
Copyright © 2014 Tech Science Press CMES, vol.100, no.6, pp.445-461, 2014

An Artificial Boundary Method for Burgers’ Equation in
the Unbounded Domain
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Abstract: In this paper, we construct a numerical method for one-dimensional
Burgers’ equation in the unbounded domain by using artificial boundary condi-
tions. The original problem is converted by Hopf-Cole transformation to the heat
equation in the unbounded domain, the latter is reduced to an equivalent problem
in a bounded computational domain by using two artificial integral boundary con-
ditions, a finite difference method with discrete artificial boundary conditions is
established by using the method of reduction of order for the last problem, and
thereupon the numerical solution of Burgers’ equation is obtained. This artificial
boundary method is proved and verified to be uniquely solvable, unconditionally
stable and convergent with the order 2 in space and the order 3/2 in time for solving
Burgers’ equation on the computational domain.
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1 Introduction

Burgers’ equation is an important and basic parabolic PDE in fluid mechanic-
s [Burgers (1948)]. It is a model equation of numerous nonlinear problems in
aerodynamics, traffic dynamics and so on. It can be used as a simplified form
of Navier-Stokes equations in fluid dynamics. Burgers’ equation was first given
by H. Bateman (1915), then J.M. Burgers introduced the equation to simulate tur-
bulence problems. When an analytic solution is not available, or the analytic one
is not suitable to be used, a numerical method is necessary. Since Burgers’ equa-
tion possesses complexity and universality of applications, its numerical solution
is crucial in theory and practice. Burgers’ equation can be converted to heat equa-
tion by Hopf-Cole transformation. Even for Burgers’ equation with homogeneous
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Dirichlet boundary condition, the topic of the stability and the convergence is still
valuable [Kadalbajoo and Awasthi (2006); Liao (2008)].

In fact, many numerical approaches have been applied to solve evolution equations
which include Burgers’ equation. They are listed as finite difference method, fi-
nite element method, finite volume method, collocation method, spectral element
method, etc. Recently, a Local Radial Basis Function Meshless Method is applied
for solution of the Burgers’ equation with different initial and boundary condi-
tions of various complexities [Hosseini and Hashemi (2011)]. Moreover, a Mesh-
less Local Petrov-Galerkin Mixed Collocation Method is developed to solve the
Cauchy inverse problems of heat transfer [Zhang, He, Dong, Li, Alotaibi and Atluri
(2014)], and a Radial Basis Function Collocation Method is constructed for solving
ill-posed time domain inverse problems in systems of nonlinear ODEs [Elgohary,
Dong, Junkins and Atluri (2014)]. Although tremendous efforts have been devoted
to solve the so-called direct problems and inverse problems, the finite difference
method among them is early and fundamental in applications and can be combined
with other methods [Dhawan, Kapoor, Kumar and Rawat (2012)]. The combination
scheme of the finite difference method with the discretization of artificial integral
boundary conditions, as an important algorithm for solving the PDEs on unbounded
domain, needs to be elaborately established and theoretically analyzed.

As well-known, several kinds of problems in the areas of heat transfer, fluid dynam-
ics and other applications are on unbounded domains and are solved numerically
by using artificial boundary conditions [Feng (1983); Givoli (1992); Yu (2002); Liu
and Yu (2008); Yu and Huang (2008); Zheng, Wang and Li (2011)]. The artificial
boundary methods were obtained for various problems of heat equation on un-
bounded domains and the feasibility and effectiveness of the methods were shown
by the numerical examples [Han and Huang (2002A); Han and Huang (2002B)].
Moreover, for the heat equation in a semi-unbounded domain [−1,∞)× [0,∞), Sun
and Wu (2004) firstly proved that the finite difference scheme with an artificial
boundary condition is uniquely solvable, unconditionally stable and convergen-
t with the order 2 in space and the order 3/2 in time under an energy norm. Wu
and Zhang (2011) also obtained the high-order artificial boundary conditions for
the heat equation in unbounded domains, but only proved that the reduced initial-
boundary-value problems were stable.

