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On Solving Linear and Nonlinear Sixth-Order Two Point
Boundary Value Problems Via an Elegant Harmonic

Numbers Operational Matrix of Derivatives

W. M. Abd- Elhameed1,2

Abstract: This paper is concerned with developing two new algorithms for di-
rect solutions of linear and nonlinear sixth-order two point boundary value prob-
lems. These algorithms are based on the application of the two spectral meth-
ods namely, collocation and Petrov-Galerkin methods. The suggested algorithms
are completely new and they depend on introducing a novel operational matrix of
derivatives which is expressed in terms of the well-known harmonic numbers. The
basic idea for the suggested algorithms rely on reducing the linear or nonlinear
sixth-order boundary value problem governed by its boundary conditions to a sys-
tem of linear or nonlinear algebraic equations which can be efficiently solved by a
suitable solver. The algorithms are supported by investigating the convergence and
the error analysis of the used expansion. Some illustrative examples are considered
aiming to ascertain the wide applicability, and the high efficiency of the suggested
algorithms. The obtained numerical results are convincing and the proposed ap-
proximate solutions are very close to the analytical ones.

Keywords: Harmonic numbers, Legendre polynomials, Petrov-Galerkin method,
collocation method, sixth-order boundary value problems.

1 Introduction

The spectral methods aim to approximate functions (solutions of differential equa-
tions) by means of truncated series of orthogonal polynomials. There are three
well-known versions of spectral methods, namely, tau, collocation and Galerkin
methods, see for example [Canuto, Hussaini, Quarteroni, and Zang (1988); Doha
and Abd-Elhameed (2002); Doha, Abd-Elhameed, and Youssri (2013)]. There are
several computational methods can be employed for solving boundary value prob-
lems, see for example [Atluri (2005); Dong, Alotaibi, Mohiuddine, and Atluri
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(2014); Dai, Schnoor, and Atluri (2012); Elgohary, Dong, Junkins, and Atluri
(2014)]. The main advantage of spectral methods lies in their accuracy for a given
number of unknowns. For smooth problems in simple geometries, they offer ex-
ponential rates of convergence/spectral accuracy. In contrast, finite difference and
finite-element methods yield only algebraic convergence rates. The choice of the
suitable spectral method suggested for solving the given equation depends certainly
on the type of the differential equation and the type of the boundary conditions
governed by it. Collocation methods [Costabile and Napoli (2012, 2014, 2015);
Guo and Yan (2009); Mai-Duy (2006); Kasi Viswanadham and Murali Krishna
(2010)], have become increasingly popular for solving various kinds of differen-
tial equations. In particular, they are very useful in providing highly accurate
solutions to nonlinear differential equations. Petrov-Galerkin method is widely
used for solving ordinary and partial differential equations, see for example [Doha,
Abd-Elhameed, and Youssri (2012); Abd-Elhameed, Doha, and Youssri (2013);
Doha and Abd-Elhameed (2009); Geyikli and Karakoç (2012); Roshan (2012)].
The Petrov-Galerkin methods [Yu and Heinrich (1986)] have generally come to
be known as "stabilized" formulations because they prevent the spatial oscillations
and sometimes yield nodally exact solutions where the classical Galerkin method
would fail badly. The difference between Galerkin and Petrov-Galerkin methods,
is that the test and trial functions in Galerkin method are the same, while in Petrov-
Galerkin method, they are not (see, [Abd-Elhameed (2009)]).

There is a great number of authors interested in solving high even-order boundary
value problems. The reason for such interest is that this kind of BVPs arise in vari-
ous applications in physics, engineering disciplines and applied mathematics. The
interested reader for various applications for even-order boundary value problems
can be referred for example to [Wazwaz (2000)]. In the sequence of papers [Doha
and Abd-Elhameed (2002, 2009); Doha, Abd-Elhameed, and Bassuony (2013)],
the authors handled such equations by means of the Galerkin method. They con-
structed suitable basis functions which satisfy the boundary conditions of the given
differential equation. For this purpose, they used compact combinations of various
orthogonal polynomials. The suggested algorithms in these articles are suitable
for handling one and two dimensional linear high even-order boundary value prob-
lems. In particular, sixth-order BVPs are of interest and they arise in astrophysics.
The narrow convecting layers bounded by stable layers which are believed to sur-
round A-type stars may be modelled by sixth-order boundary value problems (see,
[Chandrasekhar (1961)]). Sixth-order BVPs were handled by numerous numerical
techniques, among of these techniques are, spline collocation method in [Lam-
nii, Mraoui, Sbibih, Tijini, and Zidna (2008)], Adomian decomposition method
with Green’s function in [Al-Hayani (2011)], parametric quintic spline solution in
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[Khan and Sultana (2012)], Sinc-Galerkin method in [El-Gamel, Cannon, and Za-
yed (2004)], homotopy perturbation method in [Noor and Mohyud-Din (2008)],
and fourth order finite difference method in [Pandey (2013)].

The employment of operational matrices for solving different kinds of differential
equations is considered as a common technique. This is due to the simplicity of
this technique and also to the accuracy of the approximate solutions resulted from
their uses. We refer here that a large number of authors follow this approach. For
example, in [Doha, Abd-Elhameed, and Youssri (2013)], the authors employ the
operational matrices of derivatives of Chebyshev polynomials of second kind to
solve the singular Lane-Emden type equations. Other studies in [Öztürk and Gülsu
(2014); Pandey, Kumar, Bhardwaj, and Dutta (2012)] employ operational matrices
of derivatives for solving the same type of equations. Other kinds of differential
equations were handled by the same technique (see, for example [Saadatmandi and
Dehghan (2010); Maleknejad, Basirat, and Hashemizadeh (2012); Zhu and Fan
(2012)]).

