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A Fully Discrete SCNFVE Formulation for the
Non-stationary Navier-Stokes Equations
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Abstract: A semi-discrete Crank-Nicolson (CN) formulation about time and a
fully discrete stabilized CN finite volume element (SCNFVE) formulation based
on two local Gauss integrals and parameter-free with the second-order time ac-
curacy are established for the non-stationary Navier-Stokes equations. The error
estimates of the semi-discrete and fully discrete SCNFVE solutions are derived.
Some numerical experiments are presented to illustrate that the fully discrete SC-
NFVE formulation possesses more advantages than its stabilized finite volume el-
ement formulation with the first-order time accuracy, thus validating that the fully
discrete SCNFVE formulation is feasible and efficient for finding the numerical
solutions of the non-stationary Navier-Stokes equations.
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1 Introduction

Let Ω ⊂ R2 be a bounded and connected polygonal domain. We consider the fol-
lowing system of incompressible non-stationary Navier-Stokes equations.

Problem I. Find uuu = (u1,u2) and p such that, for T > 0,
uuut −ν∆uuu+(uuu ·∇)uuu+∇p = fff , (x,y, t)∈Ω× (0,T ),
divuuu = 0, (x,y, t)∈Ω× (0,T ),
uuu(x,y, t) = ϕϕϕ(x,y, t), (x,y, t)∈∂Ω× (0,T ],

uuu(x,y,0) = uuu0(x,y), (x,y)∈Ω,

(1)

where uuu = (u1,u2) represents the fluid velocity vector, p the pressure, T the total
time, ν = 1/Re, Re the Reynolds number, fff (x,y, t) the given body force vector,
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ϕϕϕ(x,y, t) the boundary value function, and uuu0(x,y) the initial value function. For
the sake of convenience and without loss of generality, we may as well suppose that
ϕϕϕ(x,y, t) = 000.

Problem I constitutes a system of nonlinear equations in fluid dynamics. It has
been successfully and extensively applied in many fields of practical engineering
[Temam (1984); Girault and Raviart (1986); Heywood and Rannacher (1982)]. It is
a difficult task to find the analytical solutions for the non-stationary Navier-Stokes
equations due to its nonlinearity. Especially, it is a more difficult task when its
computational field is an irregular geometrical shape in actual applications. One
has to rely on numerical solutions.

The finite volume element (FVE) method [Cannon and Lin (1990); Cai and Mc-
Cormick (1990); Süli (1991); Quarteroni and Ruiz-Baier (2011)] is regarded as one
of the most valid numerical methods thanks to its following virtues. First, it retains
the integral conservation of gross energy and that of mass. Second, it has higher
accuracy and is more suitable for cases involving complicated computational field
than the finite deference (FD) scheme. Third, it has the same accuracy as the fi-
nite element (FE) method but is simpler and more convenient to apply than the FE
method (In fact, a FVE formulation can be changed into a FD scheme in numerical
computation by means of FVE so that its algorithm implementation is very simple
and convenient, however its numerical analysis is provided by FE technique). It
is also known as a box method [Jones and Menziest (2000)] or a generalized dif-
ference method [Li, Chen, and Wu (2002); Li, Luo, and Li (2007)]. It has been
widely used to solve various types of partial differential equations, but it focused
on stationary partial differential equations and linear equations, for example, el-
liptic problems, viscoelastic problems, parabolic equations, Stokes equations, and
the stationary Navier-Stokes equations [Cai and McCormick (1990); Süli (1991);
Quarteroni and Ruiz-Baier (2011); Jones and Menziest (2000); Li, Chen, and Wu
(2002); Li, Luo, and Li (2007); Blanc, Eymerd, and Herbin (2004); Li and Chen
(2009); Ye (2001); Chou and Kwak (1998); Shen, Li, and Chen (2009); Yang and
Song (2009); Ammara and Masson (2004); Li, Shen, and Chen (2010); He and He
(2007)].

Although a semi-discrete stabilized FVE (SFVE) formulation with respect to spa-
tial variables based on the jump operator in pressure for the non-stationary Navier-
Stokes equations is proposed [He, He, and Feng (2007), without mentioning fully
discrete SFVE method], it is well known that it is yet unable to carry out directly ac-
tual numerical computations. Though the SFVE method based on two local Gauss
integrals and parameter-free is used to treat the stationary Navier-Stokes equations
[Li, Shen, and Chen (2010)] and the semi-discrete FVE formulation with respect
to space variables for the transient Stokes equations [Shen, Li, and Chen (2009)],
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to the best of our knowledge, there are no published results where the fully dis-
crete stabilized Crank-Nicolson (CN) FVE (SCNFVE) formulation based on two
local Gauss integrals and parameter-free with second-order time accuracy for the
non-stationary Navier-Stokes equations is established or the error estimates of the
fully discrete SCNFVE solutions for the non-stationary Navier-Stokes equations
are provided. Therefore, in this paper, a fully discrete SCNFVE formulation based
on two local Gauss integrals and parameter-free with the second-order time ac-
curacy is directly established from the time semi-discrete CN formulation for the
non-stationary Navier-Stokes equations so that it could avoid the semi-discrete SC-
NFVE formulation with respect to spatial variables, namely it is unnecessary to
discuss the semi-discrete SCNFVE formulation with respect to spatial variables
such that theoretical analysis here becomes simpler than the existing other methods
[see, e.g., Shen, Li, and Chen (2009); He, He, and Feng (2007)]. Consequently, it
is the improvement and innovation for the existing other methods and a new type
of study attempt for the non-stationary Navier-Stokes equations.

The plan of this paper is organized as follows. In Section 2, the time semi-discrete
CN formulation with the second-order time accuracy for the non-stationary Navier-
Stokes equations and the error estimates are derived. In Section 3, the fully discrete
SCNFVE formulation based on two local Gauss integrals and parameter-free with
the second-order time accuracy is directly established from the time semi-discrete
CN formulation. In Section 4, the existence and uniqueness and the error estimates
of the fully discrete SCNFVE solutions are proved by means of the stabilized CN
FE (SCNFE) method. In Section 5, some numerical experiments are used to vali-
date that the fully discrete SCNFVE formulation with the second-order time accu-
racy is more effective than the SFVE formulation with the first-order time accuracy,
thus meaning that the fully discrete SCNFVE formulation is feasible and efficient
for finding the numerical solutions of the non-stationary Navier-Stokes equations.
Section 6 provides main conclusions and some discussions.

2 Time semi-discrete CN formulation with the second-order time accuracy
and error estimates

The Sobolev spaces and norms used in this paper are standard [Adams (1975)].
Let U = H1

0 (Ω)2, M = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

qdxdy = 0
}

. Then the variational
formulation for Problem I is read as follows.

Problem II. Find (uuu(t), p(t)) : [0,T ]→U×M such that
(uuut ,vvv)+a(uuu,vvv)+a1(uuu,uuu,vvv)−b(vvv, p) = ( fff ,vvv), ∀vvv ∈U,

b(uuu,q) = 0, ∀q ∈M,

uuu(x,y,0) = uuu0(x,y), (x,y) ∈Ω,

(1)
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where a(uuu,vvv) = ν(∇uuu,∇vvv), a1(uuu,vvv,www) = [(uuu∇vvv,www)−(uuu∇www,vvv)]/2, b(vvv,q) = (divvvv,
q), and (·, ·) denotes inner product in L2(Ω) or L2(Ω)2 or L2(Ω)2×2.

