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Time-Domain BEM Analysis for Three-dimensional
Elastodynamic Problems with Initial Conditions
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Abstract: In this paper, a time-domain boundary element method formulation for
the analysis of three-dimensional elastodynamic problems with arbitrary, non-null
initial conditions is presented. The formulation is based on the convolution quadra-
ture method, by which the numerical stability is improved significantly. In order
to take into account the non-null initial conditions in this formulation, a general
method is developed to replace the initial conditions by equivalent pseudo-forces
based on the pseudo-force method. The original governing equation is transformed
into a new one subjected to null initial conditions. In the numerical examples, lon-
gitudinal vibrations of a free beam and a cantilevered beam are considered as the
illustrative problems to evaluate the new formulation. Results are shown to be in
good agreement with the analytical solutions or the finite element method solutions.

Keywords: time-domain BEM, convolution quadrature method, non-null initial
conditions, pseudo-force method.

1 Introduction

The boundary element method (BEM) is an efficient numerical technique for solv-
ing engineering problems [Brebbia (1978); Cheng and Cheng (2005)], such as
Laplace equation, Navier equation, Helmholtz equation and linear diffusion-reaction
equation [Burton and Miller (1971); Jaswon and Symm (1977); Rizzo (1967);
Rizzo and Shippy (1970)]. For transient elastodynamic problems, according to
the different approximation solution strategies in time space, the BEM generally
follows two approaches namely, the frequency-domain approaches [Ahmad and
Manolis (1987); Xiao et al. (2012)] and the time-domain approaches [Manolis and
Beskos (1988); Yao (2009)]. A review about these methods is published by Beskos
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(1987; 1997).

In this paper, we concern the time-domain method. The implementation of the
time-domain approach is straightforward. The time-domain formulation is more
general and the problem can be solved not only for harmonic or periodic load, but
also for a much wider range of loads. At the earliest Mansur (1983) established
the general formulation for the scalar wave equation. Subsequently, Banerjee and
Manolis et al. (1986) presented the direct BEM formulation for three-dimensional
(3D) transient elastodynamic analysis, which is the most widely used and classical
formulation at present. However, numerical results have shown that the standard
BEM formulation may be unstable in some applications. This phenomenon has
been first mentioned in a paper of Cole and Kosloff (1978). An in-depth study on
this

unstable behavior was carried out by Dominguez and Gallego (1991), and con-
clusions are summarized as: (I) a too small time-step may cause instability in the
numerical scheme, (II) while a too large time-step may give rise to strong numeri-
cal damping in the results. In recent years, several approaches have been proposed
to improve the stability. Among them, three ways should be mentioned as follows:
(I) the first one is called ‘linear θ method’ which employs modified numerical time
marching procedures proposed by Araujo et al. (1999). They achieved more sta-
ble results by introducing weighting integrals. Other similar and effective schemes
include: the ε method, the half-step method [Birgisson et al. (1999)], the constant
velocity prediction method [Marrero et al. (2003)], and the α−δ method [Soares
and Mansur (2007)]; (II) the second one is called ‘Heaviside fundamental solution
method’ which employs a modified time dependent fundamental solution proposed
by Coda and Venturini (1995). Another similar scheme is using a new boundary in-
tegral equation (BIE) based on the velocity reciprocal theorem to reduce instability
in BEM formulations, proposed by Panayiotopoulos and Manolis (2011); (III) the
third one is called ‘convolution quadrature method’ (CQM) based on the theorem
proposed by Lubich (1988). This was then developed and applied to time domain
BEM formulations by Schanz and Antes (1997; Schanz, 2010). In this formula-
tion, the convolution integral is numerically approximated by a quadrature formula
whose weights are determined by the Laplace transformed fundamental solutions
and a linear multistep method. Through a comparative numerical study of these
three groups of methods, the CQM outperforms the other methods in terms of sta-
bility and accuracy [Li and Zhang (2014)]. Besides, a much older paper of Gaul
and schanz (1999) compared the performances of three approaches, including the
calculation in Laplace domain, the calculation of convolution analytically in time
domain and the calculation based on convolution quadrature method (CQM), to
calculate the transient response of viscoelastic solids. The numerical results also
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demonstrated that the formulation based on the convolution quadrature is not as
sensitive as others in terms of time step size.