In this paper, we aim to give new algorithms for handling both of linear and non-
linear sixth-order boundary value problems based on introducing a new opera-
tional matrix of derivatives expressed in terms of harmonic numbers, then applying
Petrov-Galerkin method on linear equations and collocation method on nonlinear
equations.

For more clarification, the main objectives in the present paper can be summarized
in the following threefold:

• Introducing a novel operational matrix of derivatives based on using shifted
Legendre polynomials and harmonic numbers.

• Employing the Petrov-Galerkin method together with the introduced opera-
tional matrix of derivatives for handling linear sixth-order BVPs.

• Employing the collocation method together with the introduced operational
matrix of derivatives for converting the nonlinear sixth-order BVP into a sys-
tem of nonlinear algebraic equations, hence obtaining new approximate so-
lutions for this type of equations.

The contents of the paper are arranged as follows. In Section 2, an overview on
shifted Legendre polynomials and harmonic numbers is given. Section 3 is con-
cerned with introducing in detail a novel operational matrix of derivatives with the
aid of some properties of the shifted Legendre polynomials and harmonic numbers.
The reduction for linear sixth- order BVPs to systems of linear algebraic equations
based on the application of Petrov-Galerkin operational matrix method (PGOMM)
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is described in detail in Section 4. Section 5 is devoted to handling nonlinear sixth-
order BVPs based on the application of the collocation operational matrix method
(COMM). Convergence and error analysis of the suggested approximate expan-
sion are carefully investigated in Section 6. Numerical examples and discussions
are given in Section 7 aiming to show the efficiency and the applicability of the
suggested algorithms. Conclusions are given in Section 8.

2 An overview on shifted Legendre polynomials and harmonic numbers

2.1 Shifted Legendre polynomials

The shifted Legendre polynomials L∗i (x) are defined on [a,b] as:

L∗i (x) = Li

(
2x−a−b

b−a

)
, i = 0,1, . . . ,

where Li(x) are the Legendre polynomials. They may be generated by using the
recurrence relation

(i+1)L∗i+1(x) = (2i+1)
(

2x−b−a
b−a

)
L∗i (x)− iL∗i−1(x), i = 1,2, . . . , (1)

with L∗0(x) = 1, L∗1(x) =
2x−a−b

b−a
. These polynomials are orthogonal on [a,b],

with respect to the weight function w(x) = 1, i.e.,

b∫
a

L∗i (x)L∗j(x) dx =


b−a
2i+1

, i = j,

0, i 6= j.
(2)

The polynomials L∗i (x) are eigenfunctions of the following singular Sturm-Liouville
equation:

−D
[
(x−a)(x−b)Dφi(x)

]
+ i(i+1) φi(x) = 0,

where D≡ d
dx .

The following theorem and lemma are essential in the sequel.

Theorem 1. [Abd-Elhameed, Doha, and Bassuony (2014)] If the q times repeated
integration of L∗i (x) is denoted by

J(q)i (x) =

q times︷ ︸︸ ︷∫ ∫
· · ·
∫

L∗i (x)

q times︷ ︸︸ ︷
dxdx . . .dx,
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then

J(q)i (x)=
(b−a)q

22q

q

∑
m=0

(−1)m
(q

m

)
(i+q−2m+ 1

2)Γ(i−m+ 1
2)

Γ(i+q−m+ 3
2)

L∗i+q−2m(x)+πq−1(x),

(3)

and πq−1(x) is a polynomial of degree at most (q−1).

Lemma 1. For all b > a and j ≥ 0, the following relation holds

(b− x)3 (x−a)3 L∗j(x) =
6

∑
m=0

ξm, j L∗j−6+2m(x), (4)

where

ξ0, j = α j−4α j−2α j, ξ1, j = α j−2α j (β j−4 +β j−2 +β j) ,

ξ2, j = α j
(
α j−2θ j−4 +α jθ j−2 +α j+2θ j +β

2
j−2 +β jβ j−2 +β

2
j
)
,

ξ3, j = 2α jβ jθ j−2 +2α j+2β jθ j +α jβ j−2θ j−2 +α j+2β j+2θ j +β
3
j ,

ξ4, j = θ j
(
α jθ j−2 +α j+2θ j +α j+4θ j+2 +β

2
j +β j+2β j +β

2
j+2
)
,

ξ5, j = (β j +β j+2 +β j+4)θ jθ j+2, ξ6, j = θ jθ j+2θ j+4,

(5)

and

α j =
−(b−a)2 j( j−1)
4(2 j−1)(2 j+1)

,β j =
(b−a)2

(
j2 + j−1

)
2(2 j−1)(2 j+3)

,θ j =
−(b−a)2 ( j+1)( j+2)

4(2 j+1)(2 j+3)
.