Furthermore, Han, Wu and Xu (2006) started to consider the nonlinear Burgers’
equation in the unbounded domain as follows:

wt +wwx−νwxx = F(x, t), −∞ < x <+∞,0 < t ≤ T, (1)

w(x,0) = f (x), −∞ < x <+∞, (2)

w(x, t)→ 0, when |x| →+∞, 0≤ t ≤ T, (3)
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where ν = 1
Re , Re is the Reynolds number, and the given functions F and f are suf-

ficiently smooth with compact supports supp{F(x, t)} ⊂ [xl,xr]× [0,T ] and supp
{ f (x)} ⊂ [xl,xr]. They obtained nonlinear artificial boundary conditions, con-
structed a nonlinear difference method with no theoretical convergence analysis,
and supported it by numerical examples. Recently, Sun and Wu (2009) introduced
a function transformation to reduce nonlinear Burgers’ equation to a linear initial
boundary value problem, deduced a linear finite difference scheme, and also proved
that the finite difference scheme is uniquely solvable, unconditionally stable and
convergent with the order 2 in space and 3/2 in time.

In this paper, we consider the problem (1)-(3) with F ≡ 0 and convert it into an
initial value problem of heat equation by using Hopf-Cole transformation in the
following. Let

ω(x, t) =−
∫

∞

x
w(y, t)dy,

we obtain

ωt +
1
2

ω
2
x −νωxx = 0, ω(x,0) =−

∫
∞

x
f (y)dy, and ω(x, t)→ 0 when |x| →+∞.

Let u = exp(−ω/2ν)−1, then we have the initial value problem of heat equation:

ut −νuxx = 0, −∞ < x <+∞,0 < t ≤ T, (4)

u(x,0) = φ(x) := exp(
1

2ν

∫
∞

x
f (y)dy)−1, −∞ < x <+∞ (5)

u(x, t)→ 0, when |x| →+∞, 0≤ t ≤ T, (6)

where the sufficiently smooth given function φ(x) has compact support supp{φ(x)}
⊂ [xl,xr].

In section 2, we derive artificial boundary conditions for the problem (4)-(6). In sec-
tion 3, we construct a finite difference scheme for solving the problem on bounded
computational domain with the artificial boundary conditions. Then a new solution
of Burgers’ equation is obtained and the difficulty for solving the nonlinear prob-
lem is avoided. In section 4, we prove that the finite difference scheme is uniquely
solvable, unconditionally stable and convergent with the order 2 in space and 3/2
in time. In section 5, a numerical example confirms the stability and convergence
of the finite difference method.
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2 The problem with artificial boundary conditions

Let us consider firstly the restriction of u for the problem (4)-(6) on [xr,+∞)× [0,T ]
as follows:

ut −νuxx = 0, xr ≤ x <+∞,0 < t ≤ T,

u(x,0) = 0, xr ≤ x <+∞,

u(x, t)→ 0, when |x| →+∞, 0≤ t ≤ T.

We can get the solution u(x, t) by given u(xr, t):

u(x, t) =
x− xr

2
√

πν

∫ t

0
u(xr,λ )(t−λ )−3/2e−(x−xr)

2/4(t−λ )dλ .

Let µ = (x− xr)/2
√

t−λ , we obtain

u(x, t) =
2√
πν

∫
∞

(x−xr)/2
√

t
u(xr, t−

(x− xr)
2

4µ2 )e−µ2
dµ,

and

∂u(x, t)
∂x

= − 2√
πν

u(xr,0)e−(x−xr)
2/4t 1

2
√

t

+
2√
πν

∫
∞

(x−xr)/2
√

t
ut(xr, t−

(x− xr)
2

4µ2 )(−2(x− xr)

4µ2 )e−µ2
dµ.

Returning to the variable λ we get

∂u(x, t)
∂x

=− 1√
πν

∫ t

0

∂u(xr,λ )

∂λ

1√
t−λ

e−(x−xr)
2/4(t−λ )dλ ,

and taking the limit x→+xr we obtain a relation between ut(xr, t) and ux(xr, t):

ux(xr, t) =−
1√
πν

∫ t

0

uλ (xr,λ )√
t−λ

dλ .

Similarly, we can obtain the artificial boundary condition on x = xl .