The following properties of trilinear form a1(·, ·, ·) are known [Heywood and Ran-
nacher (1990) or Luo (2006)]:

a1(uuu,vvv,www) =−a1(uuu,www,vvv), a1(uuu,vvv,vvv) = 0, ∀uuu,vvv,www ∈U. (2)

The following properties of bilinear form a(·, ·) are also known [also see Heywood
and Rannacher (1990) or Luo (2006)]:

a(vvv,vvv) = ν‖∇vvv‖2
0, ∀vvv ∈U ; |a(uuu,vvv)|6 ν |uuu|1|vvv|1, ∀uuu, vvv ∈U. (3)

The bilinear form b(·, ·) satisfies the following B-B (Brezzi-Babuška) condition
[Brezzi and Fortin (1991) or Luo (2006)]:

sup
vvv∈U

b(q,vvv)
|vvv|1

> β‖q‖0, ∀q ∈M, (4)

where β is a constant independent of vvv and q. Put

N0 = sup
uuu,vvv,www∈U

a1(uuu,vvv,www)
|uuu|1 · |vvv|1 · |www|1

. (5)

Thanks to (2)–(5), if N0ν−1‖ fff‖L2(H−1) 6 1, Problem II has a unique solution such
that [Heywood and Rannacher (1990) or Luo (2006)]:

‖uuu‖0 +‖uuut‖L2(L2)+‖∇uuu‖L2(L2)+‖p‖L2(L2)

6C(‖uuu0‖1 +‖ fff‖L2(L2)+N0‖ fff‖2
L2(L2)

+‖ fff‖L2(H−1)),
(6)

where ‖·‖Hm(H l) are the norm of Hm(0,T ;H l(Ω)) or Hm(0,T ;H l(Ω)2)2(m > 0 and
l >−1) and C is a constant.

For given positive integer N, let k = T/N denote time step, tn = nk, uuun be the
time semi-discrete CN approximation of uuu at tn ≡ nk (n = 0,1, · · · , N). Let ∂̄tuuun =
(uuun− uuun−1)/k denote the approximation of uuut , ūuun = (uuun + uuun−1)/2, then the time
semi-discrete CN scheme with the second-order time accuracy for Problem II is
read as follows.

Problem III. Find (uuun, pn) ∈U×M (1 6 n 6 N) such that (∂̄tuuun,vvv)+a(ūuun,vvv)+a1(ūuun, ūuun,vvv)−b(vvv, pn) = ( fff n− 1
2 ,vvv), ∀vvv ∈U,

b(uuun,q) = 0, ∀q ∈M,

uuu0 = uuu0(x,y), (x,y) ∈Ω,

(7)



A Fully Discrete SCNFVE Formulation 37

where fff n− 1
2 = fff (tn− 1

2
).

There is the following theorem for the time semi-discrete CN formulation, i.e.,
Problem III.

Theorem 1 If uuu0 ∈ H1(Ω)2 and fff ∈ L2(0,T ;L2(Ω)2)2, then Problem III has a
unique series of solutions (uuun, pn) ∈U×M (n = 1,2, ...,N) satisfying the following
stability

‖uuun‖2
0 +νk

n

∑
i=1
‖∇ūuui‖2

0 6 ‖uuu0‖2
0 +ν

−1k
n

∑
i=0
‖ fff i− 1

2 ‖2
−1, (8)

‖∇uuun‖2
0 6 ‖∇uuu0‖2

0 + kν
−1

n

∑
i=1
‖ fff i− 1

2 ‖2
0, (9)

k
n

∑
i=1
‖pi‖0 6 β

−1(2+
√

knν)‖uuu0‖0 +β
−1N0ν

−1‖uuu0‖2
0

+β
−1(1+2

√
knν)

(
ν
−1k

n

∑
i=0
‖ fff i− 1

2 ‖2
−1

)1/2

+ kN0ν
−2

β
−1

n

∑
i=1
‖ fff i− 1

2 ‖2
0.

(10)

And if uuu0 ∈ H2(Ω)2, fff ∈W 2,∞(0,T ;L2(Ω)2)2, and N0ν−1‖∇uuu(t)‖0 6 1/4, there
hold the following error estimates:

‖uuu(tn)−uuun‖0 +(kν)1/2‖∇(uuu(tn)−uuun)‖0 6C( fff )k2,

‖p(tn)− pn‖0 6 C̃( fff )k, n = 1,2, ...,N,
(11)

where C̃( fff )= β−1
[
(νk)1/2C( fff )+ (νk)1/2

4 C( fff ) + k
24‖uuu‖W 3,∞(0,T ;L2)+

1
2‖p‖W 1,∞(L2) +2C( fff )

+ 9νk
64 ‖uuu‖W 2,∞(H1)+

(
C( fff )+ k1/2

16ν1/2 ‖uuu‖W 2,∞(H1)

)
(‖uuu0‖0 + ν−1/2‖ fff‖L∞(H−1))

]
and C2( fff )

= T N2
0‖uuu‖4

W 2,∞(H1)
+N2

0 ν−1‖uuu‖2
W 1,∞(H1)

(‖uuu0‖2 + ν−1‖ fff‖2
L∞(H−1)

) + T ν−1‖uuu‖2
W 3,∞(H−1)

+

16νT‖uuu‖2
W 2,∞(H1)

.

Proof Let A(uuun,vvv) = 4(uuun,vvv) + 2ka(uuun,vvv)+ka1(uuun,uuun−1,vvv)+ka1(uuun−1,uuun,vvv), F(vvv) =
4k( fff n− 1

2 ,vvv) +4(uuun−1,vvv)−2ka(uuun−1,vvv)− ka1(uuun−1,uuun−1,vvv). Then, for given uuun−1

satisfying N0ν−1‖∇uuun−1‖0 6 1 and fixed n and k, A(·, ·) is bounded bilinear form
and satisfies the following coerciveness

A(uuun,uuun) = 4‖uuun‖2
0 +2kν‖∇uuun‖2

0− kN0‖∇uuun‖2
0‖∇uuun−1‖0 > α0‖uuun‖2

1, (12)

where α0 = min{kν ,4} is a constant independent of uuun. For given uuun−1 and fff , F(·)
is a continuous linear function on U , we know from (4) that kb(vvv,q) also satisfies
B-B condition and ka1(uuun,uuun,vvv) is a continuous trilinear form too. Then Problem
III, i.e., A(uuun,vvv)+ ka1(uuun,uuun,vvv)− kb(vvv, pn)+ kb(uuun,q) = F(vvv) (∀(vvv,q) ∈U ×M)
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has a unique series of solutions (uuun, pn)∈U×M (n= 1,2, ...,N) from the existence
and uniqueness of solution for the stationary Navier-Stokes equations [Luo (2006)
or Brezzi and Fortin (1991)].

Let vvv = uuun+uuun−1 in Problem III. With (2), Hölder inequality, and Cauchy inequal-
ity, we obtain that

2(‖uuun‖2
0−‖uuun−1‖2

0)+ kν‖∇(uuun +uuun−1)‖2
0 = 2k( fff n− 1

2 ,uuun +uuun−1)

6 2k‖ fff n− 1
2 ‖−1‖∇(uuun +uuun−1)‖0

6 2kν
−1‖ fff n− 1

2 ‖2
−1 +

kν

2
‖∇(uuun +uuun−1)‖2

0.