(6)

Proof. Since we have (see, [Doha and Abd-Elhameed (2002)])

(1− x2)L j(x) =
−( j−1) j

(2 j−1)(2 j+1)
L j−2(x)+

2
(

j2 + j−1
)

(2 j−1)(2 j+3)
L j(x)

− ( j+1)( j+2)
(2 j+1)(2 j+3)

L j+2(x),
(7)

then the following relation can be immediately obtained (by replacing x by 2x−a−b
b−a )

(b− x)(x−a)L∗j(x) = α j L∗j−2(x)+β j L∗j(x)+θ j L∗j+2(x), (8)

where α j,β j and θ j are given in (6).
Now, relation (8)-after performing some manipulations-lead to relation (4).
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2.2 Harmonic numbers

It is well-known that the nth harmonic number is defined as (see, [Rainville (1960)]):

Hn =
n

∑
i=1

1
i
. (9)

The recurrence relation satisfied by Hn is

Hn−Hn−1 =
1
n
, n = 1,2, . . . ,

and they have the integral representation

Hn =
∫ 1

0

1− xn

1− x
dx.

The following lemma is of fundamental importance in the sequel.

Lemma 2. The harmonic numbers satisfy the following three-term recurrence re-
lation:

(2i−1)Hi−1− (i−1)Hi−2 = iHi, i≥ 2. (10)

Proof. The recurrence relation (10) can be easily proved with the aid of relation
(9).

3 A shifted Legendre operational matrix of derivatives

In this section, we select the following set of basis functions

φi(x) = (x−a)3(b− x)3 L∗i (x), i = 0,1,2, . . . . (11)

It is to be noted that the polynomials {φi(x) : i = 0,1,2, . . .} are linearly indepen-

dent and orthogonal with respect to the weight function w(x) =
1

(x−a)6 (b− x)6 ,

i.e.

∫ b

a

φi(x) φ j(x)dx
(x−a)6 (b− x)6 =


0, i 6= j,

b−a
2 i+1

, i = j.

Let us denote Hr
w(I)(r = 0,1,2, . . .), as the weighted Sobolev spaces, whose inner

products and norms are denoted by (., .)r,w, and ‖.‖r,w, respectively (see, [Canuto,
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Hussaini, Quarteroni, and Zang (1988)]). To account for homogeneous boundary
conditions, we define

H3
0,w(I) = {v ∈ H3

w(I) : v( j)(a) = v( j)(b) = 0, 0≤ j ≤ 2},

where v( j)(x) =
d jv
dx j , and I = (a,b). Now, define the following subspace of H3

0,w(I)

VN = span{φ0(x),φ1(x), . . . ,φN(x)}.

Any function u(x) ∈ H3
0,w(I) can be expanded in terms of the polynomials φi(x) as

u(x) =
∞

∑
i=0

ci φi(x), (12)

where

ci =
2i+1
b−a

∫ b

a

u(x)φi(x)
(x−a)6(b− x)6 dx. (13)

The function u(x) in Eq. (12) can be approximated by the first (N +1) terms, that
is

u(x)' uN(x) =
N

∑
i=0

ci φi(x) =CCCT
ΦΦΦ(x), (14)

where

CCCT = [c0,c1, . . . ,cN ], ΦΦΦ(x) = [φ0(x),φ1(x), . . . ,φN(x)]T . (15)

Now, we state and prove the basic theorem, from which a new operational matrix
of derivatives can be introduced.

Theorem 2. If the polynomials φi(x) are selected as in (11), then the following
relation holds for all i≥ 1,

Dφi(x) =
2

b−a

i−1

∑
j=0

(i+ j)odd

(2 j+1)(1+6Hi−6H j) φ j(x)+ηi(x), (16)

where ηi(x) is given by

ηi(x) =

3(x−a)2(b− x)2(a+b−2x), i even,

3(a−b)(x−a)2(b− x)2, i odd.
(17)
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Proof. First consider the case [a,b] ≡ [−1,1]. We will show that the following
relation holds for all i≥ 1

Dψi(x) =
i−1

∑
j=0

(i+ j)odd

(2 j+1)(1+6Hi−6H j) ψ j(x)+ γi(x), (18)

where

ψi(x) = (1− x2)3 Li(x),

and γi(x) is given by

γi(x) =−6
(
1− x2)2

x, i even,

1, i odd.

We proceed by induction on i. For i = 1, it is clear that each of the two sides of (18)
is equal to (1− x2)2(1−7x2). Now, assume the validity of relation (18) for (i−2)
and (i−1), and we have to show that it is valid for i. It is clear that the polynomials
ψi(x) satisfy the same recurrence relation of Legendre polynomials, that is

ψi(x) =
2i−1

i
xψi−1(x)−

(i−1)
i

ψi−2(x), i≥ 2. (19)

Differentiation of the last recurrence relation immediately gives

Dψi(x) =
2i−1

i
xDψi−1(x)+

2i−1
i

ψi−1(x)−
(i−1)

i
Dψi−2(x). (20)

The application of the induction hypothesis on Dψi−1(x) and Dψi−2(x) in (20),
yields

Dψi(x) =
(2i−1)x

i

i−2

∑
j=0

(i+ j)even

(2 j+1)(1−6 H j +6Hi−1) ψ j(x)

− (i−1)
i

i−3

∑
j=0

(i+ j)odd

(2 j+1)(1−6 H j +6Hi−2) ψ j(x)+ 2i−1
i ψi−1(x)

+
(2i−1

i

)
xγi−1(x)−

( i−1
i

)
γi−2(x).