So, we reduce the problem (4)-(6) to a problem in the bounded computational do-
main:

ut −νuxx = 0, xl ≤ x≤ xr,0 < t ≤ T, (7)

u(x,0) = φ(x), xl ≤ x≤ xr, (8)

ux(xl, t) =
1√
πν

∫ t

0

uλ (xl,λ )√
t−λ

dλ , 0≤ t ≤ T, (9)

ux(xr, t) =−
1√
πν

∫ t

0

uλ (xr,λ )√
t−λ

dλ , 0≤ t ≤ T. (10)
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3 The derivation of the difference scheme

In order to derive the finite difference method, the bounded computational domain
is divided into an M×N uniform mesh. Let h = (xr − xl)/M, xi = xl + ih for
0 ≤ i ≤ M, τ = T/N, tn = nτ for 0 ≤ n ≤ N, r = ντ

h2 , and un
i be the numerical

solution of u(x, t) at (xi, tn). Introduce the notations:

un
i− 1

2
=

1
2
(un

i +un
i−1), δxun

i− 1
2
=

1
h
(un

i −un
i−1), un− 1

2
i =

1
2
(un

i +un−1
i ),

δtu
n− 1

2
i =

1
τ
(un

i −un−1
i ), δ

2
x un

i =
1
h2 (u

n
i+1−2un

i +un
i−1),

‖un‖A =

√
h

M

∑
i=1

(un
i− 1

2
)2, ‖δxun‖=

√
h

M

∑
i=1

(δxun
i− 1

2
)2.

Lemma 1 (see [Han and Wu (2012)]) Suppose f (t) ∈C2[0, tn], then

|
∫ tn

0
f ′(t)

dt√
tn− t

−
n

∑
k=1

f (tk)− f (tk−1)

τ

∫ tk

tk−1

dt√
tn− t

|≤ 1
12

(20
√

2−23)max
0≤t≤tn

| f ′′(t)|τ
3
2 .

By introducing a new variable v = ∂u
∂x to reduce the order of heat equation, the

problem (7)-(10) is equivalent to the problem of first-order differential equations:

∂u
∂x

= ν
∂v
∂x

, ∀(x, t) ∈ [xl,xr]× [0,T ], (11)

v− ∂u
∂x

= 0, ∀(x, t) ∈ [xl,xr]× [0,T ], (12)

u(x,0) = φ(x), xl ≤ x≤ xr, (13)

v(xl, t) =
1√
πν

∫ t

0

∂u(xl,λ )

∂λ

1√
t−λ

dλ , (14)

v(xr, t) =−
1√
πν

∫ t

0

∂u(xr,λ )

∂λ

1√
t−λ

dλ . (15)

Define the grid functions:

Un
i = u(xi, tn), V n

i = v(xi, tn), 0≤ i≤M, n≥ 0.
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Using Lemma 1, it follows from (15) that

V n
M = − 1√

πν

n

∑
k=1

∫ tk

tk−1

∂u(xr,λ )

∂λ

dλ√
tn−λ

= − 1√
πν

n

∑
k=1

Uk
M−Uk−1

M
τ

∫ tk

tk−1

dλ√
tn−λ

+O(τ
3
2 )

= − 2√
πν

n

∑
k=1

(Uk
M−Uk−1

M )an−k +O(τ
3
2 )

= − 2√
πν

[a0Un
M−

n−1

∑
k=1

(an−k−1−an−k)Uk
M−an−1U0

M]+O(τ
3
2 ), n = 1,2, · · · .

Therefore, we have

V n− 1
2

M =
1
2
(V n−1

M +V n
M)=− 2√

πν
[a0Un− 1

2
M −

n−1

∑
k=1

(an−k−1−an−k)U
k− 1

2
M −an−1U0

M]+O(τ
3
2 ),

and similarly,

V n− 1
2

0 =
1
2
(V n−1

0 +V n
0 )=

2√
πν

[a0Un− 1
2

0 −
n−1

∑
k=1

(an−k−1−an−k)U
k− 1

2
0 −an−1U0

0 ]+O(τ
3
2 ).

Using Taylor expansion, we have

δtU
n− 1

2
i− 1

2
−νδxV

n− 1
2

i− 1
2
= pn− 1

2
i− 1

2
, 1≤ i≤M, n≥ 1,

V n− 1
2

i− 1
2
−δxU

n− 1
2

i− 1
2
= qn− 1

2
i− 1

2
, 1≤ i≤M, n≥ 1,

U0
i = φ(xi), 0≤ i≤M,

V n− 1
2

0 =
2√
πν

[a0Un− 1
2

0 −
n−1

∑
k=1

(an−k−1−an−k)U
k− 1

2
0 −an−1U0

0 ]+ sn− 1
2 , n≥ 1,

V n− 1
2

M =− 2√
πν

[a0Un− 1
2

M −
n−1

∑
k=1

(an−k−1−an−k)U
k− 1

2
M −an−1U0

M]+ tn− 1
2 , n≥ 1,
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where

|pn− 1
2

i− 1
2
| ≤ c(τ2 +h2), |qn− 1

2
i− 1

2
| ≤ c(τ2 +h2), 1≤ i≤M, n≥ 1,

|tn− 1
2 | ≤ cτ

3
2 , |sn− 1

2 | ≤ cτ
3
2 , n≥ 1,

and c is a constant.