(13)

It follows from (13) that

4(‖uuun‖2
0−‖uuun−1‖2

0)+ kν‖∇(uuun +uuun−1)‖2
0 6 4kν

−1‖ fff n− 1
2 ‖2
−1. (14)

Summing (14) from 1 to n yields (8).

Let vvv = uuun−uuun−1 in Problem III. With (2), Hölder inequality, and Cauchy inequal-
ity, we get that

2‖uuun−uuun−1‖2
0 + kν [‖∇uuun‖2

0−‖∇uuun−1‖2
0] = 2k( fff n− 1

2 ,uuun−uuun−1)

6 2k‖ fff n− 1
2 ‖0‖uuun−uuun−1‖0 6 k2‖ fff n− 1

2 ‖0 +‖uuun−uuun−1‖2
0.

(15)

It is obtained from (15) that

‖uuun−uuun−1‖2
0 + kν [‖∇uuun‖2

0−‖∇uuun−1‖2
0]6 k2‖ fff n− 1

2 ‖2
0. (16)

It is gotten by summing (16) from 1 to n that

(kν)−1
n

∑
i=1
‖uuui−uuui−1‖2

0 +‖∇uuun‖2
0 6 ‖∇uuu0‖2

0 + kν
−1

n

∑
i=1
‖ fff i− 1

2 ‖2
0, (17)

which yields (9). With (4) and Problem III, we have

kβ‖pn‖0 6 sup
vvv∈U

kb(vvv, pn)

‖∇v‖0

= sup
vvv∈U

(uuun−uuun−1,vvv)+ ka(ūuun,vvv)+ ka1(ūuun, ūuun,vvv)− k( fff n− 1
2 ,vvv)

‖∇v‖0
.

(18)

By summing (18) from 1 to n and using Hölder inequality, (9), and (17), we get
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that

kβ

n

∑
i=1
‖pi‖0

6 ‖uuun‖−1 +‖uuu0‖−1 + kν
n
∑

i=1
‖∇ūuui‖0 + kN0

n
∑

i=1
‖∇ūuui‖2

0 + k
n
∑

i=1
‖ fff i− 1

2 ‖−1

6 ‖uuun‖0 +‖uuu0‖0 +
√

knν

(
kν

n

∑
i=1
‖∇ūuui‖2

0

)1/2

+kN0
n
∑

i=1
‖∇ūuui‖2

0 + k
n
∑

i=1
‖ fff i− 1

2 ‖−1

6

(
‖uuu0‖2

0 +ν
−1k

n

∑
i=0
‖ fff i− 1

2 ‖2
−1

)1/2

+‖uuu0‖0 +
√

knν

(
kν−1

n
∑

i=0
‖ fff i− 1

2 ‖2
−1

)1/2

+N0ν
−1

(
‖uuu0‖2

0 +ν
−1k

n

∑
i=0
‖ fff i− 1

2 ‖2
−1

)

+
√

knν

(
‖uuu0‖2

0 +ν−1k
n
∑

i=0
‖ fff i− 1

2 ‖2
−1

)1/2

6 (2+
√

knν)‖uuu0‖0 +N0ν
−1‖uuu0‖2

0

+(1+2
√

knν)

(
ν
−1k

n

∑
i=0
‖ fff i− 1

2 ‖2
−1

)1/2

+ kN0ν
−2

n

∑
i=1
‖ fff i− 1

2 ‖2
0,

(19)

which yields (10).

Put eeen = uuu(tn)−uuun and ηn = p(tn)− pn. Subtracting Problem III from Problem II
taking t = tn− 1

2
, vvv = eeen + eeen−1, and q = ηn, using Taylor’s formula, we obtain that

‖eeen‖2
0−‖eeen−1‖2

0 +
kν

2
‖∇(eeen + eeen−1)‖2

0

=
k3

24
(uuuttt(ξ1n),eeen + eeen−1)+

k3ν

4
(∇uuutt(ξ2n),∇(eeen + eeen−1))+Φ,

(20)

where Φ = ka1(uuu(tn− 1
2
),uuu(tn− 1

2
),eeen + eeen−1)− ka1(ūuun, ūuun,eeen + eeen−1) (tn−1 6 ξ1n,

ξ2n 6 tn). If N0ν−1‖∇uuu(t)‖0 6 1/4, by using Taylor’s formula, Hölder inequality,
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and Cauchy inequality, there are ξin ∈ [tn−1, tn] (i = 3,4,5,6) such that

Φ = ka1(uuu(tn− 1
2
),uuu(tn− 1

2
),eeen + eeen−1)− ka1(ūuun, ūuun,eeen + eeen−1)

= ka1(uuu(tn− 1
2
)− ūuun,uuu(tn− 1

2
),eeen + eeen−1)+ ka1(ūuun,uuu(tn− 1

2
)− ūuun,eeen + eeen−1)

= ka1(eeen + eeen−1,uuu(tn− 1
2
),eeen + eeen−1)+

k3

16
a1(uuutt(ξ3n),uuu(tn− 1

2
),eeen + eeen−1)

+
k3

16
a1(uuutt(ξ4n),uuu(tn− 1

2
),eeen + eeen−1)+

k3

16
a1(ūuun,uuutt(ξ5n),eeen + eeen−1)

+
k3

16
a1(ūuun,uuutt(ξ6n),eeen + eeen−1)

6
kν

4
‖∇(eeen + eeen−1)‖2

0 +
kν

16
‖∇(eeen + eeen−1)‖2

0

+
k5N2

0
16
‖∇uuu(t)‖2

W 2,∞(tn−1,tn;L2)(‖∇uuu(t)‖2
L2,∞(tn−1,tn;L2)+‖∇ūuun‖2

0).

(21)

By using Hölder inequality and Cauchy inequality, we have that

k3

24
(uuuttt(ξ1n),eeen + eeen−1)+

k3ν

4
(∇uuutt(ξ2n),∇(eeen + eeen−1))

6
kν

16
‖∇(eeen + eeen−1)‖2

0 +
k5

64ν
‖uuu‖2

W 3,∞(tn−1,tn;H−1)+2νk5‖∇uuu‖2
W 2,∞(tn−1,tn;L2).

(22)

Combining (21) and (22) with (20) yields that

‖eeen‖2
0−‖eeen−1‖2

0 +
kν

8
‖∇(eeen + eeen−1)‖2

0

6
k5

64ν
‖uuu‖2

W 3,∞(tn−1,tn;H−1)+2νk5‖∇uuu‖2
W 2,∞(tn−1,tn;L2)

+
k5N2

0
16
‖∇uuu(t)‖2

W 2,∞(tn−1,tn;L2)(‖∇uuu(t)‖2
L2,∞(tn−1,tn;L2)+‖∇ūuun‖2

0).

(23)

Summing (23) from 1 to n yields that

‖eeen‖2
0 +

kν

8

n

∑
i=1
‖∇(eeei + eeei−1)‖2

0

6
T k4

64ν
‖uuu‖2

W 3,∞(H−1)+2T νk4‖∇uuu‖2
W 2,∞(L2)

+
k4N2

0
16
‖∇uuu(t)‖2

W 2,∞(L2)

(
T‖∇uuu(t)‖2

L2,∞(L2)+ k
n

∑
i=1
‖∇ūuui‖2

0

)
.