(21)

If we substitute by the recurrence relation (19) written in the form

xψ j(x) =
j+1

2 j+1
ψ j+1(x)+

j
2 j+1

ψ j−1(x),
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into relation (21), then after performing some rather lengthy manipulations, we get

Dψi(x) =
i−3

∑
j=1

(i+ j)odd

pi j ψ j(x)+
1
i
[6(i−1)(2i−1)(Hi−1−Hi−2)+ i(2i−1)]ψi−1(x)

+
µi

i
[(2i−1)(6Hi−1−5)− (i−1)(6Hi−2 +1)]ψ0(x)

+
(2i−1

i

)
xγi−1(x)−

( i−1
i

)
γi−2(x),

(22)

where

pi j = 2 j+1− 6
i

[
j (2i−1)H j−1− (2 j+1)(i−1)H j +( j+1)(2i−1)H j+1

+(2 j+1)(i−1)Hi−2− (2 j+1)(2i−1)Hi−1
]
,

(23)

and

µi =

{
1, i odd,
0, i even.

Now, the elements pi j in (23) after making use of Lemma 2, can be simplified to
take the formula

pi j = (2 j+1)(1+6 Hi−6H j) . (24)

Repeated use of Lemma 2 in (22), and after performing some rather manipulation,
lead to

Dψi(x) =
i−1

∑
j=0

(i+ j)odd

(2 j+1)(1+6Hi−6H j) ψ j(x)−
6(2i−1)

i
µi ψ0(x)

+

(
2i−1

i

)
xγi−1(x)−

(
i−1

i

)
γi−2(x),

(25)

and by noting that(
2i−1

i

)
xγi−1(x)−

(
i−1

i

)
γi−2(x)−

6(2i−1)
i

µi ψ0(x) = γi(x),

this proves relation (18).

Now, if x in (18) is replaced by
2x−a−b

b−a
, then after performing some manipula-

tions, we get

Dφi(x) =
2

b−a

i−1

∑
j=0

(i+ j)odd

(2 j+1)(1+6Hi−6H j) φ j(x)+ηi(x),
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where ηi(x) is given by

ηi(x) =

3(x−a)2(b− x)2(a+b−2x), i even,

3(a−b)(x−a)2(b− x)2, i odd.

This completes the proof of Theorem 2.

Now, and with the aid of Theorem 2, one can deduce that the first derivative of the
vector ΦΦΦ(x) defined in (15) can be expressed in the following matrix form:

dΦΦΦ(x)
dx

= GΦΦΦ(x)+ηηη(x), (26)

where ηηη(x) = (η0(x),η1(x), . . . ,ηN(x))
T , and G =

(
g(1)i j

)
06i, j6N , is an (N + 1)×

(N +1) matrix whose nonzero elements can be given explicitly from relation (16)
as:

g(1)i, j =


2

b−a
(2 j+1)(1+6Hi−6H j) , i > j, (i+ j) odd,

0, otherwise.
(27)

For example, for N = 6, we have

G =
2

b−a



0 0 0 0 0 0 0
7 0 0 0 0 0 0
0 12 0 0 0 0 0
12 0 15 0 0 0 0
0 45

2 0 35
2 0 0 0

147
10 0 57

2 0 99
5 0 0

0 291
10 0 329

10 0 22 0


7×7

.

Corollary 1. The qth-derivative of the vector ΦΦΦ(x) is given by

dqΦΦΦ(x)
dxq = Gq

ΦΦΦ(x)+
q−1

∑
m=0

Gq−m−1 dm

dxm ηηη(x). (28)

4 Treatment of linear sixth-order two point BVPs

In this section, we are interested in introducing and analyzing spectral solutions
for linear sixth-order BVPs by employing the operational matrix of derivatives that
introduced in Section 3. For this purpose, the Petrov-Galerkin method is applied
on the linear sixth-order BVPs.
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Now, consider the linear sixth-order BVPs

u(6)(x)+
5

∑
q=0

fq(x)u(q)(x) = g(x), x ∈ (a,b), (29)

governed by the homogeneous boundary conditions

u(q)(a) = u(q)(b) = 0, q = 0,1,2. (30)

If u(x) is approximated as in (14), then with the aid of Corollary 1, the derivative
u(q)(x), 1≤ q≤ 6, can be approximated as:

u(q)(x)'CCCT

(
Gq

ΦΦΦ(x)+
q−1

∑
m=0

Gq−m−1 dm

dxm ηηη(x)

)
. (31)

If we substitute by relations (14) and (31) into Eq. (29), then the residual R(x), of
this equation is given by:

R(x) =
6

∑
q=1

fq(x)CCCT

(
Gq

ΦΦΦ(x)+
q−1

∑
m=0

Gq−m−1 dm

dxm ηηη(x)

)
+ f0(x)CCCT

ΦΦΦ(x)−g(x).

(32)

The application of Petrov-Galerkin method (see, [Canuto, Hussaini, Quarteroni,
and Zang (1988)]) yields the following (N + 1) linear equations in the unknown
expansion coefficients, ci, namely∫ b

a
R(x)L∗i (x)dx = 0, 0≤ i≤ N. (33)

It is clear from Eq. (33) that, a set consists of (N+1) linear equations is generated.
These equations can be solved for the unknown components of the vector CCC by any
suitable solver, and hence the approximate spectral solution uN(x) given in (14) can
be obtained.
In the following three subsections, we give a comprehensive study on the linear
system (33) for the case in which fq(x) = νq, 1 ≤ q ≤ 6, νq are real constants.
Moreover, we comment on the other cases of the coefficients fq(x).

