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Coupled ABC and Spline Collocation Approach for a Class
of Nonlinear Boundary Value Problems over Semi-Infinite

Domains
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Abstract: In this article, we introduce a numerical scheme to solve a class of
nonlinear two-point BVPs on a semi-infinite domain that arise in engineering appli-
cations and the physical sciences. The strategy is based on replacing the boundary
condition at infinity by an asymptotic boundary condition (ABC) specified over a
finite interval that approaches the given value at infinity. Then, the problem com-
plimented with the resulting ABC is solved using a fourth order spline collocation
approach constructed over uniform meshes on the truncated domain. A number
of test examples are considered to confirm the accuracy, efficient treatment of the
boundary condition at infinity, and applicability of the approach. The computa-
tional results show that the scheme is reliable and converges fast with a fourth
order rate of convergence.
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point BVPs.

1 Introduction

In this paper, we present an approach that is based on asymptotic boundary con-
ditions (ABCs) and a fourth-order cubic B-spline collocation to acquire numerical
solutions for the following class of non-linear boundary-value problems (BVPs) on
a semi-infinite interval:

y′′(x)+ p(x)y′(x)+q(x)y(x) = f (x,y(x)), (1)

complimented with the following boundary conditions:

y(0) = α, y(∞) = β , (2)

where p(x), q(x), q(x) and f (x,y) are continuous.
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BVPs over the positive half-line arise frequently in many physical situations and
engineering applications. For example, such problems include the study of stellar
structures, isothermal gaseous sphere, thermal behavior of a spherical cloud of gas,
and radially symmetric solutions of semilinear elliptic equations. Moreover, this
class of BVPs usually arise when studying plasma physics and electrical potential
theory, non-linear mechanics and non-Newtonian fluid flows, the study of unsteady
flow of a gas through a semi-infinite porous medium as well as the study of theory
of thermionic currents and the eigenvalue problem for the Schrödinger equation.
Other examples include the Von Karman flows, combined forced and free convec-
tion over a horizontal plate, heat transfer in the radial flow between parallel circu-
lar disks, draining flows, circularly symmetric deformations of shallow membrane
caps, heat transfer in the radial flow between parallel circular disks, modelling of
vertex solitons. For more details on the various applications see [Agarwal and
O’Regan (2004); Agarwal and O’Regan (2003); Fazio (2002); Tsynkov (1998)]
and the references therein.

Boundary value problems that are formulated on an infinite or semi-infinite do-
mains have attracted lots of attention in past years due to the numerical challenge
they exhibit in handling the condition at infinity. Consequently, this necessitates
the need for efficient and applicable numerical strategies to treat the difficulties en-
countered, due to dealing with an unbounded domain. Tangible advancement have
been made recently in tackling such problems in which the condition at infinity
was handled relatively successfully. The simplest common approach is to reduce
the unbounded interval into a finite one so that the condition at infinity is specified
at a finite N point instead. This simple strategy is referred to as domain truncation,
and is applicable if N is chosen to be large enough. However, the setback is that
the accuracy of finite difference methods or finite element methods worsens when
imposing artificial boundary conditions on the truncated interval. For details on
setting the artificial boundary conditions see the paper by Tsynkov (1998), which
includes an extensive survey and provides a comparative assessment of different
existing methods for constructing the artificial boundary conditions and proposes
a new technique as well. A number of notable approaches are available in the lit-
erature, for instance, De Hoog and Weiss (1980), Lentini and Keller (1980) and
Markowich (1982) performed an asymptotic analysis to find the relevant boundary
conditions to be imposed at a truncated boundary and since such conditions are
related to the asymptotic behavior of the solution, this method often yields rela-
tively better accurate solutions. De Hoog and Weiss (1980) proposed an analytical
transformation of the independent variable that simplifies the original problem to
a boundary value problem over a finite interval, which resulted in a singularity of
the second kind at the origin that was handled by difference methods. Spectral
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methods have been implemented by using polynomials that are orthogonal over
infinite domains, such as the Hermite spectral and the Laguerre spectral methods
(see Shen (2000)). The disadvantage of such an approach is that it introduces rela-
tively large errors due to the use of quadratures. Abbasbandy and Shivanian (2011)
considered a model of mixed convection in a porous medium with boundary con-
ditions on semi-infinite interval using pseudo-spectral collocation method. Gavri-
lyuk, Hermann, Kutnivc, and Makarovd (2009) used adaptive algorithms based on
exact difference schemes for nonlinear BVPs on the half-axis. Some other direct
approaches for solving such problems were used such as: methods based on ra-
tional approximations, spectral methods by using mutually orthogonal systems of
rational functions, pseudospectral methods, Padé approximants, and the use of a
suitable mapping to transfer infinite domains to the finite domains and then apply-
ing the standard spectral methods for the transformed problems in finite domains.
For more details on such the various methods see [Agarwal and O’Regan (2004);
Agarwal and O’Regan (2003); Boyd (1997); Fazio (2002); Maleki, Hashim, and
Abbasbandy (2012); Sarler (2005); Tsynkov (1998)] and the references therein.

