
Copyright © 2014 Tech Science Press CMES, vol.101, no.1, pp.1-15, 2014

Investigation of Squeezing Unsteady Nanofluid Flow Using
the Modified Decomposition Method

Lei Lu1,2, Li-Hua Liu3,4, Xiao-Xiao Li1

Abstract: In this paper, we use the modified decomposition method (MDM) to
solve the unsteady flow of a nanofluid squeezing between two parallel equations.
Copper as nanoparticle with water as its base fluid has considered. The effective
thermal conductivity and viscosity of nanofluid are calculated by the Maxwell-
Garnetts (MG) and Brinkman models, respectively. The effects of the squeeze
number, the nanofluid volume fraction, Eckert number, δ on Nusselt number and
the Prandtl number are investigated. The figures and tables clearly show high ac-
curacy of the method to solve the unsteady flow.

Keywords: nonlinear differential equation, unsteady nanofluid flow, modified de-
composition method.

1 Introduction

Most phenomena in our world are essentially nonlinear and are described by non-
linear equations. Since the appearance of high-performance digit computers, it
becomes easier and easier to solve a linear problem. However, generally speaking,
it is still difficult to obtain accurate solutions of nonlinear problems. In particular,
it is often more difficult to get an analytic approximation than a numerical one of
a given nonlinear problem, although we now have high performance supercomput-
ers and some high-quality symbolic computation software such as Mathematica,
Maple, and so on. The numerical techniques generally can be applied to nonlinear
problems in complicated computation domain; this is an obvious advantage of nu-
merical methods over analytic ones that often handle nonlinear problems in simple
domains. However, numerical methods give discontinuous points of a curve and
thus it is often costly and time consuming to get a complete curve of results. Be-
sides, from numerical results, it is hard to have a whole and essential understanding
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of a nonlinear problem. Numerical difficulties additionally appear if a nonlinear
problem contains singularities or has multiple solutions. The numerical and an-
alytic methods of nonlinear problems have their own advantages and limitations,
and thus it is unnecessary for us to do one thing and neglect another.

Therefore, many different methods have been introduced to obtain analytical ap-
proximate solutions for these nonlinear problems, such as the perturbation method
[Holmes (2013); He (2000)], orthogonal polynomial and wavelet methods [Lakestani,
Razzaghi, and Dehghan (2006)], methods of travelling wave solutions [Jafari,
Borhanifar, and Karimi (2009)], the Adomian decomposition method (ADM) and
the Variational iteration method. The method, which requires neither linearization
nor perturbation, works efficiently for a large class of initial value or boundary
value problems including linear or nonlinear equations. For parameter analysis,
approximate analytical solutions are more practical than numerical solutions.

One of the most applicable analytical techniques is the ADM [Lu and Duan (2014);
Duan, Rach, and Wazwaz (2013); Fu, Wang, and Duan (2013); Lai, Chen, and
Hsu (2008); Adomian (1983, 1986, 1989, 1994); Wazwaz (2009, 2011); Serrano
(2011); Adomian and Rach (1983); Duan, Rach, Baleanu, and Wazwaz (2012);
Rach (2012)]. It is a practical technique for solving nonlinear functional equa-
tions, including ordinary differential equations, partial differential equations, inte-
gral equations, integro-differential equations, etc. The ADM provides efficient al-
gorithms for analytic approximate solutions and numeric simulations for real-world
applications in the applied sciences and engineering without unphysical restrictive
assumptions such as required by linearization and perturbation. The accuracy of
the analytic approximate solutions obtained can be verified by direct substitution.

In the ADM, the solution u(x) is represented by a decomposition series

u(x) =
∞

∑
n=0

un(x), (1)

and the nonlinearity comprises the Adomian polynomials

Nu(x) =
∞

∑
n=0

An(x), (2)

where the Adomian polynomials An(x) is defined for the nonlinearity Nu = f (u)
as [Adomian and Rach (1983)]

An(x) = An(u0,u1, . . . ,un) =
1
n!

