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Abstract: This paper studies the applicability of Gaussian Process Regression
(GPR) and Least Squares Support Vector Machines (LSSVM) to predict fracture
parameters and failure load (Pmax) of high strength and ultra-high strength con-
crete beams. Fracture characteristics include fracture energy (GF ), critical stress
intensity factor (KIC) and critical crack tip opening displacement (CTODC) Math-
ematical models have been developed in the form of relation between several input
variables such as beam dimensions, water cement ratio, compressive strength, split
tensile strength, notch depth, modulus of elasticity and output fracture parameters.
Four GPR and four LSSVM models have been developed using MATLAB software
for training and prediction of fracture parameters. A total of 87 data sets (input-
output pairs) are used, 61 of which are used to train the model and 26 are used
to test the models. The data-sets used in this study are derived from experimental
results. The developed models have also been compared with the Artificial Neu-
ral Networks (ANN), Support Vector Regression (SVR) and Multivariate Adaptive
Regression Splines (MARS). From the overall study, it is observed that the concept
of GPR and LSSVM can be successfully applied to predict fracture parameters of
high strength and ultra high strength concrete.
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1 Introduction

Concrete is of high excellence in terms of strength and long term performance are
considered to be ideal requirements for special applications. Concretes of strengths
exceeding 80 MPa are now commonly used in the construction of high-rise build-
ings, long span bridges and offshore structures. The major problems being faced
by civil engineers are maintenance, retrofitting and preservation of these structures.
Ultra High Strength Concrete (UHSC) is a highly engineered material with sev-
eral chemical and mineral admixtures materials. It has been successfully applied in
the field for the construction of Sherbrook Pedestrian Bridge, Canada, The Glen-
more/Legs by Pedestrian, Alberta, Canada and P shaped UHPC beams installed
in footbridges in Auckland, New Zealand[Seibert (2008); Rebentrost and Wight
(2009)].Since UHSC is a relatively new material, the fracture behavior of this ma-
terial is not well understood [Richard and Cheyrezy (1994,1995); Mingzhe et al.
(2010); Goltermann et al. (1997)].

Concrete being a quasi-brittle materials exhibit a nonlinear region before the peak
of the stress–strain relationship and substantial post-peak strain softening. Linear
elastic fracture mechanics cannot be applied directly to the quasi-brittle materi-
als[7]. Due to high heterogeneity nature in concrete, cracks follow the weakest ma-
trix links in the material. They lead their way through the weak bonds, voids, mortar
and get arrested on encountering a hard aggregate, forming crack face bridges. Mi-
cro cracking, crack bridging and aggregate interlocking are a few of many specific
mechanisms that absorb energy during fracture process. These mechanisms con-
tribute to the tendency of the main crack to follow a tortuous path [Bazant (2000);
Barenblatt (1959); Dugdale (1960)]. This tortuous nature of the crack causes diffi-
culty in computing the fracture energy. Therefore, modeling the exact nature of the
fracture surface poses a new challenge to the researchers. In these days, most the-
oretical works in fracture mechanics are based on the fundamental assumption that
cracks have smooth surfaces. This assumption is helpful to use analytical models
in the field of fracture mechanics.

Over the past few years, researchers have used different statistical modelling meth-
ods such as Artificial Neural Network Support Vector Regression, Multivariate
Adaptive Regression Splines and Relevance Vector Machine for prediction of frac-
ture characteristics of concrete. Yuvaraj et al. (2013) used Support vector regres-
sion, Artificial Neural Network [Yuvaraj et al. (2012)] and Multivariate Adaptive
Regression Splines [Yuvaraj et al. (2013)] to predict the fracture characteristics
of concrete beams. Though the performance of ANN is acceptable, its results are
hard to interpret. Support vector machines do not directly provide probability es-
timates and in the case of MARS, parameter confidence intervals and other checks
on the model cannot be calculated directly, unlike linear regression models. This
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study uses Gaussian Process Regression (GPR) and Least Squares Support Vec-
tor Machines (LSSVM) for the prediction of fracture characteristics of concrete.
GPR (Gaussian Process Regression) gives a non-parametric modelling approach
and probabilistic Bayesian framework which can be applied to various engineering
problems. The probabilistic GP chooses hyper parameters directly from the training
data, gives a probabilistic measure of the uncertainty of the model prediction and
obtain a relatively good model when only a small set of training data is available
[Azman and Kocijan (2007); Pal and Deswal (2010); Likar and Kocijan (2007);
Yuan et al. (2008)]. In comparison to back-propagation neural networks, Gaussian
processes are conceptually simpler to understand and implement in practice. The
LSSVM is a statistical learning theory which adopts a least squares linear system
as a loss functions instead of the quadratic program in original support vector ma-
chine (SVM) [Suykans and Vandewalle (1999); Baesens et al. (2000); Espinoza
et al. (2003); Lu et al. (2003); Mitra et al. (2007)]. It is closely related to Gaus-
sian processes and regularization networks. It requires solving a set of only linear
equations (linear programming), which is much easier and computationally very
simple. Both GPR and LSSVM have a strong potential for predicting the facture
characteristics with high correlation and precision to the experimental value. They
differ from most of the other black-box identification approaches as it does not try
to approximate the modeled system by fitting the parameters of the selected basis
functions but rather searches for the relationship among measured data.