In recent years, much attention has been to the development, analysis and imple-
mentation of stable methods, including the cubic B-spline finite element colloca-
tion approach, for the numerical solution of a wide spectrum of IVPs and BVPs (see
[Christara and Sun (2006); Khuri and Sayfy (2011); Khuri and Sayfy (2012); Mai-
Duy and Tran-Cong (2003); Sarler (2005); Shokri and Dehghan (2012); Zhang,
Dong, Alotaibi, and Alturi (2013)]). B-spline functions possess nice properties
since that are piecewise polynomials with compact support that can be integrated
and differentiated easily. Numerical methods in which B-spline functions are used
as basis functions lead to simple matrix systems including band matrices. Such
systems can be handled with low computational cost. Furthermore, the fact that the
cubic B-spline method has a fourth order rate of convergence, makes it very attrac-
tive approach and is suggested in many studies for obtaining numerical solutions.
However one challenge in implementing this method occurs when tackling BVPs
over infinite domains. To surmount this difficulty, we will incorporate the ABCs
in order to replace the condition at infinity with an asymptotic boundary condition
that approaches the given value at infinity over a large finite interval. An analo-
gous approach was used by Kanth, Ravi and Reddy (2003) for the solution of a
two-point boundary value problem posed on an infinite interval involving a sec-
ond order linear differential equation. They reduced the infinite interval to a finite
interval that is large enough and then imposed approximate asymptotic boundary
condition at the far end, and the resulting boundary value problem was treated by a
finite difference method.

In this article, we propose a strategy aimed at obtaining numerical solution for a
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class of nonlinear two point boundary value problems over the positive half-line.
The method is based on implementation of asymptotic boundary conditions on ar-
tificial boundaries as well as a fourth order cubic B-spline collocation technique,
which first introduced by Christara and NG (see Christara and Sun (2006) and
Christara and Sun (2006)). We discuss the incorporation of the ABCs into the
collocation scheme and present the results of the numerical experiments on the so-
lution of a number of examples including one which models a mixed convection
flow past a plane of arbitrary shape embedded in a porous medium. The method
yielded a convergence rate of order four and much more accurate results than what
was obtained by other papers that exist in the literature.

A method for tackling nonlinear, two point boundary value problems over a semi-
infinite domain is illustrated in this paper. The method is based on reducing the
semi-infinite interval to a large finite one while replacing the condition at infinity
with an asymptotic boundary condition. The resulting boundary value problem
is handled by the 4th order adaptive cubic B-spline collocation approach. The
application of the theory is illustrated to a couple of problems and the numerical
results were compared to analytic solutions in order to demonstrate the applicability
of the method.

The paper is organized as follows. In Section 2, we derive the asymptotic bound-
ary conditions for the class of BVPs under consideration. In section 3, we describe
and provide details of the spline collocation approach aimed at acquiring numerical
solution for the class of BVPs on a semi-infinite domain. In section 4, a number
of examples are presented to test the applicability and efficiency of the method.
The last section 5 includes a conclusion that briefly summarizes the numerical out-
comes.

2 Asymptotic Boundary Conditions (ABCs)

In this section, we show how the condition at infinity is to be replaced by an asymp-
totic boundary condition. This method was developed by Lentini and Keller (1980)
as well as De Hoog and Weiss (1980). After obtaining the ABCs, we truncate the
solution interval and then apply the fourth order cubic B-Spline collocation ap-
proach together with Newton’s method in order to tackle the nonlinearity.