∂ n

∂λ n f (
∞

∑
k=0

λ
kuk(x))

∣∣∣∣∣
λ=0

. (3)

Different algorithms for the Adomian polynomials have been developed by Rach
[Rach (2008, 1984)], Wazwaz [Wazwaz (2000)], Abdelwahid [Abdelwahid (2003)]
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and several others [Abbaoui, Cherruault, and Seng (1995); Zhu, Chang, and Wu
(2005); Biazar, Ilie, and Khoshkenar (2006)]. Recently new algorithms and sub-
routines in MATHEMATICA for fast generation of the Adomian polynomials to
high orders have been developed by Duan [Duan (2010b,a, 2011)]. The solution
components are determined by recursion scheme. The nth-stage approximation is
given as φn(x) = ∑

n−1
k=0 uk(x).

We remark that the convergence of the Adomian series has already been proven by
several investigators [Rach (2008); Abbaoui and Cherruault (1994, 1995); Abdel-
razec and Pelinovsky (2011)]. For example, Abdelrazec and Pelinovsky [Abdel-
razec and Pelinovsky (2011)] have published a rigorous proof of convergence for
the ADM under the aegis of the Cauchy-Kovalevskaya theorem. In point of fact
the Adomian decomposition series is found to be a computationally advantageous
rearrangement of the Banach-space analog of the Taylor expansion series about the
initial solution component function.

In this paper, we use the modified decomposition method(MDM) [Duan and Rach
(2011)] to solve the unsteady flow of a nanofluid squeezing between two parallel
equations.

2 Governing equations

The study of heat transfer for unsteady squeezing viscous flow between two parallel
plates has been regarded as one of the most important research topics due to its wide
range of scientific and engineering applications such as hydrodynamical machines,
polymer processing, lubrication system, chemical processing equipment, formation
and dispersion of fog, damage of crops due to freezing, food processing and cooling
towers.

We consider the heat transfer analysis in the unsteady two-dimensional squeezing
nanofluid flow between the infinite parallel plates. The two plates are placed at z =
±ι(1−αt)1/2 =±h(t). For α > 0, the two plates are squeezed until they touch t =
1/α and for α < 0 the two plates are separated. The viscous dissipation effect, the
generation of heat due to friction caused by shear in the flow, is retained. This effect
is quite important in the case when the fluid is largely viscous or flowing at a high
speed. This behavior occurs at high Eckert number (� 1). Further the symmetric
nature of the flow is adopted. The fluid is a water based nanofluid containing Cu
(copper).

The nanofluid is a two component mixture with the following assumptions: incom-
pressible; no-chemical reaction; negligible viscous dissipation; negligible radiative
heat transfer; and nano-solid-particles and the base fluid are in thermal equilibrium
and no slip occurs between them. The thermo-physical properties of the nanofluid
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Table 1: Thermo physical properties of water and nanoparticles

ρ(kg/m3) Cp( j/kgk) k(w/m.k)
Pure water 997.1 4179 0.613

Copper (Cu) 8933 385 401

are given in Table 1.

The governing equations for momentum and energy in unsteady two dimensional
flow of a nanofluid are
∂u
∂x

+
∂v
∂y

= 0, (4)

ρn f (
∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

) =−∂ p
∂x

+µn f (
∂ 2u
∂x2 +

∂ 2u
∂y2 ), (5)

ρn f (
∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

) =−∂ p
∂y

+µn f (
∂ 2v
∂x2 +

∂ 2v
∂y2 ), (6)

∂T
∂ t

+u
∂T
∂x

+ v
∂T
∂y

=
kn f

(ρCp)n f
(
∂ 2T
∂x2 +

∂ 2T
∂y2 )

+
µn f

(ρCp)n f
(4(

∂u
∂x

)2 +(
∂u
∂x

+
∂u
∂y

))2, (7)

where u and v are the velocities in the x and y directions respectively, T is the
temperature, p is the pressure, the effective density (ρn f ), the effective dynamic
viscosity (µn f ), the effective heat capacity (ρCp)n f and the effective thermal con-
ductivity kn f of the nanofluid are defined as