The aim of this study is to predict the fracture characteristics of high strength con-
crete beams (HSC) and Ultra high strength concrete beams (UHSC). This paper
presents development and validation of models based on concept of Gaussian Pro-
cess Regression (GPR) and Least Squares Support Vector Machines (LSSVM) to
predict fracture parameters and failure load (Pmax) of high strength and ultra-high
strength concrete beams.

2 Gaussian Process Regression

This study incorporates Gaussian Process Regression (GPR) for prediction of Fail-
ure load (Pmax), fracture energy (GF ), critical stress intensity factor (KIC) and
critical crack tip opening displacement (CTODC). In GPR, the learning of data
is modeled as Bayesian estimation problem. It is assumed that the parameters of
GPR are random variables. GPR has been successfully adopted for solving differ-
ent problems in engineering [Yuan et al. (2008); Pal and Deswal (2010)]

Let us consider the following set of samples

L = {χi,yi}D
i=1χi ∈ RN , yi ∈ R (1)

Where x is input variable, y is output, RN is N-dimensional vector space and R
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is one dimensional vector space. This article uses Beam length (L), Cross-section
area (A), Notch depth (a), water-cement ratio (w/c), compressive strength (fck), split
tensile strength (σt) and modulus of elasticity (E)as input variables. The output of
GPR is failure load (Pmax), fracture energy (GF ), critical stress intensity factor (KIC)
and critical crack tip opening displacement (CTODC). So, x= [L, A, a, w/c, fck, σt ,
E] and y= [Pmax, GF , KIC, CTODC].

GPR uses the following expression for prediction of y.

yi = f (χi)+ ∈i (2)

where f(xi) is latent function and εi is Gaussian noise. GPR treats f(xi) as random
variable.

The joint distribution of y is given by the following equation.

P(y) = N(0,K(χ,χ)+σ
2I) (3)

Where K(x, x) is kernel function and I is identity matrix.

The predictive distribution of yD+1 corresponding to a new given input xD+1 is
given by the following expression.(

y
yD+1

)
∼ N(0,KD+1) (4)

Where KD+1 is covariance matrix and its expression is given by

KD+1 =

[
K(χ,χ)+σ2I
K(χD+1)

T
K(χD+1)
K(χD+1)

]
(5)

The distribution of yD+1 is Gaussian with mean and variance (Williams, 1998):

µ = K(χD+1)
T [K(χ,χ)+σ

2I]−1y (6)

∑ = K(χD+1)−K(χD+!)[K(χ,χ)+σ
2I]−1K(χD+1) (7)

To develop GPR, a covariance function is required. The details of GPR is given by
Williams and Rasmussen (1996). Radial basis function has been used a covariance
function.

3 Least Squares Support Vector Machine (LSSVM)

SVM is a novel machine tool and especially useful for the classification and predic-
tion with small sample cases. This novel approach motivated by statistical learning
theory led to a class of algorithms characterized by the use of nonlinear kernels,
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high generalization of abilities and the sparseness of solution. Unlike the classi-
cal neural network approach the SVM formulation of the learning problem leads
to quadratic programming with linear constraints. However the size of the ma-
trix involved in the QP problem is directly proportional to the number of training
points. Hence to reduce the complexity of optimization processes, a modified ver-
sion called LS-SVM is proposed by taking equality instead of inequality constraints
to obtain a linear set of equations instead of a QP problem in dual space. Instead
of solving a QP problem by SVM, LS-SVM can obtain the solution of a set of lin-
ear equations. The formation of LS-SVM introduced is as follows. The following
regression model can be constructed by using non-linear mapping function ϕ (x).