(24)

It is obtained from (24) and (9) that

‖eeen‖0 +(kν)1/2‖∇eeen‖0 6C( fff )k2, 1 6 n 6 N, (25)
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where C2( fff ) = N2
0 ν−1‖uuu‖2

W 1,∞(H1)
(‖uuu0‖2 +ν−1‖ fff‖2

L∞(H−1)
)+T ν−1‖uuu‖2

W 3,∞(H−1)

+16νT‖uuu‖2
W 2,∞(H1)

+T N2
0‖uuu‖4

W 2,∞(H1)
.

By using Taylor’s formula, there are ξin ∈ [tn−1, tn] (i = 7,8,9,10,11) such that

1
k
(eeen− eeen−1,vvv)+

ν

2
(∇(eeen + eeen−1),vvv)+

1
2
[a1(eeen + eeen−1,uuu(tn− 1

2
),vvv)

+a1(ūuun,eeen + eeen−1,vvv)]− k2

48
(uuuttt(ξ7n),vvv)−

k2

48
(uuuttt(ξ8n),vvv)

−νk2

16
(∇uuutt(ξ9n),∇vvv)− νk2

16
(∇uuutt(ξ10n),∇vvv)+

k
2

b(vvv, pt(ξ9n))

− k2

16
a1(uuutt(ξ10n),uuu(tn− 1

2
),vvv)− k2

16
a1(ūuun,uuutt(ξ11n),vvv)

= b(vvv, p(tn)− pn), ∀vvv ∈U.

(26)

Then, with (25), (26), (8), Hölder inequality, and Cauchy inequality, we have that

‖p(tn)− pn‖0 6 β
−1 sup

vvv∈U

b(vvv, p(tn)− pn)

‖∇v‖0

= β
−1k[2C( fff )+(νk)1/2C( fff )+

(νk)1/2

4
C( fff )+

1
2
‖p‖W 1,∞(L2)

+
k

24
‖uuu‖W 3,∞(L2)+

νk
8
‖∇uuu‖W 2,∞(L2)+

νk
64
‖∇uuu‖W 2,∞(L2)]

+β
−1k

(
C( fff )+

k1/2

16ν1/2 ‖∇uuu‖W 2,∞(L2)

)‖uuu0‖0 +

(
ν
−1k

n

∑
i=0
‖ fff i− 1

2 ‖2
−1

)1/2


≡ C̃( fff )k,
(27)

which completes the proof of Theorem 1.

3 Fully discrete SCNFVE formulation with the second-order time accuracy

3.1 Theory of FVE method

In order to get the numerical solutions of SCNFVE for Problem III, it is necessary to
introduce the FVE approximation for the spatial variables of Problem II by means
of the idea in Reference Li, Chen, and Wu (2002) [Li, Chen, and Wu (2002)].

Let ℑh = {K} be the quasi-uniform triangulation of Ω [Luo (2006) or Brezzi and
Fortin (1991)] and ℑ∗h the dual partition based on ℑh. The elements in ℑ∗h, called
the control volumes, are formed by means of the same approach as that in Cai
and McCormick (1990) or Li, Chen, and Wu (2002). Let zzzK be the barycenter of
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K ∈ ℑh. By connecting zzzK with line segments to the midpoints of the edges of K, it
is subdivided into three quadrilaterals Kz (zzz = (xz,yz)∈ Zh(K), where Zh(K) is a set
of the vertices of K). Then the control volume Vz is formed by the sub-regions Kz of
the sharing vertex zzz ∈ Zh =

⋃
K∈ℑh

Zh(K) (see Figure 1). Thus, all control volumes
covering the domain Ω constitute the dual partition ℑ∗h based on ℑh. Z◦h represents
the set of interior vertices in Zh.

Figure 1: Left chart is a triangle K subdivided into three sub-regions Kz and right
chart is a sample region with dotted lines indicating the corresponding control vol-
ume Vz.

The partition ℑ∗h is known as regular or quasi-uniform, if there exist two positive
constants C1 and C2, being independent of the spatial mesh size h and temporal
mesh size k, such that

C1h2 6 mes(Vz)6C2h2, ∀Vz ∈ ℑ
∗
h, (28)

where mes(Vz) denotes the measure of Vz. Since the FE triangulation ℑh is quasi-
uniform, so the dual partition ℑ∗h is also quasi-uniform [Li, Chen, and Wu (2002)].

The trial function spaces Uh and Mh of velocity and pressure are respectively de-
fined as follows:

Uh =
{

vvvh ∈ X ∩C(Ω)2 : vvvh|K ∈P2
1 (K),∀K ∈ ℑh

}
,

Mh = {qh ∈M : qh|K ∈P1(K), ∀K ∈ ℑh} ,
where P1 is 1-th polynomial space on K. It is obvious that Uh ⊂U = H1

0 (Ω)2. For
uuu ∈U = H1

0 (Ω)2, let Πhuuu be the interpolating operator of uuu onto the trial function
space Uh. If uuu ∈ H2(Ω)2, it follows from the interpolating theorem of Sobolev
spaces [Li, Chen, and Wu (2002); Luo (2006)] that

‖Πhuuu‖0 6C‖uuu‖0, |uuu−Πhuuu|m 6Ch2−m|uuu|2, m = 0,1, (29)

where C in this context indicates the positive constant which is possibly different
at different occurrences, being independent of the spatial mesh size h and temporal
mesh size k.
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The test space Ũh of fluid velocity is defined as follows:

Ũh =
{

vvvh ∈ L2(Ω)2 : vvvh|Vz ∈P0(Vz)
2 (Vz∩∂Ω = /0);

vvvh|Vz = 000 (Vz∩∂Ω 6= /0),∀Vz ∈ ℑ∗h
} (30)

spanned by the following basis functions

φz(x,y) =
{

1, (x,y) ∈Vz,
0, elsewhere,

zzz ∈ Z◦h . (31)

For www ∈U , let Π∗hwww be the interpolating operator of www onto the test space Ũh, i.e.,

Π
∗
hwww = ∑

zzz∈Z◦h

www(zzz)φzzz. (32)

It follows from the interpolating theorem of Sobolev spaces [Li, Chen, and Wu
(2002); Luo (2006)] that the following error estimate

‖www−Π
∗
hwww‖0 6Ch|www|1. (33)

Moreover, there are the following properties for the interpolating operator Π∗h [Shen,
Li, and Chen (2009); Yang and Song (2009)].

Lemma 2 If vvvh ∈Uh, then∫
K
(vvvh−Π

∗
hvvvh)dxdy = 0,K ∈ ℑh;‖vvvh−Π

∗
hvvvh‖Lr(Ω) 6Ch‖vvvh‖W 1,r(Ω),1 6 r 6 ∞.