ρn f = (1−φ)ρ f +φρs,

µn f =
µ f

(1−φ)2.5 ,

(ρCp)n f = (1−φ)(ρCp) f +φ(ρCp)s,

kn f

k f
=

ks +2k f −2φ(k f − ks)

ks +2k f +2φ(k f − ks)
,

(8)

where relevant boundary conditions as

v = vw =
dh
dt

, T = TH at y = h(t),

v =
∂u
∂y

=
∂T
∂y

= 0 at y = 0,
(9)
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where these parameters as

η =
y

[l(1−αt)1/2]
, u =

αx
[2(1−αt)]

f
′
(η),

v =− αl
[2(l−αt)1/2]

f (η), θ =
T
TH

, A1 = (1−φ)+φ
ρs

ρ f
.

(10)

Substituting the above variables into (5) and (6) and then eliminating the pressure
gradient from the resulting equations give:

f (4)−SA1(1−φ)2.5(η f
′′′
+3 f

′′
+ f

′
f
′′− f f

′′′
) = 0, (11)

Using (10), Eqs.(6) and (7) reduce to the following differential equations as

θ
′′
+PrS(

A2

A3
)( f θ

′−ηθ
′
)+

PrEc
A3(1−φ)2.5 (( f

′′
)2 +4δ

2( f
′
)2) = 0, (12)

where A2 and A3 are constants given as

A2 = (1−φ)+φ
(ρCp)s

(ρCp) f
, A3 =

kn f

k f
=

ks +2k f −2φ(k f − ks)

ks +2k f +2φ(k f − ks)
, (13)

where these boundary conditions as

f (0) = 0, f
′′
(0) = 0, f (1) = 1, f

′
(1) = 0, θ

′
(0) = 0, θ(1) = 1, (14)

In Eq.(12), S is the squeeze number, Pr is the Prandtl number and Ec is the Eckert
number, which are defined as

S =
αl2

2v f
, Pr =

µ f (ρCp) f

ρ f k f
, Ec =

ρ f

(ρCp) f

( αx
2(1−αt)

)2
, δ =

1
x
. (15)

3 Solution of the heat transfer of Cu-water nanoflu

We consider the nonlinear BVP for heat transfer of a nanofluid flow as

f (4)−SA1(1−φ)2.5(η f
′′′
+3 f

′′
+ f

′
f
′′− f f

′′′
) = 0, (16)

θ
′′
+PrS(

A2

A3
)( f θ

′−ηθ
′
)+

PrEc
A3(1−φ)2.5 (( f

′′
)2 +4δ

2( f
′
)2) = 0, (17)

where these boundary conditions as

f (0) = 0, f
′′
(0) = 0, f (1) = 1, f

′
(1) = 0, θ

′
(0) = 0, θ(1) = 1. (18)
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In Adomian operator-theoretic notation we have

L1 f (η) = N f (η), L2θ(η) = Nθ(η), (19)

where

L1(·) =
d4

dη4 (·), N f (η) = SA1(1−φ)2.5(η f
′′′
+3 f

′′
+ f

′
f
′′− f f

′′′
), (20)

L2(·) =
d2

dη2 (·), Nθ(η) =−PrS(
A2

A3
)( f θ

′−ηθ
′
)

− PrEc
A3(1−φ)2.5 (( f

′′
)2 +4δ

2( f
′
)2). (21)

According to the Duan-Rach modified decomposition method for BVPs, we take
the inverse linear operator as

L−1
1 (·) =

∫
η

0

∫
η

0

∫
η

0

∫
η

0
(·)dηdηdηdη , L−1

2 (·) =
∫

η

1

∫
η

0
(·)dηdη , (22)

Then, we have

L−1
1 L1 f (η) =

∫
η

0

∫
η

0

∫
η

0

∫
η

0
f (4)(η)dηdηdηdη = f (η)−Φ1(η), (23)

L−1
2 L2θ(η) =

∫
η

1

∫
η

0
θ
′′
(η)dηdη = θ(η)−Φ2(η), (24)

where

Φ1(η) = f (0)+η f
′
(0)+

η2

2
f
′′
(0)+

η3

6
f
′′′
(0), (25)