y(x) = wT
ϕ (x)+b (8)

where w is the weight vector and b is the bias term. By mapping the original
input data into a high dimensional space, the nonlinear separable problem becomes
linearly separable in space. Then the following cost function is formulated in the
framework of empirical risk minimization

minJ (w,e) =
1
2

wT w+ γ
1
2

N

∑
k=1

e2
k (9)

subject to equality constraints

yk = wT
ϕ(xk)+b+ ek (k = 1,2,3, ....,N) (10)

where ek is the random error and gamma is a regularization parameter in determin-
ing the trade-off between minimizing the training error and minimizing the model
complexity. To solve this optimization problem Lagrange function is constructed
as:

L(w,b,e;α) = J (w,e)−
N

∑
k=1

αk{wT
ϕ(xk)+b+ ek− yk} (11)

where ak are Lagrange multiplier. The solution of equation (9) can be obtained by
partially differentiating it with respect to w, b, ek and ak

∂L
∂w

= 0→ w =
N

∑
K=1

αkϕ(xk) (12)

∂L
∂b

= 0→
N

∑
k=1

αk = 0 (13)
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∂L
∂ek

= 0→ αk = γek k = 1, ....,N (14)

∂L
∂αk

= 0→ wT
ϕ (xk)+b+ ek− yk = 0 k = 1, ....,N (15)

The equations (10)-(13) can be rewritten as:[
0
−→
1

−→
1
Ω+ y−1I

]
(16)

where,

y = [y1, .....yn]

−→
1 = [1, ....,1]

α = [α1, ....,αn]

Ωkl = ϕ(xk)
T

ϕ (x1) ....k, l = 1, ......,N

Finally b and ak can be obtained by the solution to the linear equation:

−→
b =

−→
1 T
(
Ω+ γ−1In

)−1 y
−→
1 T (Ω+ γ−1In)

−1−→1
(17)

According to mercer’s theorem the LS-SVM model can be expressed as:

y(x) =
N

∑
k=1

αkK (x,xk)+b (18)

where K(x, xk) is the nonlinear kernel function. In comparison with some other
feasible kernel functions, the RBF function a more compact supported kernel and
is able to reduce a more computational complexity of the training process and im-
prove generalization performance of LS-SVM. As a result RBF kernel was selected
as kernel function as:

K (X ,Xk) = exp
(
‖X−Xk‖2 2σ

−2
)

(19)

where σ is the scale factor for tuning.
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4 Development of GPR and LSSVM Models

Out of the 87 data sets which are available, 61 datasets are used to train the models
and 26 datasets are used to test the accuracy of the models [Yuvaraj et al. (2013)].
Tables 1 and 2 show the training and testing data-sets respectively. The data was
normalized between 0 and 1 before being used in the model as following:

Dnorm =
D−Dmin

Dmax−Dmin
(20)

The assessment of the model is done on the basis of coefficient of regression value
R which is calculated using the formula:

R =
∑

n
i=1
(
Eai−Ea

)
(Epi−Ep)√

∑
n
i=1
(
Eai−Ea

)√
∑

n
i=1
(
Epi−Ep

) (21)

where Eai and Epi are the actual and predicted values, respectively, Ēa and Ēp are
mean of actual and predicted E values. For an effective and good model the R
value should be close to one. Also while comparing the models the values of R is
compared and the model with R value closer to one and higher than the other is
considered better and used.

Note:

L- length, A- c/s area, a0- Notch depth, w/c-Water- cementations material ratio,
fck-compressive strength,σt-Split tensile strength, E- modulus of elasticity, Pmax-
Ultimate load, GF - Fracture energy, KIC- critical stress intensity factor, CTODC-
Critical crack tip opening displacement.

The success of GPR depends on the value of ε and s. The design values of ε and
s have been determined by trial and error approach. The best values of ε and s for
each of the GPR models has been given in Table 3.

To achieve a high level performance with LS-SVM models, some parameters have
to be tuned including regularization parameters γ and the kernel parameter corre-
sponding to the kernel type, i.e. σ . These parameters have been determined using
trial and error approach. The best values of γ and σ for each of the LSSVM models
has been given in Table 4.