Thus, we construct a difference scheme for (11)-(15) in the following:

δtu
n− 1

2
i− 1

2
−νδxvn− 1

2
i− 1

2
= 0, 1≤ i≤M, n≥ 1, (16)

vn− 1
2

i− 1
2
−δxun− 1

2
i− 1

2
= 0, 1≤ i≤M, n≥ 1, (17)

u0
i = φ(xi), 0≤ i≤M, (18)

vn− 1
2

0 =
2√
πν

[a0un− 1
2

0 −
n−1

∑
k=1

(an−k−1−an−k)u
k− 1

2
0 −an−1u0

0], n≥ 1, (19)

vn− 1
2

M =− 2√
πν

[a0un− 1
2

M −
n−1

∑
k=1

(an−k−1−an−k)u
k− 1

2
M −an−1u0

M]. n≥ 1. (20)

Theorem 1 The difference scheme (16)-(20) is equivalent to the following (21)-
(25):

u0
i = φ(xi), 0≤ i≤M, (21)

1
2
(δtu

n− 1
2

i− 1
2
+δtu

n− 1
2

i+ 1
2
)−νδ

2
x un− 1

2
i = 0, 1≤ i≤M−1, n≥ 1, (22)

δtu
n− 1

2
1
2

+
2ν

h
[

2√
πν

(a0un− 1
2

0 −
n−1

∑
k=1

(an−k−1−an−k)u
k− 1

2
0 −an−1u0

0)−δxun− 1
2

1
2

] = 0, n≥ 1,

(23)

δtu
n−1

2
M−1

2
+

2ν

h
[

2√
πν

(a0un− 1
2

M −
n−1

∑
k=1

(an−k−1−an−k)u
k− 1

2
0 −an−1u0

M)+δxun− 1
2

M− 1
2
] = 0, n≥ 1,

(24)

where

am =
1

√
tm+1 +

√
tm

=
1

√
τ(
√

m+1+
√

m)
, m = 0,1,2, · · · . (25)
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Proof Multiplying (16) by 1
2 h and using (17) we obtain

vn− 1
2

i = δxun− 1
2

i− 1
2
+

h
2ν

δtu
n− 1

2
i− 1

2
, 1≤ i≤M, n≥ 1, (26)

vn− 1
2

i = δxun− 1
2

i+ 1
2
− h

2ν
δtu

n− 1
2

i+ 1
2
, 0≤ i≤M−1, n≥ 1. (27)

From (26) and (27) for i from 1 to M−1 we obtain

δxun− 1
2

i− 1
2
+

h
2ν

δtu
n− 1

2
i− 1

2
= δxun− 1

2
i+ 1

2
− h

2ν
δtu

n− 1
2

i+ 1
2
, 1≤ i≤M−1, n≥ 1,

or
1
2
(δtu

n− 1
2

i− 1
2
+δtu

n− 1
2

i+ 1
2
)−νδ

2
x un− 1

2
i = 0, 1≤ i≤M−1, n≥ 1,

which is (22).

When i = 0, from (19) and (27), we know that

2
√

ν√
π
[a0un− 1

2
0 −

n−1

∑
k=1

(an−k−1−an−k)u
k− 1

2
0 −an−1u0

0] = νδxun− 1
2

1
2
− h

2
δtu

n− 1
2

1
2

.

Dividing by h/2 on the both sides we obtain (23).

Similarly, when i = M, from (20) and (26), we know that

−2
√

ν√
π
[a0un− 1

2
M −

n−1

∑
k=1

(an−k−1−an−k)u
k− 1

2
M −an−1u0

M] = νδxun− 1
2

M− 1
2
+

h
2

δtu
n− 1

2
M− 1

2
.

Dividing by h/2 on the both sides we obtain (24).