4.1 Sixth-order two point BVPs with constant coefficients

This subsection in concerned with analyzing the system in (33) which resulted
from the application of Petrov-Galerkin method on the linear sixth-order two point
BVPs:

u(6)(x)+
5

∑
q=0

νq u(q)(x) = g(x), x ∈ (a,b), (34)
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governed by the homogeneous boundary conditions

u(q)(a) = u(q)(b) = 0, q = 0,1,2, (35)

where νq are real constants, 0≤ q≤ 5.
In such case, the Petrov-Galerkin formulation in Eq. (33) can be written as

(
D6uN(x),L∗i (x)

)
+

5

∑
q=1

νq (DquN(x),L∗i (x))+ν0(uN(x),L∗i (x)) = (g(x),L∗i (x)).

(36)

Now, if we denote

gi = (g(x),L∗i (x)) , g = (g0,g1, . . . ,gN),

B = (bi j)0≤i, j≤N , B(q) = (b(q)i j )0≤i, j≤N , 1≤ q≤ 6,

then (36) can be written alternatively in the following matrix system(
B(6)+

5

∑
q=1

νq B(q)+ν0 B

)
c = g, (37)

where the nonzero elements of the matrices B and B(q), 1≤ q≤ 6 are given explic-
itly in the following theorem.

Theorem 3. If the basis φi(x) are selected as in (11), and if we denote bi j =

(φ j(x),L∗i (x)) , b(q)i j = (Dqφ j(x),L∗i (x)) , 1 ≤ q ≤ 6, then the nonzero elements of
the matrices B,B(q), are given explicitly as follows:

bi j =
b−a
2i+1

ξ i− j+6
2 , j, (i+ j)even, | j− i| ≤ 6,

b(1)i j =
2

2i+1

j−1

∑
r=0

6

∑
m=0

(2r+1)(1+6H j−6Hr)ξm,r δr−6+2m,i +d(1)
i j ,

(i+ j)odd, | j− i| ≤ 5,

b(2)i j =
b−a
2i+1

j−1

∑
r=0

6

∑
m=0

g(2)r, j ξm,r δr−6+2m,i +d(2)
i j , (i+ j)even, | j− i| ≤ 4,

b(3)i j =
b−a
2i+1

j−1

∑
r=0

6

∑
m=0

g(3)r, j ξm,r δr−6+2m,i +d(3)
i j , (i+ j)odd, | j− i| ≤ 3,

b(4)i j =
b−a
2i+1

j−1

∑
r=0

6

∑
m=0

g(4)r, j ξm,r δr−6+2m,i+d(4)
i j , (i+ j)even, j = i+2s+2,s≤ 0,
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b(5)i j =
b−a
2i+1

j−1

∑
r=0

6

∑
m=0

g(5)r, j ξm,r δr−6+2m,i+d(5)
i j , (i+ j)odd, j = i+2s+1,s≤ 0,

b(6)ii =
(a−b)(i+1)6

2i+1
,

b(6)i j =
b−a
2i+1

j−1

∑
r=0

6

∑
m=0

g(6)r, j ξm,r δr−6+2m,i +d(6)
i j , (i+ j)even, j = i+2s,s≤−1,

where g(q)r, j = (Gq)r, j, 1 ≤ q ≤ 6, is the (r, j) entry of the matrix Gq, where G is
the operational matrix whose nonzero elements are given explicitly in (27), q de-
notes the notation of the matrix power, ξm,r are given by (5), δm,n is the well-known
Kronecker delta function. Moreover, d(q)

i j are given by

d(q)
i j =

b∫
a

(
q−1

∑
m=1

i−m

∑
j=0

g(m)
i j Dq−m−1

η j(x)+Dq−1
ηi(x)

)
L∗i (x)dx,

and ηi(x) are given by (17).

Proof. At first, the nonzero elements of the matrix B = (bi j) = (φ j(x),L∗i (x)) can
be obtained with the aid of Lemma 1, along with the orthogonality relation (2). To
obtain the nonzero elements of the matrix B(1) = (b(1)i j ) = (Dφ j(x),L∗i (x)), we make
use of Theorem 2. The nonzero elements of the other matrices B(q), 2≤ q≤ 6, can
be obtained, after some lengthy manipulations, if Eq. (28) is written alternatively
in the form

Dq
φi(x) =

i−q

∑
j=0

g(q)i j φ j(x)+πi,q(x), (38)

where πi,q(x) is a polynomial of degree at most five for all 1≤ q≤ 6, and it can be
given explicitly as

πi,q(x) =
q−1

∑
m=1

i−m

∑
j=0

g(m)
i j Dq−m−1

η j(x)+Dq−1
ηi(x). (39)

Remark 1. The elements d(q)
i j that appears in Theorem 3 can be obtained explicitly,

by expressing the polynomials πi,q(x), 1 ≤ q ≤ 6, in terms of the shifted Legendre
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polynomials. For example, d(1)
i, j are given explicitly as follows:

d(1)
i, j = (b−a)6



−1
10 , i = 0, j odd,
−1
70 , i = 1, j even,
1

35 , i = 2, j odd,
1

105 , i = 3, j even,
−1
210 , i = 4, j odd,
−1
462 , i = 5, j even,
0 otherwise.

4.2 Structure of the coefficient matrices in the linear system (37)

In this subsection, we are interested in investigating the structure of the matrices B
and Bq,1 ≤ q ≤ 6 which appear in the linear system (37). Moreover, the structure

of the combined matrix D = B(6)+
5

∑
q=1

νq B(q)+ν0 B is also discussed.

• The matrix B(6) is a nonsingular lower triangular matrix, and hence for the
case corresponds to ηq = 0, 1 ≤ q ≤ 6, the linear system in (37) is reduced
to a lower triangular system, which can be easily solved via the forward
substitution procedure.