Consider the following two-point BVP on a semi-infinite interval

y′′(x) = f
(
x,y(x),y′(x)

)
, (3)

complimented with the boundary conditions

y(0) = α, y(∞) = 0, (4)
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To get the equivalent ABC for this problem, the following procedure is applied:

Let u1 = y and u2 = y′, then we can rewrite the BVP in matrix form as[
u′1
u′2

]
=

[
u2
f (x,u1,u2)

]
= F (5)

The first step is to calculate the Jacobian J of F with respect to u1 and u2:

J(x) =

[
0 1

∂ f
∂u1

∂ f
∂u2

]
. (6)

Now define A∞ as

A∞ = lim
x→∞

J(x), (7)

and consider the eigenvalues λ1 and λ2 of such a matrix. If Re(λ1)> 0 then define
Pm = [1,0] and if Re(λ2) > 0 then define Pm = [0,1]. Let E be the matrix whose
columns represent the eigenvectors of A∞ with the first column corresponding to
λ1 and the second column corresponding to λ2. Then we can define the asymptotic
boundary condition as:

g(xN)≡ lim
x→∞

PmE−1G
∣∣∣
xN

= 0. (8)

In other words, we can replace ∞ with xN after taking the limit as x→ ∞ for the
terms in which x appears explicitly, where N the number of mesh points for the
numerical solution as is described in the next section and xN is the endpoint of the
interval on which the numerical solution is to be found. There are, of course, certain
conditions that should be satisfied and are outlined in Lentini and Keller (1980).

3 Fourth Order Spline Collocation Method

In this section, we describe a strategy, based on the fourth order cubic spline col-
location method, for the numerical solution of the nonlinear two-point boundary-
value problem (1)-(2) over semi-infinite interval. Originally, this collocation method
is developed by Christara and Sun (2006) for the numerical solution of linear
boundary-value problem over a closed interval [a,b], using uniform and non-uniform
mesh points. Consider such the second order linear differential equation:

y′′+ p(x)y′+q(x)y = f (x), (9)

subject to the boundary conditions

y(a) = α, y(b) = β . (10)
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To construct a numerical solution on [a,b], we discretize the interval by defining
the mesh points

x j = jh, j = 0,1,2, ..,N; h = (b−a)/N,

for a given number of subdivisions N. Let Ψ(x) be a shape function that satisfies the
boundary condition (10) and is expressed as a linear combination of N + 3 spline
functions given by

Ψ(x) =
N−1

∑
j=−3

a jφ j(x). (11)

The set of coefficients
{

a j
}

are the unknowns to be found, while φ j(x) is the cubic
B-spline function defined on uniform mesh points given by:

φ j(x) =
1
h3


(x− x j)

3, [x j,x j+1]
h3 +3h2(x− x j+1)+3h(x− x j+1)

2−3(x− x j+1)
3, [x j+1,x j+2]

h3 +3h2(x j+3− x)+3h(x j+3− x)2−3(x j+3− x)3, [x j+2,x j+3]
(x j+4− x)3, [x j+3,x j+4]
0, otherwise

(12)

where h = x j+1− x j. Using (11) and (12), we can express the values of the shape
function Ψ(x) along with the first and second derivatives at the mesh points in terms
of the a j’s.

Ψ(x j) = a j−3 +4a j−2 +a j−1,

Ψ
′(x j) =

3
h
(a j−3−a j−1),

Ψ
′′(x j) =

6
h2 (a j−3−2a j−2 +a j−1),

(13)

for each j = 0,1,2, ...,N.

Now, if we substitute (13) in the boundary conditions and the differential equation
given in (10) and (9) for j = 0,1, ...,N and solve the obtained (N + 3)× (N + 3)
linear system, the resulting numerical solutions will be of a second order of rate
of convergence. To achieve a fourth order rate of convergence, a correction term
should be added to the second derivative approximation Ψ′′(x j). The correction
terms are defined in terms of 4th derivative of the shape function as follows:

σ0 =
h2

12

[
2Ψ

(4)(x1)−Ψ
(4)(x2)

]
,

σ j =
h2

12
Ψ

(4)(x j), j = 0,1, ...,N−1,

σN =
h2

12

[
2Ψ

(4)(xN−1)−Ψ
(4)(xN−2)

]
,

(14)
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where

Ψ
(4)(x j) =

Ψ′′(x j−1)−2Ψ′′(x j)+Ψ′′(x j+1)

h2 ,

=
6
h2 (a j−4−4a j−3 +6a j−2−4a j−1 +a j),

(15)

where j = 0,1,2, ...,N. As a consequence, the shape functions are modified as
follows:

