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Structural Topology Optimization Based on the Level Set
Method Using COMSOL

Shaohua Zhang''?, Pei Li', Yongteng Zhong' and Jiawei Xiang' 3

Abstract: In order to obtain smooth boundary and improve computational effi-
ciency, a new topology optimization scheme based on the level set method is pre-
sented. Using the level set function as design variable and the volume ratio of the
solid material as volume constraint, respectively, this scheme can easily implement
compliance minimization structure topology optimization in associated with the
reaction-diffusion equation in commercial software COMSOL. Compared with the
results of solid isotropic material with penalization (SIMP) and traditional level set
method, this scheme obtained a smooth geometry boundary. In the present compu-
tational scheme, the computational cost could be enormously saved without solving
the complicated Hamilton-Jacobi equation restricted by Courant-Friedrichs-Lewy
(CFL) condition. Two numerical examples verified the performance of the pro-
posed structural topology optimization scheme.
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1 Introduction

Structural optimization is a very important and popular field. Recently, as one of
the most promising method in structural optimization, topology optimization has
been widely investigated [Eschenauer and Olhoff (2001); Huang and Xie (2010);
Rong et al. (2013); Du and Chen (2012); Olyaie et al. (2011); Matsumoto et
al. (2011); Li et al. (2010)]. A variety of techniques and approaches, such as
the wavelet finite element based method [Xiang et al. (2010); Xiang and Liang
(2011); Liu et al. (2014)], the homogenization method [Allaire and Kohn(1993);
Allaire et al. (1997); Bendsoe and Kikuchi (1988)], the Solid Isotropic Material
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with Penalization (SIMP) method[Bendsoe (1989); Bendsoe and Sigmund (2003)],
and the level set method [Allaire et al. (2004); Wang et al. (2003); Osher and
Santosa (2001); Luo et al.(2012)] have been developed during the past decades.

The main approach of topology optimization is the method of homogenization, in
which a material model with micro-scale voids is introduced. By using the size
of the microstructure parameters as topology design variables, the homogenization
technique is capable of implementing topology optimization easily. However, the
method may lead to numerical instabilities [Suzuki and Kikuchi (1991)].

The SIMP method is popular for its computational efficiency and conceptual sim-
plicity [Bendsoe and Sigmund (1997, 1999); Yang and Chung (1994)]. The basic
idea of the SIMP is the use of a supposed isotropic material whose elasticity tensor
is assumed to be a function of penalized material parameter. However, numerical
instability (checkerboard patterns, grayscales elements) and computational com-
plexity remain to be the major difficulties.

In recent years, a new level set method has become popular in the field of topol-
ogy optimization. The level set method introduced by Osher and Sethian [Osher
and Sethian (1988)]is a simple and versatile method for tracking the evolution of
interfaces. Sethian and Wiegmann [Sethian and Wiegmann (2000)] are first re-
searchers to extend the level set method to structural optimization. Since then, it
has gained much attention [Luo et al. (2004); Jia et al. (2011); Shojaee and Mo-
hammadian (2012)]. Compared with the traditional topology optimization meth-
ods, the level set method is more direct and effective for structural optimization
problem. However, there are also some numerical difficulties in the conventional
level set methods, such as the Courant—Friedrichs—Lewy (CFL) condition [Courant
et al. (1967)], the periodic re-initializations and the boundary velocity extension.
The most difficult problem is how to use finite difference techniques including the
traditional upwind scheme, the essentially non-oscillatory (ENO) scheme, and the
central weighted essentially non-oscillatory (WENO) scheme [Sethian (1999)] to
solve the Hamilton-Jacobi equation. In these techniques, the time-step size must be
restricted by the CFL condition to ensure the convergence of numerical process.

