-
efficient matrices of both RBF collocation and MLPG techniques are full and ill-
conditioned, we used the LU decomposition method for solving the linear system
of algebraic equations which arises from the process of collocating points. The
presented numerical results showed that the RBFs collocation scheme provides a
simple strategy for computing long-range solitary solutions of the coupled nonlin-
ear Schrödinger equations. Also we observed mass and energy quantities conserve
exactly, to at least five decimal places. Numerical results showed the efficiency of
the new three methods developed in the current paper.
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