Ψ(x j) = a j−3 +4a j−2 +a j−1,

Ψ
′(x j) =

3
h
(a j−3−a j−1),

Ψ
′′(x j) =

6
h2 (a j−3−2a j−2 +a j−1)+σ j,

(16)

where j = 0,1,2, ...,N. To approximate the solution of the boundary value problem
(9)-(10) by the shape function (11), we substitute (16) in (9) for each mesh point to
end up with N +1 equations in N +3 unknowns:

6
h2 (a j−3−2a j−2 +a j−1)+σ j +

3p(x j)

h
(a j−3−a j−1)

+q(x j)(a j−3 +4a j−2 +a j−1) = f (x j),

(17)

where j = 0,1,2, ...,N. The boundary conditions (10) give the two equations:

a−3 +4a−2 +a−1 = α, aN−3 +4aN−2 +aN−1 = β . (18)

Solving the (N+3)×(N+3) linear system (17)-(18) for the a j’s yields a numerical
solution

{
y j
}

, where

y j = a j−3 +4a j−2 +a j−1 ≈ y(x j), j = 0,1,2, ...,N. (19)

Now, implementing the above collocation scheme on our problem (1)-(2) yields to
solve the nonlinear system

Ψ
′′(x j)+ p(x j)Ψ

′(x j)+q(x j)Ψ(x j) = f (x j,Ψ(x j)) , j = 0,1,2, ...,N,
Ψ(x0) = α,
g(Ψ(xN)) = 0,

(20)

on the interval [0,xN ]. An iterative scheme arise from Newton’s method can be
used to solve the nonlinear system (20). In other word, starting with initial values
Ψ0(x j), j = 0,1,2, ...,N, the following linear system solved iteratively for n=0, 1,
... , M-1 for the a j’s, using (16).

Ψ
′′
n+1(x j)+ p(x j)Ψ

′
n+1(x j)+

[
q(x j)−

∂ f
∂Ψ

(x j,Ψn(x j))

]
Ψn+1(x j),

= f (x j,Ψn(x j))−Ψn(x j)
∂ f
∂Ψ

(x j,Ψn(x j)) ,

(21)
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for j = 0,1,2, ...,N, and the boundary conditions including the ABC are given by

Ψn+1(x0) = α,

Ψn+1(xN)
∂g
∂Ψ

(x j,Ψn(x j)) = g(x j,Ψn(x j))−Ψn(xN)
∂g
∂Ψ

(x j,Ψn(xN)) ,
(22)

where M is the number of iterations in Newton’s method, which usually does not
have to be relatively large (M ≤ 5). Then the numerical approximation for the
boundary value problem (1)-(2) is given by

y j = ΨM(x j)≡ y(x j), j = 0,1,2, ...,N. (23)

4 Numerical Examples

In this section, the ABC-collocation approach is applied to a number of boundary
value problems defined on semi-infinite intervals. The numerical results are com-
pared with exact and/or numerical solutions that are available in the literature. The
rate of convergence for the numerical solutions is verified numerically using the
logarithmic ratio. The test examples conform the high accuracy and applicability
of the current proposed strategy.

Example 1. We will consider a BVP that models steady mixed convection flow in a
porous medium past a plane of arbitrary shape, with boundary conditions specified
on semi-infinite interval (see Abbasbandy and Shivanian (2011)), namely,

2 f ′′′(x)+ f ′(x)−
(

f ′(x)
)2

= 0, (24)

subject to

f (0) = 0, f ′(0) = b+1, f ′(∞) = 1. (25)

Problem (24)-(25) admits exact solutions for f ′(x) given by

f ′(x) =−1
2
+

3
2

tanh2

[
x

2
√

2
± 1

2
ln

(√
3+
√

3+2b√
3−
√

3+2b

)]
.

This problem will be solved for f ′(x). In other words, let u(x) = f ′(x) and hence it
reduces to

2u′′+u−u2 = 0, (26)

subject to

u(0) = b+1, u(∞) = 1. (27)
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In order to effectively apply the ABC, we transform the problem as follows: Let
v(x) = u(x)−1 and therefore we have

2v′′ = v2 + v, (28)

complimented with the boundary conditions

v(0) = b, v(∞) = 0, (29)

where b ∈ [−3/2,0). We solve the above problem for the choice of b = −1 and
then find u(x) = v(x)+ 1. This is done analogous to the procedure for finding the
ABC that requires the condition at infinity to be zero.