For the above reasons, this paper presents a computational scheme for topology op-
timization based on the level set method using the commercial software COMSOL
[Zimmerman (2007)]. Without the limitation of Courant-Friedrichs-Lewy (CFL)
condition, this scheme can easily implement the compliance minimization struc-
ture topology optimization with a simplified reaction-diffusion equation in the par-
tial differential equations (PDEs) module. Numerical examples illustrate that the
proposed scheme has high performance.
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2 Level set method
2.1 Basic principles

The level set method implicitly represents target structural configurations using the
iso-surface of the level set scalar function. The outlines of target structures are
changed by updating the level set function during the optimization process. For
a design domain Q with smooth boundary, suppose the existence of an implicit
function ¢ (x) satisfies

©(x)>0 xeQF (material)
@ (x)=0 xe€dQ (boundary) (1)
Q(x) <0 xeQ (void)

The time derivative of the level set function namely the level set equation (Hamilton-
Jacobi equation) is obtained by introducing the pseudo-time 7.

e
— +V,|Vo| =0 2
where V,, is the normal velocity of the implicit interface, V, =V o %, n= %,

here V¢ is the gradient vector of ¢. By solving Eq. (2) numerically to promote the
evolution of structure topology.

2.2 Level set method for compliance minimization problem

In general, the minimum mean compliance problem can be written as

min: C() = [ SE (@) (u)" De (v)dQ
st. [oew) De(v)dQ= [ pevdQ+ [rTevdQ 3)
fQH((P) dQ < Vinax

where u is the displacement vector, € is the strain tensor, D is the elasticity matrix,
p is the body force, 7 is the traction applied on the boundary I', v is the virtual
displacement, Vi, is the volume constraint, and E is the design variable defined as

E(¢) = EoH (@) + (1 = H(¢)) Enmin C))

where E is the material elasticity modulus, E;, is the minimum elasticity modulus
and H (@) represents the Heaviside function

0 <0

no={ 1 22 ®
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whose derivative is expressed as the Dirac delta function o (¢)

6(p) = ————+ (6)

10) = [ [ 30020 Dew) 4.0 (9)~ V)| a2 )

where J (@) is the objective function.

From traditional calculus, the extremes of Eq. (7) are achieved at the point where

—‘9{9((;") . Then the shape derivatives respect to ¢ of J (@) can be derived as

aJ(p) 1 o\ oT
20D | |3 Eun)e"De-+2] 3 (0) o otan ®)

where 81 is an infinitesimal variation. The relevant Euler-Lagrange equation at the
extreme value point is

[; (o —Emm>eTDe+z] 5 () |Vl =0 ©)

According to the steepest descent method [Wang (2004)], the advection velocity V,,
can be expressed as

V, = B (Eg — Emin) €' De + /1] 5(p) (10)

Then Eq. (2) can be described as

2|3 BB e"De 42| 5 9) 701 ~0 an

In most cases, it is impossible to solve Eq. (11) directly. One common idea is to
solve the level set equation numerically.

The goal of level set based topology optimization for compliance minimization
problem is to find the optimal structural boundaries dQ, which is implicitly ex-
pressed by the level set function ¢. Therefore, we can get the optimal shape and
topology of the structure by solving the Eq. (11) numerically.
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3 Topology optimization scheme based on the level set method using COM-
SOL

3.1 Lagrangian multiplier

In Eq. (11), the Lagrangian multiplier A can be explicitly expressed by an in-
tegration coupling variable in COMSOL. Supposing that an initial ¢ satisfies the
volume constraint condition, the constraint condition should be satisfied all the time

4 /H((p)—Vmax _ [2H(9) ‘9‘de /6 a<de 0 (12)
dt 2 0]

Replacing the %—‘f by Eq. (11), we have
J [5 (Eo — Emin) €T De] 8% (9) |V |dQ

4 =L 13
[ (o) Voldo (13

The method we used to calculate the Lagrangian multiplier A in Eq. (13) is based
on the assumption that the initial ¢y satisfies the volume constraint condition all the
time. In order to ensure accuracy, a penalty term should be added to Eq. (7)

1
7’}/<chr - Vmax)2

5 (14)

where Y is a penalty factor, V., is the value of volume of material in current iterative
step, and Viyax is the volume constraints.

3.2 Reaction-diffusion equation

In the conventional level set method, the CFL condition has been introduced to
maintain the stability of the computational procedure. However, it leads to poor
computational efficiency at the same time. Therefore, in this paper, we employ the
reaction-diffusion equation to replace the level set equation Eq. (2)

X

o +V,|Vo| = oA (15)

where the term V,, |V | is regarded as the reaction term, « is the viscosity coeffi-
cient, and the term oA is an artificial dissipation term which make this scheme
be able to achieve numerical stability and improve computational efficiency easily.
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Then Eq. (3) can be changed into the coupled plane stress equation and reaction-
diffusion equation

Jo &) De(v)dQ = [y povdQ+ [-TevdQ }

(16)
9 _ [1(Ey— Emin) €7 De + 1] 8 (9) |Vo| = aA@

As a result, we can solve the fully coupled PDEs by the finite element method via
commercial software COMSOL.