• The four matrices B, B(1), B(2), B(3) are, respectively, seven-, six-, five- and
four-diagonals. Therefore, with respect to the case corresponds to ν4 = ν5 =
0, the matrix D is a combination of a lower triangular matrix of order (N +
1)× (N + 1) and a seven-diagonal matrix at most. In such case, we can
form explicitly LU-factorization effectively, and the number of operations

necessary to factorize D in the form D = LU is of order
2
3
(N +1)3, and the

total cost for solving the two triangular systems is of order 2(N + 1)2 for
large values of N, (see, [Schatzman (2002)]).

• In the case of νq 6= 0, ∀ 1≤ q≤ 6, then we from explicitly LU-factorization.

Remark 2. If the coefficients fq(x) which appear in (29) are polynomials in x, 1≤
q≤ 6, then fq(x) can be expanded in terms of the shifted Legendre polynomials L∗j ,
and hence the nonzero elements of the matrices involved in system (33) can be given
explicitly. This approach is followed in [Doha and Abd-Elhameed (Accepted)].
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Remark 3. If the coefficients fq(x) are neither constants nor polynomials for 1 ≤
q ≤ 6, then one can employ (33) for the sake of obtaining the desired spectral
numerical solutions.

4.3 Condition number of the resulting system (37)

It is well-known that the application of the direct collocation method on sixth-order
BVPs leads to a condition number behaves like O(N12) (N: maximal degree of
polynomials). In this paper, we obtain an improved condition number with O(N5).
The advantages with respect to propagation of rounding errors is demonstrated.

Now, with respect to the equation u(6) = g(x), the resulting linear system from the
application of Petrov-Galerkin method is B(6) c = g where the matrix B(6) is a lower
triangular matrix whose diagonal elements are b(6)ii , where

b(6)ii =
(a−b) ∏

6
r=1(i+ r)

2i+1
.

Thus we note that the condition number of the matrix B(6) behaves like O(i5) for
large values of i. Table 1 ascertains this result in case of [a,b]≡ [−1,1].

Table 1: Condition number for the matrix B(6).
N Cond(B(6)) Cond(B(6))/N5

8 0.00566101 1.72760 . 10−7

12 0.00134669 5.41206 . 10−9

16 0.000442282 4.21793 . 10−10

20 0.000178083 5.56509 . 10−11

Remark 4. If we add
5

∑
q=1

νq B(q)+ ν0 B to the matrix B(6), we find that the com-

bined matrix given by: D = B(6)+
5

∑
q=1

νq B(q)+ ν0 B, also behaves like O(N5) for

large values of N. This means that the matrix B(6), which resulted from the sixth-
derivative of the sixth-order BVP under investigation, plays the essential influence
in the propagation of the roundoff errors.
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4.4 Treatment of sixth-order two point BVPs governed by nonhomogeneous
boundary conditions

Consider the linear sixth-order BVPs

u(6)(x)+
5

∑
q=0

fq(x)u(q)(x) = g(x), x ∈ (a,b), (40)

governed by the nonhomogeneous boundary conditions

u(q)(a) = αq, u(q)(b) = βq, q = 0,1,2. (41)

then it is easy-with aid of a suitable transformation (see,[Doha, Abd-Elhameed,
and Bassuony (2013)])-to convert problem (40), governed by the nonhomogeneous
boundary conditions (41) into a modified one which is similar to (29)-(30).

At the end of this section, we give a summary to the steps required to solve linear
sixth-order two point BVPs:

• Introducing the operational matrix of derivatives in terms of harmonic num-
bers.

• Expressing explicitly the derivatives of the selected basis functions in terms
of the entries of the introduced operational matrices of derivatives.

• Applying Petrov-Galerkin method on Eq. (29) in order to convert this equa-
tion subject to its boundary conditions (30) into a system of linear algebraic
equations.

• Solving the resulting linear system by any suitable numerical solver.

• Obtaining the desired spectral numerical solution.

5 Solution of nonlinear sixth-order two point BVPs

Consider the following nonlinear sixth-order boundary value problem

u(6)(x) = F
(

x,u(x),u(1)(x),u(2)(x),u(3)(x),u(4)(x),u(5)(x)
)
, (42)

governed by the homogenous boundary conditions

u(i)(a) = u(i)(b) = 0, i = 0,1,2. (43)

If u(x) is approximated as in (14) and if the derivatives u(`)(x), 1 ≤ ` ≤ 6, are
approximated as in (31), then the following nonlinear equations in the unknown
vector C can be obtained
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CCCT (G6
ΦΦΦ(x)+ηηη6(x)

)
=

F
(

x,CCCT
ΦΦΦ(x),CCCT (GΦΦΦ(x)+ηηη(x)),CCCT (G2

ΦΦΦ(x)+ηηη2(x)),

CCCT (G3
ΦΦΦ(x)+ηηη3(x)),CCC

T (G4
ΦΦΦ(x)+ηηη4(x)),CCC

T (G5
ΦΦΦ(x)+ηηη5(x))

)
,

(44)

where ηηηq(x) is given by

ηηηq(x) =
q−1

∑
m=0

Gq−m−1 dm

dxm ηηη(x), 2≤ q≤ 6,

and the components of the vector ηηη(x) are given by (17).
To find the numerical solution uN(x), we enforce Eq. (44) to be satisfied exactly
at (N + 1) collocation points. There are many options to select these collocations
points. Every choice leads to a numerical solution uN(x). Among of the possible
choices for these collocation points are:

1. The (N +1) roots of the polynomial L∗N+1(x).

2. The (N +1) roots of the Chebyshev polynomial of the first kind T ∗N+1(x).

3. The (N +1) roots of the Chebyshev polynomial of the second kind U∗N+1(x).

It is clear that for every choice of the collocation points, a set of (N +1) nonlinear
equations is generated in the expansion coefficients, ci. With the aid of the well-
known Newton’s iterative method, this nonlinear system can be solved, and hence
the corresponding approximate solution uN(x) can be obtained.