To demonstrate the strategy, we rewrite the above differential equation in matrix
form as follows: let z1 = v, z2 = v′ and hence we get[

z′1

z′2

]
=

 z2

z2
1
2 + z1

2

 = F. (30)

Calculating the jacobian (J) of F gives

J(x) =
[

0 1
z1
2 + 1

2 0

]
(31)

and so A∞ is equal to

A∞ = lim
x→∞

J(x) =

 0 1

1
2 0

 . (32)

Calculating the eigenvalues of A∞ we obtain

λ1 =
√

2/2, λ1 =−
√

2/2.

Consequently, we set Pm = [1 0] and we obtain E−1 =

[ √
2/4 1/2

−
√

2/4 1/2

]
. We

conclude by finding the equivalent ABC as

0 = lim
x→∞

PmE−1F = lim
x→∞

[1 0]

 0 1

1/2 0

[ z2
z2

1
2 + z1

2

]

= lim
x→∞

(√
2

4
z2 +

1
4
(z2

1 + z1)

)
,

(33)
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and by truncating the infinite interval we get
√

2
4

v′(xN)+
1
4
[
v2(xN)+ v(xN)

]
= 0.

In other words, we now solve the following BVP over the interval [0,xN ]:

2v′′ = v2 + v, (34)

subject to

v(0) = b,
√

2
4 v′(xN)+

1
4

[
v2(xN)+ v(xN)

]
= 0. (35)

It is worth mentioning that for b 6= 0 this BVP has two solutions. For b = −1 and
xN = 10, the B-spline collocation scheme is used to obtain numerical approxima-
tions for the corresponding two solutions. The numerical solutions, for the two
branches, are obtained by applying Newton’s method on the resulting nonlinear
system, which includes the ABC, for different starting values. The graphs of nu-
merical approximations for the two branch solutions are presented together with
true solutions in Fig. 1. The errors of the numerical approximations of the two
branch solutions are presented in Table (1) and Table (2), respectively, at specific
values and for different mesh sizes. The order of the rate of convergence for the two
branch solutions are computed and presented in Tables (1) and (2) and is verified
to be of order four. The numerical results are compared with those approximations
obtained in Abbasbandy and Shivanian (2011), which uses Chebyshev pseudo-
spectral method after reducing the problem to a singular BVP via a change of vari-
ables (we refer to their results in Tables 1 and 2 as [AS]). These results are depicted
in Tables (1) and (2) and clearly show the superiority of our proposed scheme.

Table 1: Numerical results of the first branch solution of Example 1.
h x=2 x=6 x=10

Error Order Error Order Error Order
1/5 2.73095(-7) - 3.10270(-8) - 6.86707(-11) -

1/10 1.42313(-8) 4.3 1.72003(-9) 4.2 1.72441(-11) 4.1
1/15 2.69289(-9) 4.1 3.31124(-10) 4.1 3.94541(-12) 4.0
1/20 8.38433(-10) 4.1 1.03731(-10) 4.0 1.31065(-12) 4.0
1/25 3.40791(-10) 4.0 4.22873(-11) 4.0 5.49052(-13) 4.0

Error in [AS] 7.59453(-8) 8.54071(-7) 9.37897(-7)
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Figure 1: Exact and Numerical solutions of Example 1 on [0,10] using N = 200.

Table 2: Numerical results of the second branch solution of Example 1.

h x=2 x=6 x=10
Error Order Error Order Error Order

1/5 1.34791(-6) - 1.55544(-6) - 1.08591(-7) -
1/10 8.56608(-8) 4.0 9.39732(-8) 4.0 6.55618(-9) 4.0
1/15 1.69714(-8) 4.0 1.84460(-8) 4.0 1.28681(-9) 4.0
1/20 5.37541(-9) 4.0 5.82372(-9) 4.0 4.06301(-10) 4.0
1/25 2.20281(-9) 4.0 2.38302(-9) 4.0 1.66297(-10) 4.0

Error in [AS] 1.32949(-6) 2.24473(-5) 1.67834(-6)

Example 2. Consider the following BVP (see Gavrilyuk, Hermann, Kutnivc, and
Makarovd (2009)):

u′′−4u = 2u3 +6u2, (36)

subject to

u(0) =−1, u(∞) = 0. (37)

Its exact solution is u(x) = tanh(x)−1. The equivalent ABC is found to be

u3(xN)+3u2(xN)+2u(xN)+u′(xN) = 0.