(34)

3.2 Fully discrete SCNFVE formulation based on two local Gauss integrals
and parameter-free with the second-order time accuracy

Though the trial function space Uh satisfies Uh ⊂U like FE methods, the test space
Ũh 6⊂ Uh. As in the case of nonconforming FE methods, this is due to the loss
of continuity of the vector functions in Ũh on the boundary of two neighboring
elements. So the bilinear forms a(uuu,vvv) and b(vvv, p) must be revised accordingly. It
is obtained by Green’s formula that∫

Ω

∆uuu · vvvdxdy = ∑
Vz∈ℑ∗h

∫
Vz

∆uuu · vvvdxdy

=− ∑
Vz∈ℑ∗h

∫
Vz

∇uuu ·∇vvvdxdy+ ∑
Vz∈ℑ∗h

∫
∂Vz

(vvv∇uuu) ·nnnds;
(35)

∫
Ω

∇p · vvvdxdy =− ∑
Vz∈ℑ∗h

∫
Vz

pdivvvvdxdy+ ∑
Vz∈ℑ∗h

∫
∂Vz

pvvv ·nnnds, (36)
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where
∫

∂V z denotes the line integral, with the counter clockwise direction, on the
boundary ∂Vz of the dual element; nnn = (n1,n2) is the unit outer normal vector to
∂Vz. So the bilinear forms a(uuu,vvv) and b(vvv, p) are respectively rewritten as

a(uuu,vvv) = ν ∑
Vz∈ℑ∗h

[∫
Vz

∇uuu ·∇vvvdxdy−
∫

∂Vz

(vvv∇uuu) ·nnnds
]

; (37)

b(vvv, p) = ∑
Vz∈ℑ∗h

[∫
∂Vz

pvvv ·nnnds−
∫

Vz

pdivvvvdxdy
]
. (38)

Since Ũh is the piecewise constant vector function space with the characteristic
functions of the dual elements Vz as the basis functions, there hold

a(uuu,vvv) =−ν ∑
Vz∈ℑ∗h

∫
∂Vz

(vvv∇uuu) ·nnnds,∀vvv ∈ Ũh,uuu ∈Uh; (39)

b(vvv, p) = ∑
Vz∈ℑ∗h

∫
∂Vz

pvvv ·nnnds,∀vvv ∈ Ũh,∀p ∈Mh. (40)

Then, the fully discrete SCNFVE formulation based on two local Gauss integrals
and parameter-free with the second-order time accuracy for the non-stationary Navier-
Stokes equations is read as follows.

Problem IV. Find (uuun
h, pn

h) ∈Uh×Mh (1 6 n 6 N) such that
(∂̄tuuun

h,Π
∗
hvvvh)+ah(ūuun

h,Π
∗
hvvvh)+a1h(ūuun

h, ūuu
n
h,Π

∗
hvvvh)+bh(Π

∗
hvvvh, pn

h)

= ( fff n− 1
2 ,Π∗hvvvh), ∀vvvh ∈Uh,

b(uuun
h,qh)+Dh(pn

h,qh) = 0, ∀qh ∈Mh,

uuu0
h = Πhuuu0, (x,y) ∈Ω,

(41)

where ūuun
h = [uuun

h +uuun−1
h ]/2;

ah(uuun
h,Π

∗
hvvvh) =−ν ∑

zzz j∈Z◦h

∫
∂Vzzz j

(vvvh(zzz j)∇uuun
h) ·nnnds; (42)

bh(Π
∗
hvvvh,qh) = ∑

zzz j∈Z◦h

vvvh(zzz j)
∫

∂Vzzz j

qhnnnds; (43)

a1h(uuun
h,uuu

n
h,Π

∗
hvvvh) = ((uuun

h ·∇)uuun
h,ΠΠΠ

∗
hvvvh)+((divuuun

h)uuu
n
h,ΠΠΠ

∗
hvvvh)/2; (44)

Dh(pn
h,qh) = ε ∑

K∈ℑh

{∫
K,2

pn
hqhdxdy−

∫
K,1

pn
hqhdxdy

}
, ph,qh ∈Mh, (45)
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here ε is a positive real number and
∫

K,i g(x,y)dxdy (i = 1,2) indicate the appro-
priate Gauss integrals over K which are exact for polynomials of degree i (i = 1,2)
and g(x,y) = phqh is a polynomial of degree not more than i (i = 1,2). Thus, for all
test functions qh ∈Mh, the trial function ph ∈Mh must be piecewise constant when
i = 1.

Further, we define the L2−projection operator ρh : L2(Ω)→Wh such that ∀p ∈
L2(Ω) satisfying

(p,qh) = (ρh p,qh), ∀qh ∈Wh, (46)

where Wh ⊂ L2(Ω) denotes the piecewise constant space associated with ℑh. The
projection operator ρh has the following properties [Shen, Li, and Chen (2009); He
and He (2007); An, Sun, Luo, and Huang (2011)]:

‖ρh p‖0 6C‖p‖0, ∀p ∈ L2(Ω), (47)

‖p−ρh p‖0 6Ch‖p‖1, ∀p ∈ H1(Ω). (48)

Now, by using the definition of ρh, the bilinear form Dh(·, ·) can be rewrite as
follows:

Dh(ph,qh) = ε(ph−ρh ph,qh) = ε(ph−ρh ph,qh−ρhqh). (49)

4 Existence and error estimates of fully discrete SCNFVE solutions

In order to discuss the existence, the uniqueness, the stability, and the error es-
timates of the solutions for fully discrete SCNFVE formulation with the second-
order time accuracy or Problem IV, it is necessary to introduce some preliminary
lemmas.

From Cai and McCormick (1990), Jones and Menziest (2000), Li, Chen, and Wu
(2002), or Li, Luo, and Li (2007) we have the following three lemmas.

Lemma 3 Let zzz ∈ Zh, S∗z = mes(Vz), SK = mes(K), zzzi, zzz j, and zzzk be the vertices of
K ∈ ℑh, and define as follows: ∀uuuh ∈Uh,

‖uuuh‖0,h ≡ ‖Π∗huuuh‖0

=

{
1
3 ∑

K∈ℑh

[uuu2
h(zzzi)+uuu2

h(zzz j)+uuu2
h(zzzk)]SK

}1/2

,
(50)

|uuuh|1,h ≡

{
∑

z∈K∈ℑh

[(
∂uuuh(zzz)

∂x

)2

+

(
∂uuuh(zzz)

∂y

)2
]

SK

}1/2

, (51)
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‖uuuh‖1,h =
[
‖uuuh‖2

0,h + |uuuh|21,h
]1/2

. (52)

Then the pairs of norms | · |1,h and | · |1, ‖ · ‖0,h and ‖ · ‖0, and ‖ · ‖1,h and ‖ · ‖1 are
equivalent on Uh, respectively.