The difference scheme (21)-(24) can be sorted as the following:

(
1
2
− r)un

i+1 +(1+2r)un
i +(

1
2
− r)un

i−1

= (
1
2
+ r)un−1

i+1 +(1−2r)un−1
i +(

1
2
+ r)un−1

i−1 , 1≤ i≤M−1,
(28)

(1+2r+
4
√

r√
π
)un

0 +(1−2r)un
1 = (1−2r− 4

√
r√

π
)un−1

0 +(1+2r)un−1
1

+
4
√

rτ√
π

n−1

∑
k=1

(an−k−1−an−k)(uk
0 +uk−1

0 )+
8
√

rτ√
π

an−1u0
0,

(29)

(1+2r+
4
√

r√
π
)un

M +(1−2r)un
M−1 = (1−2r− 4

√
r√

π
)un−1

M +(1+2r)un−1
M−1

+
4
√

rτ√
π

n−1

∑
k=1

(an−k−1−an−k)(uk
M +uk−1

M )+
8
√

rτ√
π

an−1u0
M.

(30)
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4 Analysis of the difference scheme

Lemma 2 For any F = {F1,F2,F3, · · ·}, we have

n

∑
l=1

[a0Fl−
l−1

∑
k=1

(al−k−1−al−k)Fk]Fl ≥
1

2
√

tn

n

∑
l=1

F2
l , n = 1,2, · · · ,

where am is defined in (25).

Proof Let bm = am−1−am = 1√
τ
( 1√

m+
√

m−1
− 1√

m+1+
√

m
), m≥ 1, then bm > 0, and

n

∑
l=1

[a0Fl−
l−1

∑
k=1

(al−k−1−al−k)Fk]Fl

=
n

∑
l=1

a0F2
l −

n

∑
l=1

l−1

∑
m=1

(am−1−am)Fl−mFl

≥
n

∑
l=1

a0F2
l −

1
2

n

∑
l=1

l−1

∑
m=1

bm(F2
l−m +F2

l )

=
n

∑
l=1

a0F2
l −

1
2

n

∑
l=1

l−1

∑
m=1

bl−mF2
m−

1
2

n

∑
l=1

l−1

∑
m=1

bmF2
l

=
n

∑
l=1

a0F2
l −

1
2

n

∑
m=1

n

∑
l=m+1

bl−mF2
m−

1
2

n

∑
l=1

l−1

∑
m=1

bmF2
l

≥
n

∑
l=1

a0F2
l − (

n−1

∑
m=1

bm)
n

∑
l=1

F2
l

= [
1√
τ
− 1√

τ
(1− 1

√
n+
√

n−1
)]

n

∑
l=1

F2
l

≥ 1
2
√

tn

n

∑
l=1

F2
l . �

Lemma 3 Suppose {un
i } be the solution of

δtu
n− 1

2
i− 1

2
−νδxvn− 1

2
i− 1

2
= Pn− 1

2
i− 1

2
, 1≤ i≤M, n≥ 1, (31)

vn− 1
2

i− 1
2
−δxun− 1

2
i− 1

2
= Qn− 1

2
i− 1

2
, 1≤ i≤M, n≥ 1, (32)

u0
i = φ(xi), 0≤ i≤M, (33)

vn− 1
2

0 =
2√
πν

[a0un− 1
2

0 −
n−1

∑
k=1

(an−k−1−an−k)u
k− 1

2
0 −an−1u0

0]+Sn− 1
2 , n≥ 1, (34)
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vn− 1
2

M =− 2√
πν

[a0un− 1
2

M −
n−1

∑
k=1

(an−k−1−an−k)u
k− 1

2
M −an−1u0

M]+T n− 1
2 . n≥ 1, (35)

where Supp{φ(x)} ⊂ [x0,xM], then

‖un‖2
A ≤exp(

2T
4− τ

) · 1
1− τ

4
{‖u0‖2

A +

√
πνtn
2

τ

n

∑
l=1

[(T l− 1
2 )2 +(Sl− 1

2 )2]

+2τ

n

∑
l=1

(‖Pl− 1
2 ‖2

A +‖Ql− 1
2 ‖2

A)}, n = 1,2, · · · .
(36)