Φ2(η) = θ(1)+(η−1)θ
′
(0). (26)

Applying the operator L−1
1 (·) and L−1

2 (·) to both sides of Eq.(19) yield

f (η) = Φ1(η)+L−1
1 N f (η), (27)

θ(η) = Φ2(η)+L−1
2 Nθ(η), (28)

Using the boundary conditions (18), we have from Eq.(25) and (26) as

Φ1(η) = η f
′
(0)+

η3

6
f
′′′
(0), (29)
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Φ2(η) = 1. (30)

Upon substitution of the formula Eq.(29) and (30) into Eq.(27) and (28), we obtain

f (η) = η f
′
(0)+

η3

6
f
′′′
(0)+L−1

1 N f (η), (31)

θ(η) = 1+L−1
2 Nθ(η). (32)

Before we design a modified recursion scheme, we determine the two undetermined
f
′
(0) and f

′′′
(0) in advance. Evaluating f (η) at η = 1 and using the boundary

condition f (1) = 1, we have

f
′
(0)+

1
6

f
′′′
(0)+ [L−1

1 N f (η)]η=1 = 1, (33)

where this nonlinear Fredholm integral is

[L−1
1 N f (η)]η=1 =

∫ 1

0

∫
η

0

∫
η

0

∫
η

0
N f (η)dηdηdηdη , (34)

Differentiating Eq.(31) then evaluating f
′
(η) at η = 1 and using the boundary con-

dition f
′
(1) = 0, we have

f
′
(0)+

1
2

f
′′′
(0)+ [

dL−1
1 N f (η)

dη
]η=1 = 0, (35)

where this nonlinear Freddholm integrate is

[
dL−1

1 N f (η)

dη
]η=1 =

∫ 1

0

∫
η

0

∫
η

0
N f (η)dηdηdη . (36)

From the system of Eq.(33) and (35), which constitutes two linearly independent
equations in two unknowns, we readily obtain

f
′
(0) =−3

2
[L−1

1 N f (η)]η=1 +
1
2
[
dL−1

1 N f (η)

dη
]η=1 +

3
2
, (37)

f
′′′
(0) = 3[L−1

1 N f (η)]η=1−3[
dL−1

1 N f (η)

dη
]η=1−3. (38)

Substituting Eq.(37) and (38) into Eq.(31), we obtain the integral equation for the
solution

f (η) =
3η

2
− η3

2
− (

3η

2
− η3

2
)[L−1

1 N f (η)]η=1

+(
η

2
− η3

2
)[

dL−1
1 N f (η)

dη
]η=1 +L−1

1 N f (η), (39)
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Thus, we have converted the nonlinear BVP into an equivalent nonlinear integral
equation without any undetermined coefficients.

Next, we substitute the adomian decomposition series for the solution f (η) and
θ(η), the series of the Adomian polynomials for the nonlinearity N f (η) and Nθ(η)
as

f (η) =
∞

∑
m=0

fm(η) and N f (η) =
∞

∑
m=0

Am(η), (40)

θ(η) =
∞

∑
m=0

θm(η) and Nθ(η) =
∞

∑
m=0

Bm(η). (41)

Substitution (40) into Eq.(39) we have

∞

∑
m=0

fm(η) =
3η

2
− η3

2
− (

3η

2
− η3

2
)[L−1

1 (
∞

∑
m=0

Am(η))]η=1 +(
η

2

−η3

2
)[

dL−1
1 (∑∞

m=0 Am(η))

dη
]η=1 +L−1

1 (
∞

∑
m=0

Am(η)), (42)

Substitution (41) into Eq.(32) we have

∞

∑
m=0

θm(η) = 1+L−1
2 (

∞

∑
m=0

Bm(η)). (43)

Using the modified recursion scheme, we have

f0(η) =
3η

2
− η3

2
,

θ0(η) = 1,

fm+1(η) = −(3η

2
− η3

2
)[L−1

1 (Am(η))]η=1

+(
η

2
− η3

2
)[

dL−1
1 (Am(η))

dη
]η=1 +L−1

1 (Am(η)), (44)