Fig. 2 depicts the exact solutions and the numerical solutions obtained by using the
B-spline collocations method for xN = 10. As in the previous example the errors
and the order of convergence at some points are shown in Table (3).
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Table 3: Absolute errors and order for numerical results of Example 2.

h Error at x=4 Order Error at x=6 Order Error at x=8 Order
1/2 4.75(-7) - 6.23(-8) - 2.45(-9) -
1/4 9.35(-8) 2.34 6.03(-9) 3.37 1.90(-10) 3.69
1/6 2.85(-8) 2.93 1.37(-9) 3.66 4.06(-11) 3.80
1/8 1.01(-8) 3.62 4.51(-10) 3.86 1.32(-11) 3.91
1/10 4.29(-9) 3.82 1.88(-10) 3.93 5.44(-12) 3.96

Figure 2: Exact and numerical solutions of Example 2 on [0,10] using N = 100 and
xN = 10.

Comparing the results in Table (3) with the errors given in Agarwal and O’Regan
(2004), we can say that our results require much less computations to achieve a
certain accuracy.

Example 3. Consider the following BVP (see Gavrilyuk, Hermann, Kutnivc, and
Makarovd (2009)):

u′′(x)−4u(x) =− 4
(1+ x)2 +

7
(1+ x)4 −u2, (38)

subject to

u(0) = 1, u(∞) = 0. (39)
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It has the exact solution u(x) =
1

(1+ x)2 . The equivalent ABC is found to be

6u(xN)−u2(xN) = 0.

The numerical results, for the choice x50 = 10, are presented in Fig. 3 and Table
(4), which again confirm accurate approximations of the solution of the BVP with
semi-infinite domain and a fourth order rate of convergence. We note from the

Table 4: Numerical results of Example 3 on [0,10] using N = 50 and xN = 10.

x 1 2 3 4 5
Numerical Solution 0.250016 0.111115 0.062501 0.040000 0.027778

Error 1.60(-5) 3.61(-6) 5.93(-7) 4.32(-8) 3.74(-7)
x 6 7 8 9 10

Numerical Solution 0.020405 0.015604 0.012193 0.008877 0.000000
Error 2.85(-6) 2.08(-5) 1.53(-4) 1.12(-3) 8.26(-3)

results presented in Table (4) that the accuracy of the numerical approximations on
[0,10], using xN = 10 and h = 1/5, are deteriorating as x approaches xN = 10. To
improve the accuracy, we should choose xN sufficiently large as mentioned earlier.
Table (5) presents the results on [0,10] for the same Example 3 but using x100 = 20.
Obviously, better approximations are obtained using xN = 20 and the same step size
h = 1/5 as that for xN = 10.

Table 5: Numerical results of Example 3 on [0,10] using N = 100 and xN = 20.

x 1 2 3 4 5
Numerical Solution 0.250016 0.111115 0.062501 0.040000 0.027778

Error 1.60(-5) 3.61(-6) 6.01(-7) 9.70(-8) 1.64(-8)
x 6 7 8 9 10

Numerical Solution 0.020408 0.015625 0.012346 0.010000 0.008264
Error 3.09(-9) 7.10(-10) 2.07(-10) 7.48(-11) 2.74(-11)

5 Conclusion

A numerical scheme is proposed and successfully implemented for the solution
of a class of nonlinear second order boundary value problems over semi-infinite
intervals. The approach is based on replacing the boundary condition at infinity
by an asymptotic boundary condition ABC and solving numerically the resulting
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Figure 3: Exact and numerical solutions of Example 3 on [0,10] using N = 100 and
xN = 10.

boundary value problem by a fourth order cubic spline collocation method over a
sufficiently large bounded interval. The scheme requires a solution of a sequence
of linear systems by using an iterative procedure that arises from Newton’s method.
The presented scheme is tested on three examples and the results showed very accu-
rate approximations with fourth order convergence. Summarizing our observation,
familiarity and involvement in proposing and implementing the ABC-collocation
method, we can state and confirm that these asymptotic boundary conditions can
be easily incorporated in the structure of the spline collocation method and can
considerably reduce the computational time as compared with other methods while
sustaining the high accuracy of the approximate solution, especially when the so-
lution is required on a finite interval.
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