Proof Multiplying (31) by 2un− 1
2

i− 1
2

and multiplying (32) by 2vn− 1
2

i− 1
2

, then adding the
results, we have

1
τ
[(un

i− 1
2
)2− (un−1

i− 1
2
)2]+2(vn− 1

2
i− 1

2
)2

=
2
h
(un− 1

2
i vn− 1

2
i −un− 1

2
i−1 vn− 1

2
i−1 )+2un− 1

2
i− 1

2
Pn− 1

2
i− 1

2
+2vn− 1

2
i− 1

2
Qn− 1

2
i− 1

2

≤ 2
h
(un− 1

2
i vn− 1

2
i −un− 1

2
i−1 vn− 1

2
i−1 )+

1
2
(un− 1

2
i− 1

2
)2 +2(Pn− 1

2
i− 1

2
)2 +

1
2
(vn− 1

2
i− 1

2
)2 +2(Qn− 1

2
i− 1

2
)2,

1≤ i≤M,n≥ 1.
(37)

Multiplying the above inequality by τh and summing up for i from 1 to M, we
obtain

(‖un‖2
A−‖un−1‖2

A)+2τ‖vn− 1
2 ‖2

A ≤ 2τ(un− 1
2

M vn− 1
2

M −un− 1
2

0 vn− 1
2

0 )+
τ

2
‖un− 1

2 ‖2
A

+
τ

2
‖vn− 1

2 ‖2
A +2τ‖Pn− 1

2 ‖2
A +2τ‖Qn− 1

2 ‖2
A n≥ 1.

(38)

Noticing τ

2‖u
n− 1

2 ‖2
A ≤ τ

4 (‖u
n‖2

A +‖un−1‖2
A), thus

‖ul‖2
A−‖ul−1‖2

A ≤ 2τ(ul− 1
2

M vl− 1
2

M −ul− 1
2

0 vl− 1
2

0 )+
τ

4
(‖ul‖2

A +‖ul−1‖2
A)

+2τ‖Pl− 1
2 ‖2

A +2τ‖Ql− 1
2 ‖2

A, l = 1,2, . . . ,n.

Summing up for l from 1 to n, we have

‖un‖2
A ≤‖u0‖2

A +2τ

n

∑
l=1

(ul− 1
2

M vl− 1
2

M −ul− 1
2

0 vl− 1
2

0 )

+
τ

4
‖un‖2

A +
τ

2

n−1

∑
l=0
‖ul‖2

A +2τ

n

∑
l=1

(‖Pl− 1
2 ‖2

A +‖Ql− 1
2 ‖2

A).
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Substituting (34) and (35) into the above inequality, and using Lemma 2, we have

‖un‖2
A ≤

1
1− τ

4
[‖u0‖2

A +2τ

n

∑
l=1

(ul− 1
2

M vl− 1
2

M −ul− 1
2

0 vl− 1
2

0 )

+2τ

n

∑
l=1

(‖Pl− 1
2 ‖2

A +‖Ql− 1
2 ‖2

A)+
τ

2

n−1

∑
l=0
‖ul‖2

A]

=
1

1− τ

4
‖u0‖2

A +
2τ

1− τ

4
· (− 2√

πν
)

n

∑
l=1

[a0ul− 1
2

M −
l−1

∑
k=1

(al−k−1−al−k)u
k− 1

2
M ]ul− 1

2
M

+
2τ

1− τ

4

n

∑
l=1

ul− 1
2

M T l− 1
2 − 2τ

1− τ

4
· ( 2√

πν
)

n

∑
l=1

[a0ul− 1
2

0 −
l−1

∑
k=1

(al−k−1−al−k)u
k− 1

2
0 ]ul− 1

2
0

+
2τ

1− τ

4

n

∑
l=1

ul− 1
2

0 Sl− 1
2 +

2τ

1− τ

4

n

∑
l=1

(‖Pl− 1
2 ‖2

A +‖Ql− 1
2 ‖2

A)+
2τ

4− τ

n−1

∑
l=0
‖ul‖2

A

≤ 1
1− τ

4
‖u0‖2

A−
2τ

1− τ

4
· 2√

πν
· 1

2
√

tn

n

∑
l=1

(ul− 1
2

M )2 +
τ

1− τ

4
(

2√
πνtn

n

∑
l=1

(ul− 1
2

M )2

+

√
πνtn
2

n

∑
l=1

(T l− 1
2 )2)− 2τ

1− τ

4
· 2√

πν
· 1

2
√

tn

n

∑
l=1

(ul− 1
2

0 )2

+
τ

1− τ

4
(

2√
πνtn

n

∑
l=1

(ul− 1
2

0 )2 +

√
πνtn
2

n

∑
l=1

(Sl− 1
2 )2)