5 Results and Discussions

The GPR and LSSVM models have been developed using the MATLAB software
for training and prediction of the fracture characteristics of high strength and ultra-
high strength beams. The models have been trained using 61 data sets and 26 data
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Table 1: Training data-sets
S.
No

L
(mm)

A
(cm2)

a0
(mm)

w/c fck
(MPa)

σt
(MPa)

E
(GPa)

Pmax
(KN)

GF
(N/m)

KIC
(Mpa√

m)

CTODC
(mm)

1 250 25 5 0.45 57.14 3.96 35.78 2.71 115.84 1.126 0.031
2 250 25 4 0.45 57.14 3.96 35.78 2.62 123.31 1.129 0.03
3 250 25 10 0.45 57.14 3.96 35.78 1.98 91.12 1.092 0.0183
4 250 25 9 0.45 57.14 3.96 35.78 1.98 86.65 1.08 0.0186
5 250 25 10 0.45 57.14 3.96 35.78 1.84 74.32 1.083 0.0178
6 250 25 16 0.45 57.14 3.96 35.78 1.14 55.18 0.0916 0.0081
7 250 25 15 0.45 57.14 3.96 35.78 1.42 68.61 0.00902 0.008
8 500 50 9 0.45 57.14 3.96 35.78 4.53 144.02 1.348 0.049
9 500 50 10 0.45 57.14 3.96 35.78 4.10 130.26 1.349 0.0485
10 500 50 18 0.45 57.14 3.96 35.78 3.79 92.72 1.174 0.035
11 500 50 19 0.45 57.14 3.96 35.78 3.63 115.42 1.173 0.0345
12 500 50 28 0.45 57.14 3.96 35.78 2.58 89.12 0.984 0.0149
13 1000 100 19 0.45 57.14 3.96 35.78 7.27 165.25 1.467 0.1026
14 1000 100 19 0.45 57.14 3.96 35.78 7.32 146.28 1.461 0.1
15 1000 100 19 0.45 57.14 3.96 35.78 6.99 148.25 1.456 0.098
16 1000 100 39 0.45 57.14 3.96 35.78 6.01 135.85 1.224 0.0601
17 1000 100 39 0.45 57.14 3.96 35.78 6.32 140.56 1.201 0.06
18 1000 100 58 0.45 57.14 3.96 35.78 4.54 115.12 1.012 0.0281
19 1000 100 60 0.45 57.14 3.96 35.78 4.70 104.22 0.998 0.026
20 250 25 5 0.33 87.71 15.38 37.89 4.20 4157.28 7.984 0.3434
21 250 25 5 0.33 87.71 15.38 37.89 4.15 4102.2 7.941 0.321
22 250 25 10 0.33 87.71 15.38 37.89 3.37 3464.6 7.398 0.2213
23 250 25 10 0.33 87.71 15.38 37.89 3.26 3880.1 7.362 0.218
24 250 25 15 0.33 87.71 15.38 37.89 2.79 3301.2 6.961 0.098
25 250 25 15 0.33 87.71 15.38 37.89 2.88 3410 6.981 0.1
26 250 25 20 0.33 87.71 15.38 37.89 1.98 2892.06 6.118 0.053
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27 250 25 20 0.33 87.71 15.38 37.89 2.05 2988.52 6.3 0.051
28 500 50 10 0.33 87.71 15.38 37.89 8.35 4811 8.479 0.456
29 500 50 10 0.33 87.71 15.38 37.89 8.20 4200.1 8.453 0.45
30 500 50 20 0.33 87.71 15.38 37.89 5.10 4516.1 7.401 0.3268
31 500 50 20 0.33 87.71 15.38 37.89 4.99 4266.5 7.386 0.32
32 500 50 20 0.33 87.71 15.38 37.89 5.07 3828.57 7.365 0.318
33 500 50 30 0.33 87.71 15.38 37.89 3.80 3579.89 6.682 0.203
34 500 50 30 0.33 87.71 15.38 37.89 3.79 3865.2 6.701 0.206
35 500 50 40 0.33 87.71 15.38 37.89 2.99 3970.95 6.201 0.093
36 500 50 40 0.33 87.71 15.38 37.89 3.08 3406.67 6.196 0.09
37 250 25 4 0.23 122.52 20.65 42.987 9.99 10349.24 12.601 0.433
38 250 25 5 0.23 122.52 20.65 42.987 10.01 10376.22 12.652 0.44
39 250 25 10 0.23 122.52 20.65 42.987 7.81 8308.49 11.762 0.281
40 250 25 9 0.23 122.52 20.65 42.987 7.43 7900 11.801 0.279
41 250 25 15 0.23 122.52 20.65 42.987 6.20 6925.54 11.092 0.141
42 250 25 15 0.23 122.52 20.65 42.987 5.99 6694.51 11 0.142
43 250 25 20 0.23 122.52 20.65 42.987 4.07 4386.6 7.581 0.0875
44 250 25 19 0.23 122.52 20.65 42.987 3.99 4306.29 7.412 0.0861
45 250 25 20 0.23 122.52 20.65 42.987 4.18 4511.36 7.51 0.085
46 400 40 9 0.23 122.52 20.65 42.987 14.23 11557.07 13.541 0.483
47 400 40 8 0.23 122.52 20.65 42.987 13.98 11354.02 13.582 0.49
48 400 40 16 0.23 122.52 20.65 42.987 10.85 8888.75 11.949 0.3898
49 400 40 15 0.23 122.52 20.65 42.987 10.62 8700.84 11.892 0.383
50 400 40 25 0.23 122.52 20.65 42.987 7.58 7145.19 11.201 0.2515
51 400 40 24 0.23 122.52 20.65 42.987 7.61 7171.63 11.221 0.249
52 400 40 32 0.23 122.52 20.65 42.987 5.56 5021.25 8.471 0.1216
53 400 40 31 0.23 122.52 20.65 42.987 5.60 5058.14 8.45 0.12
54 650 65 13 0.23 122.52 20.65 42.987 19.49 12052.38 13.984 0.581
55 650 65 12 0.23 122.52 20.65 42.987 19.31 11944.13 13.801 0.563
56 650 65 25 0.23 122.52 20.65 42.987 13.37 8076 12.013 0.3069
57 650 65 25 0.23 122.52 20.65 42.987 13.51 8892.69 12 0.301
58 650 65 39 0.23 122.52 20.65 42.987 10.12 6965.9 11.321 0.181
59 650 65 39 0.23 122.52 20.65 42.987 10.30 7085.13 11.103 0.172
60 650 65 52 0.23 122.52 20.65 42.987 7.46 5919.23 9.691 0.094
61 650 65 52 0.23 122.52 20.65 42.987 7.69 6109.05 9.598 0.093