θm+1(η) = L−1
2 (Bm(η)), (45)

We can compute the solution components fm(η) and θm(η), m≥ 1, where we can
use any one of several efficient MATHEMATICA subroutine for generation of the
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Adomian polynomials,

f1(η) = − 1
10

Sη
5(1−φ)2.5A1 +

1
280

Sη
7(1−φ)2.5A1

−19
40

S
(

η

2
− η3

2

)
(1−φ)2.5A1

− 27
280

S
(
−3η

2
+

η3

2

)
(1−φ)2.5A1,

θ1(η) = −
3EcPrη

(
5
(
−4+η3

)
+2δ 2

(
−16+15η−5η3 +η5

))
20(1−φ)2.5A3

,

· · · .

The nth-stage solution approximate is

Ψn(η) =
n−1

∑
k=0

fk(η), (46)

Φn(η) =
n−1

∑
k=0

θk(η). (47)

Since the exact solution cannot be obtain in general for the case of most nonlinear
operator equations, we instead consider the error remainder function in our context
of the particular nonlinear differential equation L1 f (η)−N f (η) = 0 and L2θ(η)−
Nθ(η) = 0

ER1n(η) = L1Ψn(η)−N1Ψn(η)

= Ψ
(4)
n (η)−SA1(1−φ)2.5(ηΨ

′′′
n (η)+3Ψ

′′
n(η)

+Ψ
′
n(η)Ψ

′′
n(η)−Ψn(η)Ψ

′′′
n (η)),

ER2n(η) = L2Φn(η)−N2Φn(η)

= Φ
′′
n(η)+PrS

A2

A3
(Ψn(η)Φ

′
n(η)−ηΦ

′
n(η))

+
PrEc

A3(1−φ)2.5 Φ
′′
n(η)Φ

′′
n(η)+4δ

2
Φ
′
n(η)Φ

′
n(η).

to verify the convergence of our solution and the maximal error remainder param-
eter

MER1n = max
0≤η≤0.5

| ER1n(η) | , MER2n = max
0≤η≤0.5

| ER2n(η) |. (48)
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which can be conveniently computed by the MATHEMATICA native command
’NMaximize’ for the nth-stage approximate Ψn(η) and Φn(η).

4 Simulation results

The obtained analytical approximations include many parameters. Here we present
simulation results of the proposed scheme for heat transfer of a nanofluid flow
which is squeezed between parallel plates.

We consider the error analytic function: ρs = 8933, ρ f = 997.1, cps = 385, cpf =
4179, ks = 401, k f = 0.613, Ec= 0.01, Pr= 6.2, δ = 0.01, φ = 0.02, S = 1, we plot
the error remainder functions ER1n(y) and ER2n(y)for n = 4 through 7 in Figs. 1.
The maximal error remainder parameters MER1n and MER2n for n = 1 through 8
are listed in Table 2 and Table 3. In Figs. 2, we display the logarithmic plots of the
maximal error remainder parameters MER1n and MER2n versus n for ρs = 8933,
ρ f = 997.1, cps = 385, cpf = 4179, ks = 401, k f = 0.613, Ec = 0.01, Pr = 6.2,
δ = 0.01, φ = 0.02, S = 1, where the points lie almost in a straight line, which
indicates that the maximal error remainder parameters decrease approximately at
an exponential rate.

Table 2: The maximal error remainder parameters MER1n for ρs = 8933, ρ f =
997.1, cps = 385, cpf = 4179, ks = 401, k f = 0.613, Ec = 0.01, Pr = 6.2, δ = 0.01,
φ = 0.02, S = 1,0≤ η ≤ 0.5

n 1 2 3 4
MER1n 6.19924 1.60181 0.392085 0.0959581

n 5 6 7 8
MER1n 0.0240165 0.00617282 0.00162422 0.000435705

Table 3: The maximal error remainder parameters MER2n for ρs = 8933, ρ f =
997.1, cps = 385, cpf = 4179, ks = 401, k f = 0.613, Ec = 0.5, Pr = 5.0, δ = 0.1,
φ = 0.06, S = 1,0≤ η ≤ 0.5