+
2τ

1− τ

4

n

∑
l=1

(‖Pl− 1
2 ‖2

A +‖Ql− 1
2 ‖2

A)+
2τ

4− τ

n−1

∑
l=0
‖ul‖2

A

≤ 1
1− τ

4
‖u0‖2

A +
τ

1− τ

4

√
πνtn
2

n

∑
l=1

[(T l− 1
2 )2 +(Sl− 1

2 )2]

+
2τ

1− τ

4

n

∑
l=1

(‖Pl− 1
2 ‖2

A +‖Ql− 1
2 ‖2

A)+
2τ

4− τ

n−1

∑
l=0
‖ul‖2

A, n = 1,2, · · · .

Using Gronwall’s lemma,

‖un‖2
A = exp(

2T
4− τ

) · 1
1− τ

4
· {‖u0‖2

A +

√
πνtn
2

τ

n

∑
l=1

[(T l− 1
2 )2 +(Sl− 1

2 )2]

+2τ

n

∑
l=1

(‖Pl− 1
2 ‖2

A +‖Ql− 1
2 ‖2

A)}, n = 1,2, · · · .

Theorem 2 The difference scheme (21)-(25) is uniquely solvable.
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Proof From Theorem 1, it suffices to prove that the difference scheme (16)-(20)
is uniquely solvable. When initial value is homogeneous, using Lemma 3, we have

‖un‖2
A = 0, n = 1,2, · · · .

Theorem 3 Let {un
i |0≤ i≤M,n≥ 1} be the solution of (21)-(25), then

‖un‖2
A ≤

exp( 2T
4−τ

)

1− τ

4
‖u0‖2

A, n = 1,2, · · · . (39)

Proof From Theorem 2.2, it suffices to prove that (39) holds for the difference
scheme (16)-(20). Therefore, (39) follows directly from Lemma 3.2.

Theorem 4 Suppose that the problem (4)-(6) has solution u(x, t)∈C4,3
x,t (R× [0,T ]).

Let {un
i } be the solution of (21)-(25), and let ũn

i =Un
i −un

i , then

‖ũn‖2
A ≤

CT
4− τ

(
√

πνT +4)exp(
2T

4− τ
)(τ

3
2 +h2)2, n = 1,2, · · · , [T/τ], (40)

where C is a constant independent of τ and h.

Proof We obtain the error equations:

δt ũ
n− 1

2
i− 1

2
−νδxṽn− 1

2
i− 1

2
= pn− 1

2
i− 1

2
, 1≤ i≤M, n≥ 1,

ṽn− 1
2

i− 1
2
−δxũn− 1

2
i− 1

2
= qn− 1

2
i− 1

2
, 1≤ i≤M, n≥ 1,

ũ0
i = 0, 0≤ i≤M,

ṽn− 1
2

0 =
2√
πν

[a0ũn− 1
2

0 −
n−1

∑
k=1

(an−k−1−an−k)ũ
k− 1

2
0 −an−1ũ0

0]+ sn− 1
2 , n≥ 1,

ṽn− 1
2

M =− 2√
πν

[a0ũn− 1
2

M −
n−1

∑
k=1

(an−k−1−an−k)ũ
k− 1

2
M −an−1ũ0

M]+ tn− 1
2 , n≥ 1.

By using Lemma 3 and noticing |pn− 1
2

i− 1
2
| ≤ c(τ2 +h2), |qn− 1

2
i− 1

2
| ≤ c(τ2 +h2), |tn− 1

2 | ≤

cτ
3
2 and |sn− 1

2 | ≤ cτ
3
2 , we obtain

‖ũn‖2
A = exp(

2T
4− τ

) · 1
1− τ

4
· {‖ũ0‖2

A +

√
πνtn
2

τ

n

∑
l=1

[(t l− 1
2 )2 +(sl− 1

2 )2]

+2τ

n

∑
l=1

(‖pl− 1
2 ‖2 +‖ql− 1

2 ‖2)}

≤ CT
4− τ

(
√

πνT +4)exp(
2T

4− τ
)(τ

3
2 +h2)2, n = 1,2, · · · , [T/τ].
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Theorem 4 shows that the convergence order of (21)-(24) is 2 in space and 3/2 in
time for the problem (7)-(10) of the heat equation with artificial boundary condi-
tions. Finally, the numerical solution of Burgers’ equation is obtained by using
central difference w.r.t. x as the following:

wn
i =−

ν

h
un

i+1−un
i−1

1+un
i

, (41)

which keeps the corresponding unique solvability, unconditional stability and con-
vergence in space and in time.