Lemma 4 There hold the following results:

ah(uuuh,Π
∗
hvvvh) = a(uuuh,vvvh), ∀uuuh,vvvh,wwwh ∈Uh, (53)

bh(Π
∗
hvvvh, ph) =−b(vvvh, ph), ∀vvvh ∈Uh,∀ph ∈Mh. (54)

Further, ah(uuuh,Π
∗
hvh) is symmetric, bounded, and positive definite, i.e.,

ah(uuuh,Π
∗
hvvvh) = ah(vvvh,Π

∗
huuuh), ∀uuuh,vvvh ∈Uh, (55)

and there exist a positive constants h0 > h > such that

ah(uuuh,Π
∗
huuuh)> ν |uuuh|21, |ah(uuuh,Π

∗
hvvvh)|6 ν‖uuuh‖1‖vvvh‖1,∀uuuh,vvvh ∈Uh. (56)

Lemma 5 There holds the following statement:

(uuuh,Π
∗
hvvvh) = (vvvh,Π

∗
huuuh), ∀uuuh,vvvh ∈Uh. (57)

For any uuu ∈ Hm(Ω)2 (m = 0,1) and vvvh ∈Uh,

|(uuu,vvvh)− (uuu,Π∗hvh)|6Chm+n‖uuu‖m‖vvvh‖n, n = 0,1. (58)

Set |‖uuuh‖|0 = (uuuh,Π
∗
huuuh)

1/2, then |‖ · ‖|0 is equivalent to ‖ · ‖0 on Uh, namely there
exist two positive constants C3 and C4 such that

C3‖uuuh‖0 6 |‖uuuh‖|0 6C4‖uuuh‖0, ∀uuuh ∈Uh. (59)

The following discrete Gronwall Lemma [Luo (2006)] is useful for the proofs of
the existence, the uniqueness, the stability, and the error estimates of the solutions
for Problem IV.

Lemma 6 (discrete Gronwall Lemma) If {an} and {bn} are two positive sequences,
{cn} is a monotone positive sequence, and they satisfy

an +bn 6 cn + λ̄

n−1

∑
i=0

ai, λ̄ > 0, a0 +b0 6 c0, (60)

then

an +bn 6 cn exp(nλ̄ ), n > 0. (61)
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It is obtained by Lemma 4 and using the same approach as the proof of Theorem
4.1 in An, Sun, Luo, and Huang (2011) that the following inequalities

sup
(vvvh,qh)∈Uh×Mh

{2(uuun
h,Π

∗
hvvvh)+ k[a(uuun

h,vvvh)−2b(vvvh, pn
h)

+2b(uuun
h,qh)+2Dh(pn

h,qh)]}/[‖vvvh‖1 +‖qh‖0]

> β̃ (‖uuun
h‖0 + k‖∇uuun

h‖0 + k‖pn
h‖0), ∀(uuun

h, pn
h) ∈Uh×Mh,

(62)

where β̃ is a constant independent of h and k and 1 6 n 6 N.

There are the following results of the existence, the uniqueness, and the stability of
the solution for Problem IV.

Theorem 7 Under the hypotheses of Theorem 1, there exists a unique series of
solutions (uuun

h, pn
h) (n = 1,2, · · · ,N) to the fully discrete SCNFVE formulation with

the second-order time accuracy, i.e., Problem IV satisfying

‖uuun
h‖2

0 + kν

n

∑
i=1
|ūuui

h|21 6C

(
‖uuu0‖2

0 + k
n

∑
i=1
‖ fff i− 1

2 ‖2
−1

)
, (63)

k‖pn
h‖0 6C

(
‖uuu0‖0 + k1/2

n

∑
i=1
‖ fff i− 1

2 ‖−1 +‖uuu0‖2
0 + k

n

∑
i=1
‖ fff i− 1

2 ‖2
−1

)
, (64)

where C is the constant independent of h and k, which shows that the series of
solutions of Problem IV is stable.

Proof Problem IV has a unique series of solutions (uuun
h, pn

h) (n = 1,2, · · · ,N) by
means of mixed FE methods (see Heywood and Rannacher (1982), Heywood and
Rannacher (1990), Luo (2006), or Brezzi and Fortin (1991)) due to inequality (62).
It is obtained by taking vvvh = ūn

h in the first equation of Problem IV and qh = pn
h in

the second equation of Problem IV and by using Lemmas 3–5, Hölder inequality,
and Cauchy inequality that

1
2
(‖|uuun

h|‖2
0−‖|uuun−1

h |‖2
0)+ kν |ūuun

h|21 + kε‖pn
h−ρh pn

h‖2
0

= k( fff n− 1
2 ,Π∗hūuun

h)6
k

2ν
‖ fff n− 1

2 ‖2
−1 +

kν

2
|ūuun

h|21.
(65)

It follows from (65) that

‖|uuun
h|‖2

0−‖|uuun−1
h |‖2

0 + kν |ūuun
h|21

6 ‖|uuun
h|‖2

0−‖|uuu
n−1
h |‖2

0 +2kν |ūuun
h|21 6 kν−1‖ fff n− 1

2 ‖2
−1.

(66)
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It is gotten by summing (66) from 1 to n that

‖|uuun
h|‖2

0 + kν

n

∑
i=1
|ūuui

h|21 6 ‖|uuu0
h|‖2

0 + kν
−1

n

∑
i=1
‖ fff i− 1

2 ‖2
−1

6 ‖|uuu0
h|‖2

0 + kν
−1

n

∑
i=1
‖ fff i− 1

2 ‖2
−1,

(67)

which yields (63) from (29). It is obtained by using (62), the first equation of
Problem IV, Hölder inequality, inverse estimate, and (63) that

β̃k‖pn
h‖0

6 sup
(vvvh,qh)∈Uh×Mh

2(uuun
h,Π

∗
hvvvh)+ k[a(uuun

h,vvvh)−2b(vvvh, pn
h)+2b(uuun

h,qh)+2Dh(pn
h,qh)]

‖vvvh‖1 +‖qh‖0

6 sup
vvvh∈Uh

2ka1h(ūuun
h, ūuu

n
h,Π

∗
hvvvh)− kah(uuun−1

h ,vvvh)+2k( fff n− 1
2 ,Π∗hvvvh)+2(uuun−1

h ,Π∗hvvvh)

‖vvvh‖1

6 2kN0‖ūuun
h‖2

0 +C[‖uuun−1
h ‖0 + k‖ fff n− 1

2 ‖−1]

6C

(
‖uuu0

h‖2
0 +‖uuu0

h‖0 + k
n

∑
i=1
‖ fff i− 1

2 ‖2
−1 + k1/2

n

∑
i=1
‖ fff i− 1

2 ‖−1

)
,

(68)

which yields (64) from (29) and completes the proof of Theorem 8.

The following Lemma 8 is obtained by means of the SCNFE methods [Li, Shen,
and Chen (2010); Luo (2006); Brezzi and Fortin (1991)] for the non-stationary
Navier-Stokes equations.

Lemma 8. Let (Shuuun,Qh pn) be the Navier-Stokes projection of the solutions (uuun, pn)
for Problem III on Uh×Mh, i.e., for the solutions (uuun, pn) ∈U×M for Problem III,
there exist (Shuuun,Qh pn) (n = 1,2, ...,N) such that, for n = 1,2, ...,N,

kA ((Shūuun,Qh pn);(vvvh,qh))+(Shuuun−Shuuun−1,vvvh)+ kDh(Qh pn,qh) =

kA ((ūuun, pn);(vvvh,qh))+(uuun−uuun−1,vvvh),∀(vvvh,qh) ∈Uh×Mh,
(69)

Shuuu0 = Πhuuu0(x,y), uuu0 = uuu0(x,y), (x,y) ∈Ω, (70)

where A ((Shūuun,Qh pn);(vvvh,qh))= a(Shūuun,vvvh)−b(vvvh,Qh pn)+b(Shuuun,qh)+a1(Shūuun,
Shūuun,vvvh). Then, there hold

‖Shuuun‖1 +‖Qh pn‖0 6C(‖uuun‖1 +‖pn‖0), 1 6 n 6 N. (71)

If the solution (uuun, pn) ∈ H2(Ω)2×H1(Ω) (n = 1,2, · · · ,N) for Problem III, then
there hold the following error estimates

‖uuun−Shuuun‖2
0 + kν

n

∑
i=1
‖uuui−Shuuui‖2

1 6Ch4,

‖pn−Qh pn‖0 6Ch,n = 1,2, ...,N.