3.3 Optimization procedure

A description of the present optimization procedure is given as follows:
Step1: Choose the plane stress and PDEs in Multi-physics module of COMSOL.
Step2: Establish the geometry model and mesh.

Step3: Set initial structural parameters, integration coupling variables and expres-
sions.

Step4: Set the boundary conditions.

Step5: Select solver and set the corresponding solver parameters, such as the solu-
tion time, the stationary linear solver, and time dependent solver.

Step6: Solve and draw contour lines.

4 Numerical examples

In this section, two numerical examples are presented to confirm the validity of
the proposed optimization scheme for two-dimensional compliance minimization
problem.

Example 1. A cantilever beam

The model is shown in Fig. 1. The whole design domain is a rectangle of size 8mx
6m with a fixed boundary on the left side. A vertical concentrated force F=1 N, is
loaded in the center of the right-hand side. The properties of the isotropic material
are: Young’s module E = 2.06 x 10°Pa, Poisson’s ratio u = 0.3, and material den-
sity p = 7800kg/m>.The volume of material allowed for the structure is 50% of the
design domain.

The evolution of cantilever beam using the present topology optimization scheme
is shown in Fig. 2. Fig. 3(a)-(c) shows the process of SIMP topology optimiza-
tion and Fig. 3(d)-(f) shows the process of traditional level set method topology
optimization. We found that the optimal configurations in all the three methods are
nearly the same, but the SIMP method and the conventional level set method have
drawback of zigzag boundary, only the present scheme obtains a smooth and clear
boundary.
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Figure 1: The geometry of a cantilever beam.

Table 1: Comparison of the performance using different methods to solve a can-
tilever beam.

Method Element Dofs | Time(s) | Iteration | Linear solver
(step) (time)
SIMP 4800quadri | 4941 173 78 78
Conventional | 4800quadri | 4941 103 52 52
level set
Present method 2954tri 4671 30 115 351
Note: ‘quadri’ denote the linear quadrilateral element, ‘tri’ denote the linear
triangular element.

The computational time among the three methods are compared in Table 1 for the
cantilever beam. Obviously, the proposed scheme takes the shortest time to com-
plete the topology optimization process. Convergence is obtained within 30 s, 115
iterative steps and 351 solving times.

Example 2. A half-wheel

A half-wheel problem is considered. The design domain of a half-wheel is shown
in Fig. 4. The whole design domain is a rectangle of size 8mx 6m. The left side
of the grid point at the lower left-hand of corner is fixed and the vertical motion of
the grid point at the lower right-hand corner is restricted. A vertical concentrated
force F = 1 N, is loaded in the center of the bottom side. The properties of the
isotropic material are the same as the cantilever beam problem. The upper limit of
the volume constraint Vi, is set to 50% of the fixed design domain.

The evolution of half-wheel using the present topology optimization scheme is
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Figure 2: Process of the present topology optimization scheme for a cantilever

()

beam: (a) initial design, (b)-(e) intermediate results, (f) optimal result.
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Figure 3: Process of SIMP and traditional level set method topology optimization
for a cantilever beam: (a)-(b) intermediate results of SIMP, (c¢) optimal result of

SIMP, (d)-(e) intermediate results of traditional level set method, (f) optimal result
of traditional level set method.
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Figure 4: The geometry of a half-wheel.

Table 2: Comparison of the performance of different methods for half-wheel.

Method Element Dofs | Time(s) | Iteration | Linear solver
(step) (time)
SIMP 4800quadri | 4941 146 74 74
Conventional | 4800quadri | 4941 82 46 46
level set
COMSOL 2927tri 4632 25 104 326
Note: quadri denote the linear quadrilateral element, tri denote the linear
triangular element.

shown in Fig. 5. Fig. 6(a)-(c) shows the process of SIMP topology optimization
and Fig. 6(d)-(f) shows the process of traditional level set method topology opti-
mization for the same half-wheel. As shown in Figs.5 and 6, the optimal results of
all the three methods are basically the same except that a little different because of
numerical error, but the results of the SIMP method and the conventional level set
method have shortcoming of zigzag boundary. Compared with the traditional two
methods, the proposed scheme achieves a smooth and clear boundary.