By the way, the artificial integral boundary method in [Sun and Wu (2009)] is
suitable for the inhomogenous Burgers’ equation. For the homogenous problem
(4)-(6), it gives

u(xl, t) =
1√
πν

∫ t

0
[νux(xl,λ )−

1+u(xl,λ )

2(xr− xl)

∫ xr

xl

f (x)dx]
dλ√
t−λ

, 0≤ t ≤ T,

which deduces a discrete boundary condition different from (23), and finally the
numerical solution of Burgers’ equation is derived from

wn
i− 1

2
=−

2νδxun
i− 1

2

1+un
i− 1

2

,

which is slightly different from (41).

5 Numerical examples

We test the stability and accuracy of the proposed method by solving Burgers’
equation with an initial condition f (x) = 4νx

ex2
+1

. The support of f is approximately
compact since | f (x)| is small enough outside the computational domain [xl,xr] =
[−5,5]. The exact solution is

w(x, t) =−2ν

1
2
√

πνt

∫
∞

−∞

ξ−x
2νt exp(−ξ 2− (x−ξ )2

4νt )dξ

1+ 1
2
√

πνt

∫
∞

−∞
exp(−ξ 2− (x−ξ )2

4νt )dξ

.

The error of numerical solutions and the convergence order w.r.t τ are shown in
table 1. The error of numerical solutions and the convergence order w.r.t h are
shown in table 2.
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Table
1:C

onvergence
w

.r.t.
τ

ofexam
ples

for
ν
=

0.5,T
=

1,h
=

0
.002

and
h
=

τ
3/4.

N
M

L
∞-error

order
L

2-error
order

M
L

∞-error
order

L
2-error

order
10

5000
3.4349e-04

—
5.0342e-04

—
56

3.6538e-03
—

5.3702e-03
—

20
5000

8.6462e-05
1.9901

1.2597e-04
1.9987

95
1.2531e-03

1.5439
1.8421e-03

1.5436
40

5000
3.6936e-05

1.2270
3.2692e-05

1.9461
159

4.4110e-04
1.5063

6.4865e-04
1.5058

80
5000

3.1874e-05
0.2126

1.2036e-05
1.4416

267
1.5473e-04

1.5114
2.2819e-04

1.5072

Table
2:C

onvergence
w

.r.t.h
ofexam

ples
for

ν
=

0.5,T
=

1,
τ
=

0
.005

and
τ
=

h
4/3.

M
N

L
∞-error

order
L

2-error
order

N
L

∞-error
order

L
2-error

order
25

200
1.5826e-02

—
2.3957e-02

—
3

1.7558e-02
—

2.8237e-02
—

50
200

4.1785e-03
1.9212

6.2111e-03
1.9475

9
4.5211e-03

1.9574
6.7089e-03

2.0734
100

200
1.0618e-03

1.9765
1.5793e-03

1.9756
22

1.1260e-03
2.0055

1.6559e-03
2.0185

200
200

2.6775e-04
1.9876

3.9703e-04
1.9920

54
2.7728e-04

2.0218
4.0895e-04

2.0176
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6 Concluding Remarks

In this study, motivated by works of Han, Wu, Sun and their co-authors, an artificial
boundary method for Burgers’ equation in the unbounded domain is presented by
(21), (28)-(30) and (41) succinctly. The inequality in Lemma 2 is slightly stronger
than that in [Wu and Sun (2004)] and [Han and Wu (2012)]. Lemma 3 is proved
by using Gronwall’s lemma, a similar Lemma 4 in [Wu and Sun (2004)] for heat
equation on the semi-infinite domain, i.e. Lemma 3.2.4 in [Han and Wu (2012)],
was incorrectly proved by not using Gronwall’s lemma, and could be modified and
proved by the way of Lemma 3. Finally, the suggested method is clearly proved
and verified to be uniquely solvable, unconditionally stable and convergent with the
order 2 in space and the order 3/2 in time under an energy norm to solve Burgers’
equation in the unbounded domain.
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