At the end of this section, the steps required to solve nonlinear sixth-order two point
BVPs can be summarized in the following items:

• Introducing the operational matrix of derivatives in terms of harmonic num-
bers.

• Deducing the operational matrices of derivatives for all q≥ 1 as in (28).

• Applying the typical collocation method on the nonlinear sixth-order BVP
for the sake of converting it into a nonlinear system of equations.

• Solving the resulting nonlinear system of equations by a suitable solver such
as the well-known Newton’s iterative method.

• Obtaining the desired spectral numerical solution.
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6 Convergence and error analysis of the suggested expansion

In this section, we discuss the convergence and error analysis of the suggested
approximate solution. To be more precise, we will prove a theorem in which the
expansion in (12) of a function u(x) = (x−a)3 (b− x)3 f (x) ∈ H3

0,w(I), where f (x)
is of bounded third derivative, converges uniformly to u(x). Moreover, an upper
bound for the error (in L2

w norm) is given.

Theorem 4. A function u(x) = (x−a)3 (b−x)3 f (x)∈H3
0,w(I), w(x) = 1

(x−a)6 (b−x)6

with | f (3)(x)| 6 M, can be expanded as an infinite sum of the basis given in (12).
This series converges uniformly to u(x), and the coefficients in (12) satisfy the in-
equality

|ci|<
M (b−a)3

2 i2
, ∀ i≥ 3. (45)

Proof. From Eq. (13), and with the aid of (11), one has

ci =
2 i+1
b−a

∫ b

a
f (x)L∗i (x)dx. (46)

Relation (46) gives after integration by parts three times and making use of Theo-
rem 1 (for q = 3)

ci =
2 i+1
a−b

∫ b

a
f (3)(x) I(3)(x)dx, i≥ 3, (47)

where

I(3)(x) =
(b−a)3

8

[ −L∗i−3(x)
(2i−3)(2i−1)(2i+1)

+
3L∗i−1(x)

(2i−3)(2i+1)(2i+3)

−
3L∗i+1(x)

(2i−1)(2i+1)(2i+5)
+

L∗i+3(x)
(2i+1)(2i+3)(2i+5)

]
,

hence the coefficients ci can be written in the form

ci =
1
8
(b−a)2

∫ b

a

[ L∗i−3(x)
(2i−3)(2i−1)

−
3L∗i−1(x)

(2i−3)(2i+3)

+
3L∗i+1(x)

(2i−1)(2i+5)
−

L∗i+3(x)
(2i+3)(2i+5)

]
f (3)(x).

Now, making use of the inequality (see, [Rainville (1960)])

|L∗i (x)|< 1, a < x < b,
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and with the aid of the assumption | f (3)(x)| ≤M, it is not difficult to show that

|ci|<
M (b−a)3

(2i−3)(2i+5)
.

Since, i≥ 3, thus we get

|ci|<
M (b−a)3

2 i2
,

and this completes the proof of Theorem 4.

In the following, and based on Theorem 4, we give an estimation to the error (in L2
w

norm). The following lemma is needed.

Lemma 3. (see, Stewart (2012)) Let f (x) be a continuous, positive, decreasing

function for x> n. If f (k) = ak, provided that ∑an is convergent, and Rn =
∞

∑
k=n+1

ak,

then the following inequality holds:

Rn 6
∫

∞

n
f (x)dx.

Theorem 5. If u satisfy the hypothesis of Theorem 4, and if we consider the ex-

pansion uN(x) =
N

∑
i=0

ci φi(x), then the following error estimate (in L2
w-norm, w =

1
(x−a)6 (b−x)6 ) is obtained

‖u−uN‖w <
M(b−a)

7
2

5N2 . (48)

Proof. From Eq. (13), and making use of the orthogonality property of {φi(x)}, we
get

‖u−uN‖2
w =

∞

∑
i=N+1

(b−a)
(2i+1)

c2
i .

In virtue of Theorem 4, one can write

‖u−uN‖2
w <

M2 (b−a)7

4

∞

∑
i=N+1

1
i4 (2i+1)

<
M2 (b−a)7

8

∞

∑
i=N+1

1
i5
,
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and the application of Lemma 3 leads to

‖u−uN‖2
w <

M2 (b−a)7

8

∫
∞

N
x−5 dx

=
M2 (b−a)7

32 N4

<
M2 (b−a)7

25 N4 ,

and hence

‖u−uN‖w <
M(b−a)

7
2

5N2 ,

which completes the proof of the theorem.

7 Numerical results and discussions

In this section, the two presented algorithms in Sections 4 and 5 are applied to
solve linear and nonlinear sixth-order boundary value problems. We support our
algorithms by presenting three numerical examples accompanied by some compar-
isons with some other methods in literature.
Now, consider the following examples.