sets are used to validate the model. The performance of GPR models for Pmax, GF ,
KIC and CTODC has been respectively shown in Figures 1, 2, 3 and 4, and the same
for LSSVM models has been shown in Figures 5, 6, 7 and 8. The values of R for
training and testing data-sets of each models, and the corresponding Root mean
squared error (RMSE) values has been shown in Table 5.

The developed LSSVM models give the following equations for the Prediction of
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Figure 1: Performance of GPR (Pmax Model).

Figure 2: Performance of GPR (GF Model).
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Figure 3: Performance of GPR (KIC Model).

Figure 4: Performance of GPR (CTODC Model).
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Figure 5: Performance of LSSVM (Pmax Model).

Figure 6: Performance of LSSVM (GF Model).
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Figure 7: Performance of LSSVM (KIC Model).

Figure 8: Performance of LSSVM (CTODC Model).
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Table 2: Testing data-sets.
L

(mm)
A

(cm2)
a0

(mm)
w/c fck

(MPa)
σt

(MPa)
E

(GPa)
Pmax
(kN)

GF
(N/m)

KIC
(Mpa√

m)

CTODC
(mm)

250 25 4 0.45 57.14 3.96 35.78 2.412 114.9 1.121 0.029
250 25 17 0.45 57.14 3.96 35.78 1.321 47.4 0.923 0.008
500 50 29 0.45 57.14 3.96 35.78 2.575 96.2 0.998 0.015
500 50 28 0.45 57.14 3.96 35.78 2.321 100.3 0.979 0.015
500 50 10 0.33 87.71 15.38 37.89 8.102 4142.2 8.462 0.432
1000 100 40 0.45 57.14 3.96 35.78 6.278 110.2 1.234 0.062
500 50 10 0.45 57.14 3.96 35.78 4.312 137.0 1.356 0.051
250 25 10 0.33 87.71 15.38 37.89 3.121 3763.1 7.312 0.213
650 65 51 0.23 122.52 20.65 42.987 7.312 5806.5 9.601 0.091
500 50 30 0.33 87.71 15.38 37.89 3.991 4623.5 6.721 0.206
250 25 9 0.23 122.52 20.65 42.987 7.667 8155.0 11.857 0.283
250 25 14 0.23 122.52 20.65 42.987 6.128 6844.0 11.183 0.145
400 40 8 0.23 122.52 20.65 42.987 14.08 11435.2 13.655 0.494
400 40 16 0.23 122.52 20.65 42.987 10.514 8613.2 11.901 0.38
650 65 24 0.23 122.52 20.65 42.987 13.498 8155.1 11.98 0.289
650 65 13 0.23 122.52 20.65 42.987 19.126 11829.1 13.882 0.571
650 65 39 0.23 122.52 20.65 42.987 10.013 6889.1 11.201 0.162
250 25 5 0.23 122.52 20.65 42.987 10.136 10504.7 12.716 0.443
250 25 20 0.33 87.71 15.38 37.89 2.102 2894.0 6.317 0.055
400 40 31 0.23 122.52 20.65 42.987 5.312 4797.2 8.463 0.119
250 25 5 0.33 87.71 15.38 37.89 4.101 4056.4 7.912 0.33
500 50 40 0.33 87.71 15.38 37.89 3.194 2897.9 6.214 0.096
1000 100 58 0.45 57.14 3.96 35.78 4.412 111.9 1 0.027
400 40 25 0.23 122.52 20.65 42.987 7.31 6887.1 11.198 0.25
500 50 18 0.45 57.14 3.96 35.78 3.87 105.3 1.176 0.036
250 25 15 0.33 87.71 15.38 37.89 2.841 3685.1 6.993 0.101

Table 3: Values of ε and s for the GPR models.
MODEL ε S
Failure load (Pmax) 0.01 0.9
Fracture energy (GF) 0.01 0.9