(72)
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Remark 1 In fact, (69) and (70) are the system of error equations between standard
SCNFE formulation and Problem III, thus (71) and (72) are directly obtained from
SCNFE method (see, e.g., Li, Shen, and Chen (2010), Luo (2006), or Brezzi and
Fortin (1991)) like the approaches in Heywood and Rannacher (1990).

Theorem 9 Let (uuu, p) be the solution for Problem II and (uuun
h, pn

h) the solution of
fully discrete SCNFVE formulation with the second-order time accuracy (i.e., Prob-
lem IV). Then, under the hypotheses of Theorems 1 and 7, if p0

h = p0 = 0 (or p0
h =

Qh p0), h=O(k), Nν−1‖∇ūuun
h‖0 6 1/4, uuu0 ∈H2(Ω)2, and fff ∈W 1,∞(0,T ;H1(Ω)2)2,

there hold the following error estimates

‖uuu(tn)−uuun
h‖0 + k[‖p(tn)− pn

h‖0 +‖uuu(tn)−uuun
h‖1]

6C
(
h2 + k2) ,n = 1,2, ...,N.

(73)

Proof Subtracting Problem IV from Problem III taking vvv = vvvh and q = qh, and
using Lemmas 4 and 2 yield the following system of error equations:

(uuun−uuun
h,vvvh)+(uuun

h−Π
∗
huuun

h,vvvh−Π
∗
hvvvh)+ ka(ūuun− ūuun

h,vvvh)

+ ka1(ūuun, ūuun,vvvh)− ka1h(ūuun
h, ūuu

n
h,Π

∗
hvvvh)− kb(vvvh, pn− pn

h)

= k( fff n− 1
2 −Π

∗
h fff n− 1

2 ,vvvh−Π
∗
hvvvh)+(uuun−1−uuun−1

h ,vvvh)

+(uuun−1
h −Π

∗
huuun−1

h ,vvvh−Π
∗
hvvvh), ∀vvvh ∈Uh,n = 1,2, ...,N;

b(uuun−uuun
h,qh)− ε(pn

h−ρh pn
h,qh−ρhqh) = 0,∀qh ∈Mh,n = 1,2, ...,N,

uuu0−uuu0
h = uuu0(x,y)−Πhuuu0(x,y), (x,y) ∈Ω.

(74)

Let ζ n = Qh pn− pn
h, EEEn = Shuuun− uuun

h, and ĒEEn
= Shūuun− ūuun

h. On the one hand, it is
obtained by using (69), the system of error equations (74), and Lemmas 4 and 5
that

1
2
‖EEEn‖2

0 + kν |ĒEEn|21
=(Shuuun−uuun, ĒEEn

)+ ka(Shūuun− ūuun, ĒEEn
)

+(uuun−uuun
h, ĒEE

n
)+ ka(ūuun− ūuun

h, ĒEE
n
)− 1

2
(EEEn−1,EEEn)

=(Shuuun−1−uuun−1, ĒEEn
)+ kb(ĒEEn

,Qh pn− pn)+ ka1(ūuun, ūuun, ĒEEn
)

− ka1(Shūuun,Shūuun, ĒEEn
)− ka1(ūuun, ūuun, ĒEEn

)+ ka1h(ūuun
h, ūuu

n
h,Π

∗
hĒEEn

)

+ kb(ĒEEn
, pn− pn

h)− (uuun
h−Π

∗
huuun

h, ĒEE
n−Π

∗
hĒEEn

)

+(uuun−1
h −Π

∗
huuun−1

h , ĒEEn−Π
∗
hĒEEn

)+(uuun−1−uuun−1
h , ĒEEn

)

− 1
2
(Shuuun−1−uuun−1

h ,EEEn)+ k( fff n− 1
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∗
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=ka1(ĒEE
n
h, ūuu

n
h, ĒEE

n
)

− (uuun
h−uuun−1

h −Π
∗
h(uuu

n
h−uuun−1

h ), ĒEEn−Π
∗
hĒEEn

)

+
1
2
(EEEn−1,EEEn−1)+ kb(ĒEEn

,ζ n)+ ka1h(ūuun
h, ūuu

n
h, ĒEE

n−Π
∗
hĒEEn

).

(75)

On the other hand, it is first obtained by using (58), Hölder inequality, and Cauchy
inequality that

|k( fff n− 1
2 −Π

∗
h fff n− 1

2 , ĒEEn−Π
∗
hĒEEn

)|6Ckh2‖ fff n− 1
2 ‖1|ĒEE

n|1 6Ckh4 +
νk
8
|ĒEEn|21. (76)

And then, if k = O(h), by using inverse error estimate and Taylor’s formula, we
obtain that

|(uuun
h−uuun−1

h −Π
∗
h(uuu

n
h−uuun−1

h ), ĒEEn−Π
∗
hĒEEn

)|6Ch2‖uuun
h−uuun−1

h ‖1|ĒEE
n|1

6Ch3(‖∇EEEn‖2
0 +‖∇(Shuuun−Shuuun−1)‖2

0 +‖∇EEEn−1‖2
0)+

kν

8
|ĒEEn|21

6Ch‖EEEn‖2
0 +Ck2h3 +Ch‖EEEn−1‖2

0 +
kν

8
|ĒEEn|21.

(77)

Next, noting that b(Shuuun − uuun,qh) = −kε(Qh pn − ρh(Qh pn),qh − ρhqh), by the
properties of operator ρh and the second equation of (74), we have that

b(ĒEEn
,ζ n) = b(Shūuun− ūuun,ζ n)+b(ūuun− ūuun

h,ζ
n)

=−ε

2
(ζ n−ρhζ

n,ζ n−ρhζ
n)− ε

2
(ζ n−1−ρhζ

n−1,ζ n−ρhζ
n)

6
ε

4
‖ζ n−1−ρhζ

n−1‖2
0−

ε

4
‖ζ n−ρhζ

n‖2
0.

(78)

Finally, if N0ν−1‖ūuun
h‖6 1/4 (1,2, ...,N), then we get by Lemma 5, (2), and (5) that

k|a1h(ūuun
h, ūuu

n
h, ĒEE

n−Π
∗
hĒEEn

)−a1(ĒEE
n
, ūuun

h, Ē
n)|6Ckh4 +

kν

4
|ĒEEn‖2

0. (79)

Thus, it is obtained by combining (76)–(79) with (75) that

‖EEEn‖2
0 + kν |ĒEEn|21 +

ε

2
‖ζ n−ρhζ

n‖2
0−

ε

2
‖ζ n−1−ρh(ζ

n−1‖2
0

6Ckh4 +Ck2h3 +‖En−1‖2
0 +Ch‖EEEn−1‖2

0 +Ch‖EEEn‖2
0.

(80)

If h is sufficiently small such that Ch6 1/2 in (80) and p0
h = p0 = 0 (or p0

h =Qh p0),
summing (80) from 1 to n yields that

‖Shuuun−uuun
h‖2

0 + kν

n

∑
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|Shūuui− ūuui

h|21

6Ch4 +‖Shuuu0−uuu0
h‖2

0 +Ch
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∑
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h)‖2
0.