The calculation time among the three methods are compared in Table 2 for the
half -wheel. Obviously, the present scheme completed the topology optimization
process with the shortest time. It only takes 25 s to find the optimal structure with
104 iterative steps and 326 solving times.

From the above two numerical simulations and comparisons, it can be concluded
that the proposed topology optimization scheme is able to achieve smooth boundary
and improve computational efficiency.
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Figure 5: Process of the present topology optimization scheme for a half-wheel:
(a) initial design, (b)-(e) intermediate results, (f) optimal result.
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(c) ()
Figure 6: Process of SIMP and traditional level set method topology optimization
for a half-wheel: (a)-(b) intermediate results of SIMP, (c) optimal result of SIMP,
(d)-(e) intermediate results of traditional level set method, (f) optimal result of tra-
ditional level set method.
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5 Conclusion

This paper proposed a topology optimization scheme based on the level set method
using COMSOL. Unlike the traditional level set method whose computational ef-
ficiency restricted by the Courant-Friedrichs-Lewy (CFL) condition, the present
structural optimization scheme can easily implement compliance minimization struc-
ture topology optimization with the simplified reaction-diffusion equation in com-
mercials software COMSOL. Numerical examples illustrate that the proposed scheme
is effective and is able to obtain smooth geometry boundary and further improve
the computational efficiency.

Acknowledgement: The authors are grateful for the support from the National
Science Foundation of China (no. 51175097), the Zhejiang Provincial Natural
Science Foundation for Excellent Young Scientists (no. LR13E050002) and the
Project-sponsored by SRF for ROCS, SEM.

References

Allaire, G.; Bonnetier, E.; Francfort, G.; Jouve, F. (1997): Shape optimization
by the homogenization method. Numer. Math. vol. 76, no. 1, pp. 27-68.

Allaire, G.; Jouv, F.; Toader, A. (2004): Structure optimization using sensitivity
analysis and a level-set method. J. Comput. Phys., vol. 194, no. 1, pp. 363-393.
Allaire, G.; Kohn, R. V. (1993): Optimal bounds on the effective behavior of a
mixture of two well-ordered elastic materials. Q. Appl. Math., vol.51, pp. 643—
674.

Bendsoe, M. P. (1989): Optimal shape design as a material distribution problem.
Structural Optimization, vol. 1, no. 4, pp. 193-202.

Bendsoe, M. P.; Kikuchi, N. (1988): Generating optimal topologies in structural
design using a homogenization method. Comp. Meth. Appl. Mech. Engng., vol.
71, no.2, pp. 197-224.

Bendsoe, M. P.; Sigmund, O. (1997): Optimization of Structural Topology, Shape
and Material, Berlin: Springer.

Bendsoe, M. P.; Sigmund, O. (1999): Material interpolation schemes in topology
optimization. Arch. Appl. Mech., vol. 69, n0.9-10, pp. 635-654.

Bendsoe, M. P.; Sigmund, O. (2003): Topology Optimization: Theory, Methods,
and Applications, Berlin: Springer.

Courant, R.; Friedrichs, K.; Lewyt, H. (1967): On the partial difference equa-
tions of mathematical physics. IBM J. Res. Dev. vol. 11, no.2, pp. 215-234.



30 Copyright © 2014 Tech Science Press CMES, vol.101, no.1, pp.17-31, 2014

Du, Y. X.; Chen, D. (2012): Suppressing Gray-Scale Elements in Topology Op-
timization of Continua Using Modified Optimality Criterion Methods. CMES-
Comput. Model. Eng. Sci., vol. 86, no.1, pp. 53-70.

Eschenauer, H. A.; Olhoff, N. (2001): Topology optimization of continuum struc-
tures: A review. Appl. Mech. Rev., vol. 54, no. 4, pp. 331-390.

Huang, X. D.; Xie, M. (2010): Evolutionary Topology Optimization of Continuum
Structures: Methods and Applications. NewYork: Wiley Press.

Jia, H. P.; Beom, H. G.; Wang, Y.X.; Lin, S.; Liu, B. (2011): Evolutionary level
set method for structural topology optimization. Comput. Struct., vol. 89, no. 5-6,
pp. 445-454.