Example 1. Consider the following sixth-order linear boundary value problem
(see, [Khandelwal and Sultana (2013)]):

y(6)(x)+ xy(x) =−(x3 +11x+24)ex, x ∈ [0,1],

y(0) = y(1) = 0,

y′(0) = 1, y′(1) =−e,

y′′(0) = 0, y′′(1) =−4e.


(49)

The exact solution of the above problem is

y(x) = x(1− x)ex. (50)

In Table 2, the maximum pointwise errors E = |u−uN | which resulted from the ap-
plication of PGOMM, for various values of N are displayed. This table shows that
by taking three terms only from the retained modes of the approximate expansion,
an error which does not exceed (2.64 . 10−8) is achieved. In Table 3, we present a
comparison between the best errors obtained from the application of PGOMM with
the best errors obtained by applying the three methods namely, second-, fourth- and
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sixth-order methods which presented in [Khandelwal and Sultana (2013)]. This ta-
ble shows that the best accuracy obtained by PGOMM is better than the best accu-
racy obtained by the three methods developed in [Khandelwal and Sultana (2013)].

Table 2: Maximum pointwise error of |u−uN | for N = 2,4,6,8

N E
2 2.64 . 10−8

4 2.06 . 10−11

6 9.19 . 10−15

8 2.13 . 10−16

Table 3: Comparison between the best errors for Example 1 by different methods

[Khandelwal and Sultana (2013)]

Best error 2nd-order methods 4th-order methods 6th-order methods PGOMM

E 9.37×10−8 2.81×10−11 4.29×10−13 2.13×10−16

Example 2. Consider the following linear sixth-order boundary value problem
(see, Siddiqi and Akram [Siddiqi and Akram (2008)]):

y(6)(x)+(5x+1)y(x)=5x
(
2x3−5x+37

)
cos(x)+18

(
15−2x2)sin(x), x∈ [−1,1],

(51)

subject to the boundary conditions:

y(−1) = 4cos(1), y(1) =−2cos(1),

y(1)(−1) = cos(1)+4sin(1), y(1)(1) = cos(1)+2sin(1),

y(2)(−1) =−16cos(1)+2sin(1), y(2)(1) = 14cos(1)−2sin(1).

The exact solution of this problem is

y(x) = (2x3−5x+1)cos(x).
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In Table 4, the maximum pointwise errors of |u− uN | which resulted from the
application of PGOMM are displayed for various values of N, while, Table 5, illus-
trates a comparison between the best errors obtained by PGOMM, with the septic
spline method developed in [Siddiqi and Akram (2008)]. This table ascertains that
the application of PGOMM gives more accurate results than those obtained by the
algorithm developed in [Siddiqi and Akram (2008)].

Table 4: Maximum pointwise error of |u−uN | for N = 4,6,8,10,12,14

N E
4 4.48×10−7

6 7.92×10−9

8 1.90×10−12

10 2.15×10−15

12 1.77×10−15

14 2.22×10−16

Table 5: Comparison between the best errors for Example 2 by different methods

Best error PGOMM [Siddiqi and Akram (2008)]

E 2.22×10−16 8.68×10−7

Example 3. Consider the following sixth-order nonlinear boundary value problem
on (see, El-Kady and Khalil [El-Kady and Khalil (2011)]):

y(6)(x)+ e−x y2(x) = e−x + e−3x, 0≤ x≤ 1,

y(0) = 1, y′(0) =−1, y′′(0) = 1,

y(1) =
1
e
, y′(1) =−1

e
, y′′(1) =

1
e
,

 (52)

The exact solution of this problem is

y(x) = e−x. (53)

In Table 6, we list the maximum pointwise error using COMM for various values
of N. We choose three kinds of collocation points. Let E1,E2 and E3 denote the
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maximum pointwise errors when the collocation points are respectively, Legendre,
first and second kinds of Chebyshev polynomials. The numerical results show that
the best results are achieved if the selected collocation points are the zeros of the
second kind of Chebyshev polynomials. Table 7 displays a comparison between the
best errors obtained by COMM and the method developed in [El-Kady and Khalil
(2011)].

Table 6: Maximum pointwise error of |u−uN | for N = 2,4,6,8

N E1 E2 E3

2 3.91 . 10−9 5.67 . 10−9 2.74 . 10−9

4 5.90 . 10−12 1.10 . 10−11 3.01 . 10−12

6 2.06 . 10−15 4.92 . 10−15 7.77 . 10−16

8 1.60 . 10−16 1.60 . 10−16 1.60 . 10−16

Table 7: Comparison between the best errors for Example 3 by different methods

Best error COMM Method in [El-Kady and Khalil (2011)]

E 1.60×10−16 9.8×10−11

8 Conclusions

In this paper, a novel operational matrix of derivatives is derived. Two algorithms
based on employing a new operational matrix of derivatives together with the appli-
cation of the two spectral methods namely, Petrov-Galerkin and collocation meth-
ods are analyzed and presented for handling linear and nonlinear sixth-order bound-
ary value problems. Convergence and error analysis of the suggested expansion are
carefully investigated. The suggested algorithms are applicable, efficient and easy
in implementation. The main advantage of the two presented algorithms is their
availability for application on both linear and non linear boundary value problems.
Moreover, numerical experiments show that high accurate approximate solutions
are achieved by using a few number of terms of the suggested expansion. The ob-
tained approximate solutions are very close to the analytical ones.

Acknowledgment. The author would like to thank the anonymous referees for
carefully reading the paper and also for their constructive comments which have
improved the paper.
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