(81)
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By Gronwall Lemma 6, Lemma 8, and (29), it follows from (81) that

‖EEEn‖2
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n

∑
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|ĒEE i|21

6C

[
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2‖2
0

]
exp(Cnh)

6Ch4.

(82)

Noting that ∑
n
i=1 a2

i > (∑n
i=1 ai)

2 /n and |a+ b|1 > |a|1− |b|1, by using (72) and
triangle inequality, we obtain that

‖uuun−uuun
h‖0 + kν

n

∑
i=1
|uuui−uuui

h|1 6Ch2. (83)

If h = O(k), it is gotten from (62), error equation (74), inverse error estimate,
Lemma 8, and (83) that
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∗
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h ‖1 +Ch2‖ fff n‖1
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h‖0)

6Ch2.

(84)

Applying triangle inequality and Lemma 8 to (84) yields that

k‖pn− pn
h‖0 6Ch2. (85)

Combining (83) and (85) with Theorem 1 yields (73).

5 Some numerical experiments

In this section, some numerical experiments with two squared cavities at the bottom
and top of the channel are presented illustrating that the fully discrete SCNFVE
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formulation with the second-order time accuracy is more effective than the SFVE
formulation with the first-order time accuracy for the non-stationary Navier-Stokes
equations. Moreover, it is shown that the fully discrete SCNFVE method is feasible
and efficient for finding the numerical solutions of the non-stationary Navier-Stokes
equations.

Let computational domain Ω̄ consist of the width of the channel to 6 and its length
to 20 and two squared cavities at the bottom and top of the channel all are the same
width as length to 2 (see Fig. 2). Take Re = 1000, f = g = 0. Except inflow of left
boundary with a velocity of (u,v) = (0.1(y−2)(8−y),0) (2 6 y 6 8) and outflow
of right boundary with velocity of (u,v) satisfying v = 0 and ∂u/∂x = 0, all initial
and boundary value conditions are taken as 000.

Figure 2: Physics model.

We divide the Ω̄ into small squares with side length ∆x = ∆y = 10−2, and then link
diagonal of the square to divide each square into two triangles in the same direction,
which composes triangularizations ℑh (h =

√
2× 10−2). The dual decomposition

ℑ∗h is taken as barycenter dual decomposition, i.e., the barycenter of the right trian-
gle K ∈ ℑh is taken as the node of the dual decomposition. In order to satisfy the
condition k = O(h) in Theorem 9, we also take a time step increment as k = 10−2.
The parameter-free ε = 0.01.

We find the SCNFVE solutions (uuun
h, pn

h) by means of SCNFVE formulation with
the second-order time accuracy when n = 5×105 (i.e., t = 5000) and n = 6×105

(i.e., t = 6000), which are depicted graphically at the the top charts in Figures 3
and 4 and at Figure 5, respectively.

By using the same Uh×Mh as Problem IV, the fully discrete SFVE formulation
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Figure 3: When Re = 1000, the top and bottom charts are the SCNFVE solution
with the second-order time accuracy and the SFVE solution with the first-order
time accuracy of the velocity at the time level t = 5000, respectively.

with the first-order time accuracy is denoted as follows.

Problem V. Find (uuun
h, pn

h) ∈Uh×Mh such that
(uuun

h,vvvh)+ ka(uuun
h,vvvh)+ ka1(uuun

h,uuu
n
h,vvvh)− kb(pn

h,vvvh)

= (uuun−1
h ,vvvh), ∀vvvh ∈Uh, n = 1,2, ...,N,

b(uuun
h,qh)+Dh(pn

h,qh) = 0, ∀qh ∈Mh, n = 1,2, ...,N,

uuu0
h = Πhuuu0(x,y), (x,y) ∈Ω.

If k = O(h), it is obtained by means of the same approach as Theorem 9 that the
error estimates for Problem V as follows

‖uuu(tn)−uuun
h‖0 + k1/2‖p(tn)− pn

h‖0 6C(k+h), n = 1,2, ...,N,

which is one-order lower than these of Problem IV. Thus, in order to get the same
accuracy as SCNFVE formulation Problem IV with the second-order time accu-
racy, the spatial mesh size h and temporal mesh size k for Problem V have to be
taken as O(h) = k = 10−4. When we find the solution at t = 5000 by means of
SFVE formulation with first-order time accuracy, depicted graphically at the the
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Figure 4: When Re = 1000, the top and bottom charts are the SCNFVE solution
with the second-order time accuracy and the SFVE solution with the first-order
time accuracy of the pressure at the time level t = 5000, respectively.

bottom charts in Figures 3 and 4, it is necessary to compute 5× 107 steps, which
are as 100 times as those of SCNFVE formulation with the second-order time ac-
curacy. Especially, the SFVE formulation with first-order time accuracy includes
3×136×1010 degrees of freedom (unknown quantities) on each time-level, while
the SCNFVE formulation with the second-order time accuracy does only contain
3×136×106 degrees of freedom on each time-level, namely, the degrees of free-
dom of the SFVE formulation with first-order time accuracy on each time-level are
as 10000 times as those of the SCNFVE formulation with the second-order time
accuracy.

When we find the numerical solutions (uuun
h, pn

h) by means of SFVE formulation
with first-order time accuracy, it is nonconvergent at t > 5500 due to truncation
error accumulation in computational process. However, the SCNFVE formulation
with the second-order time accuracy at t = 6000 is still convergent (see Figure
5), it is shown that the fully discrete SCNFVE formulation with the second-order
time accuracy is more effective than the SFVE formulation with the first-order time
accuracy for the non-stationary Navier-Stokes equations. Moreover, it is shown that
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Figure 5: When Re = 1000, the top and bottom charts are SCNFVE solutions of
the velocity and the pressure with second-order time accuracy at the time level
t = 6000, respectively.

the fully discrete SCNFVE method with the second-order time accuracy is feasible
and efficient for finding the numerical solutions of the non-stationary Navier-Stokes
equations.

6 Conclusions and discussions

In this article, we have first established the time semi-discrete CN formulation with
the second-order time accuracy for the non-stationary Navier-Stokes equations.
Then, we have directly established the fully discrete SCNFVE formulation with
the second-order time accuracy from the time semi-discrete CN formulation. Next,
we have provided the error estimates between the fully discrete SCNFVE solu-
tions with the second-order time accuracy and the exact solution. Finally, we have
presented some numerical experiments illustrating that the fully discrete SCNFVE
Formulation with the second-order time accuracy is more effective than the SFVE
formulation with the first-order time accuracy for the non-stationary Navier-Stokes
equations, thus validating that the fully discrete SCNFVE method with the second-
order time accuracy is feasible and efficient for finding the numerical solutions of
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the non-stationary Navier-Stokes equations.

Especially, the fully discrete SCNFVE formulation with the second-order time ac-
curacy is established from the time semi-discrete CN formulation with the second-
order time accuracy directly and avoids the semi-discrete SCNFVE formulation
with respect to space variables. It is unnecessary to discuss the semi-discrete SCN-
FVE formulation with respect to spatial variables. Consequently, it is a new type of
study attempt for the non-stationary Navier-Stokes equations and the improvement
and innovation for the existing methods.
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