Li, S. L.; Long, S. Y.; Li, G. Y. (2010): A Topology Optimization of Moderately
Thick Plates Based on the Meshless Numerical Method. CMES-Comput. Model.
Eng. Sci., vol. 60, no. 1, pp. 73-94.

Liu, M.; Xiang, J. W.; Gao, H. F.; Jiang, Y. Y.; Zhou, Y. Q.; Li, F. P. (2014): Re-
search on Band Structure of One-dimensional Phononic Crystals Based on Wavelet
Finite Element Method. CMES-Comput. Model. Eng. Sci., vol. 97, no. 5, pp.
425-436.

Luo, J.; Wang, Z.; Chen, S.; Tong, L.; Wang, M. Y. (2004): A new level set
method for systematic design of hinge free compliant mechanisms. Comp. Meth.
Appl. Mech. Engng., vol. 198, no.2, pp. 318-331.

Luo, Z.; Zhang, N.; Wang, Y. (2012): A Physically Meaningful Level Set Method
for Topology Optimization of Structures. CMES-Comput. Model. Eng. Sci., vol.
83, no.1, pp. 73-96.

Matsumoto, T.; Yamada, T.; Takahashi, T. (2011): Acoustic Design Shape and
Topology Sensitivity Formulations Based on Adjoint Method and BEM. CMES-
Comput. Model. Eng. Sci., vol. 78, no. 2, pp. 77-94.

Olyaie, M. S.; Razfar, M. R.; Wang, S. (2011): Topology Optimization of a Lin-
ear Piezoelectric Micromotor Using the Smoothed Finite Element Method. CMES-
Comput. Model. Eng. Sci., vol. 82, no. 1, pp. 55-81.

Osher, S.; Santosa, F. (2001): Level set methods for optimization problems in-
volving geometry and constraints I. Frequencies of a two density inhomogeneous
drum. J. Comput., vol. 171, no. 1, pp. 272-288.

Osher, S.; Sethian, J. A. (1988): Fronts propagating with curvature dependent
speed: Algorithms based on Hamilton-Jacobi Formulation. J. Comput. Phys., vol.
79, no. 1, pp. 12-49.

Rong, J. H.; Zhao, Z. J.; Xie, Y. M. (2013): Topology optimization of finite
similar periodic continuum structures based on a density exponent interpolation



Structural Topology Optimization 31

model. CMES-Comput. Model. Eng. Sci., vol. 90, no. 3, pp. 211-231.

Sethian, J. A. (1999): Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and
Materials Science. UK: Cambridge University Press.

Sethian, J. A.; Wiegmann, A. (2000): Structural boundary design via level set and
immersed interface methods. J. Comput. Phys., vol. 163, no. 2, pp. 489-528.
Shojaee, S.; Mohammadian, M. (2012): Structural topology optimization using
an enhanced level set method. Sci. Iran., vol. 19, no. 5, pp. 1157-1167.

Suzuki, K.; Kikuchi, N. (1991): A homogenization method for shape and topol-
ogy optimization. Comp. Meth. Appl. Mech. Engng., vol. 93, pp. 291-318.
Wang, M. Y.; Wang, X. M. (2004): PDE-driven level sets, shape sensitivity and
curvature flow for structural topology optimization. CMES-Comput. Model. Eng.
Sci., vol. 6, no. 4, pp. 195-373.

Wang, M. Y.; Wang, X.; Guo, D. (2003): A level set method for structure topology
optimization. Comp. Meth. Appl. Mech. Engng., vol. 192, pp. 227-246.

Xiang, J. W.; Chen, X. F; Yang, L. F.; He, Z. J. (2008): A class of wavelet-
based flat shell elements using B-spline wavelet on the interval and its applications.
CMES-Comput. Model. Eng. Sci., vol. 23, pp. 1-12.

Xiang, J. W.; Liang, M. (2011): Multiple damage detection method for beams
based on multi-scale elements using Hermite cubic spline wavelet. CMES-Comput.
Model. Eng. Sci., vol. 73, pp. 267-298.

Yang, R. J.; Chung, C. H. (1994): Optimal topology design using linear program-
ming. Comput. Struct., vol. 53, no. 2, pp. 265-275.

Zimmerman, W. B. J. (2007): COMSOL Multiphysics. China: Communications
Press.