n 1 2 3 4
MER2n 0.13552 0.0901256 0.0550043 0.00591018

n 5 6 7 8
MER2n 0.000832669 0.000154263 0.0000389321 9.90308∗10−6

In Figs. 3, we plot the curves of Ψ10 versus η for ρs = 8933, ρ f = 997.1, cps = 385,
cpf = 4179, ks = 401, k f = 0.613, Ec = 0.5, Pr = 6.2, δ = 0.1. For Figs. 3(a)
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Figure 1: Curves of ERn(η) versus η for n = 4 (solid line), n = 5 (dot line), n = 6
(dash line),n = 7 (dot-dash line), and for (a) ER1n(η),(b) ER2n(η).
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n
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0.001
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1

MER1n
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0.001

0.01

0.1

MER2n
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Figure 2: Logarithmic plots of the maximal errors remainder parameters MERn and
versus n for n = 1 through 10, and for (a) MER1n, (b) MER2n.

and 3(b), we plot the curves of Ψ10 versus η for different values of S and φ ,
respectively. For this case, when φ = 0.06, increase in values of S is cause of
decreasing in velocity. When S = 1, increase in values of φ is cause of decreasing
in velocity.

For Figs. 4(a) and 4(b), we plot the curves of Φ10 versus η for different values of
Pr and Ec when we fix S = 1, φ = 0.06, δ = 0.1, respectively.For this case, when
Pr= 6.2, increase in values of Ec is cause of increasing in velocity. When Ec= 0.5,
increase in values of Pr is cause of increasing in velocity. For Fig. 5, we plot the
curves of Φ10 versus η for different values of δ when we fix S = 1, φ = 0.06,
Ec = 0.5, Pr = 6.2 respectively. For this case, increase in values of δ is cause of
increasing in velocity.
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Figure 3: The curves of Ψ10(η) versus η for (a) S =−1 (solid line), S =−0.5 (dot
line), S = 0.5 (dash line),S = 1 (dot-dash line) and for ρs = 8933, ρ f = 997.1, cps =
385, cpf = 4179, ks = 401, k f = 0.613, Ec = 0.5, Pr = 6.2, δ = 0.1, φ = 0.06,(b)
φ = 0 (solid line), φ = 0.02 (dot line), φ = 0.04 (dash line),φ = 0.06 (dot-dash
line) and for ρs = 8933, ρ f = 997.1, cps = 385, cpf = 4179, ks = 401, k f = 0.613,
Ec = 0.5, Pr = 6.2, S = 1, δ = 0.1.
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Figure 4: The curves of Ψ10(η) versus η for (a) Ec = 0.1 (solid line), Ec = 0.5 (dot
line), Ec = 0.7 (dash line),Ec = 1.2 (dot-dash line) and for ρs = 8933, ρ f = 997.1,
cps = 385, cpf = 4179, ks = 401, k f = 0.613, Pr = 5.0, δ = 0.1, φ = 0.06, S = 1,(b)
Pr = 6.2 (solid line), Pr = 5.5 (dot line), Pr = 6.0 (dash line),Pr = 6.5 (dot-dash
line) and for ρs = 8933, ρ f = 997.1, cps = 385, cpf = 4179, ks = 401, k f = 0.613,
Ec = 0.5, δ = 0.1, φ = 0.06, S = 1.
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Figure 5: The curves of Ψ10(η) versus η for (a) δ = 0.1 (solid line), δ = 0.4 (dot
line), δ = 0.7 (dash line),δ = 1.0 (dot-dash line) and for ρs = 8933, ρ f = 997.1,
cps = 385, cpf = 4179, ks = 401, k f = 0.613, Pr = 6.2, Ec = 0.1, φ = 0.06, S = 1.

5 Conclusions

In this research, the modified decomposition method was applied successfully to
find the analytical solution of the unsteady flow of a nanofluid squeezing between
two parallel. The figures and tables clearly show high accuracy of the method to
solve the unsteady flow. Consequently, the present success of the modified de-
composition method for the highly nonlinear problem verifies that the method is a
useful tool nonlinear problems in science and engineering.
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