Critical stress intensity factor (KIC) 0.01 0.9
Critical crack tip opening displacement (CTODC) 0.01 0.9

Pmax, GF , KIC and CTODC respectively:

Pmax =
61

∑
k=1

αke
−(xk−x)(xk−x)T

0.020808 −0.0069 (22)
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Table 4: Values of γ and σ for the LSSVM models.

MODEL γ σ

Failure load (Pmax) 45 0.102
Fracture energy (GF) 20 0.059
Critical stress intensity factor (KIC) 20 0.073
Critical crack tip opening displacement (CTODC) 30 0.039

Table 5: Values of R and RMSE.
GPR LSSVM

Pmax GF KIC CTODC Pmax GF KIC CTODC
Rtrain 0.9999 0.9993 1.0000 0.9999 0.9994 0.9989 0.9998 0.9998
Rtest 0.9986 0.9963 0.9994 0.9980 0.9991 0.9969 0.9995 0.9989
RMSE 0.257201 339.848 0.169122 0.011913 0.206242 316.9103 0.182939 0.009509

GF =
61

∑
k=1

αke
−(xk−x)(xk−x)T

0.006962 −0.0175 (23)

KIC =
61

∑
k=1

αke
−(xk−x)(xk−x)T

0.010658 −0.013 (24)

CTODC =
61

∑
k=1

αke
−(xk−x)(xk−x)T

0.003042 −0.0138 (25)

The corresponding αk values for each of the LSSVM models are shown in Figures
9, 10, 11 and 12. The comparison between Artificial Neural Network (ANN) Sup-
port Vector Regression (SVR), Multivariate Adaptive Regression Splines(MARS),
GPR and LSSVM models for prediction of fracture parameters in terms of Corre-
lation Coefficient (R) is shown in Figure 13.

These results prove that the GPR and LSSVM models are more accurate and reli-
able for the prediction of the fracture parameters of high strength and Ultra-high
strength concretes.

6 Summary and Conclusions

This study shows the efficient and feasible use of GPR and LSSVM based approach
for the prediction of fracture parameters of high strength and Ultra-high strength
concrete mixes. Brief description has been outlines for GPR and LSSVM. Exper-
imental data of high strength concrete and ultra high strength concrete has been
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 Figure 9: Values of αk for LSSVM (Pmax model).

 Figure 10: Values of αk for LSSVM (GFmodel).
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 Figure 11: Values of αk for LSSVM (KIC model).

 Figure 12: Values of αk for LSSVM (CTODC model).
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 Figure 13: Comparison of ANN, SVR, MARS, GPR and LSSVM in terms of R.

used to develop and validate the GPR and LSSVM based models. Performance of
the models has been verified with other popular models such as ANN, SVR and
MARS models and it is found that LSSVM is one of the efficient models due to
its better coefficient of correlation (R). The developed equations by LSSVM can
be used by the users for determination of fracture parameters of high strength and
ultra high strength concrete mixes, which in turn will be useful for remaining life
prediction and residual strength of concrete structural components.
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