It is worth noting that the CQM approach provides the solution directly in the time
domain without the need of an inverse transformation in spite of employing the
frequency domain fundamental solution. This BEM formulation was initially de-
veloped for elastodynamic problems with null initial conditions [Schanz and Antes
(1997)]. Nonzero initial conditions give rise to domain integrals in time-domain
integral equation approaches. These terms involve domain integrals without time
convolution, so can not be integrated numerically approximated by CQM. If we
compute these terms directly using domain discretization methods and the time-
dependent fundamental solutions just like the conventional time-domain BEM,
judgment of wave fronts and spherical surface integrals are required because that
Heaviside functions and Dirac delta functions are included in the time-dependent
fundamental solutions. This will lead to complicate geometry operations, espe-
cially for complicate structures. In order to overcome this limitation, a general
procedure is proposed in this paper to replace the initial conditions by equivalent
pseudo-forces based on the pseudo-force method. The pseudo-force method was
already successfully employed in the frequency-domain analysis and the CQM-
based time-domain analysis of 2D scalar wave propagation problems [Abreu et al.
(2006); Mansur et al. (2004)]. It was also employed in a fast Fourier transform-
based spectral element method for the linear continuum dynamic systems subjected
to non-null initial conditions by Lee and Cho (2008). To the authors’ best knowl-
edge, the CQM-based time-domain BEM has not yet been developed for the anal-
ysis of 3D elastodynamic problems with non-null initial conditions.

In the following Section 2, we will develop a general method to transform the orig-
inal governing equations of linear elastic dynamic system subjected to arbitrary,
non-null initial conditions into a new set of governing equations with completely
null initial conditions based on the pseudo-force method. In our method, the whole
transformation process is based on the governing equations. Thus, this method
can also be applied to the conventional time-domain BEM formulations, which
employ the time-dependent fundamental solutions, to avoid spherical surface in-
tegrals of the terms involved initial conditions. After that, a brief introduction to
the CQM-based time-domain BEM formulation and its numerical implementation
are presented in Section 3. To verify the applicability of the proposed method,
longitudinal vibration analyses of a slender free beam and a cantilevered beam are
considered as the illustrative examples in Section 4. And finally, the paper ends
with conclusions in Section 5.



190 Copyright © 2014 Tech Science Press CMES, vol.101, no.3, pp.187-206, 2014

2 The transformation of initial conditions by pseudo-force method

The pseudo-force method was initially proposed by Mansur et al. (2004) and devel-
oped by Abreu et al. (2006) both for 2D scalar wave propagation problems. Now
we develop it to deal with the non-zero initial conditions for 3D elastodynamic
problems but not directly. The basic idea of the pseudo-force method is transform-
ing the contribution of initial conditions to equivalent body forces. Although the
methodology is quite general, the transformation procedure is somewhat different
from that of 2D case because the governing equation of 3D elastodynamics is more
complicate. Furthermore, a new governing equation with zero initial conditions
will be deduced to help the transformation procedure easier to understand in this
section, which is not presented in the original paper of 2D case.

2.1 The transformation of initial conditions for the general case

The governing equation of elastodynamic problems presented here is correspond-
ing to small displacement theory for homogeneous, isotropic, linearly elastic mate-
rials. The displacement equations of motion can be written as

(λ +G)u j,i j(q, t)+Gui, j j(q, t)+ρbi(q, t) = ρ üi(q, t) (1)

where i, j = 1,2,3, ui is the displacement component, bi represents the body force
per mass, ρ is the medium density and üi is the second derivative of displacement
with respect to time t, λ and G are the Lame constants given by

λ =
υE

(1+υ)(1−2υ)
and G =

E
2(1+υ)

(2)

in which E and ν represent Young’s modulus and Poisson’s ratio respectively.

Eq. (1) satisfies the boundary conditions

ui(q, t) = ūi(q, t), ∀q ∈ Sui

pi(q, t) = σi j(q, t)n j(q) = p̄i(q, t), ∀q ∈ Spi (3)

in which σi j and pi are the stress components and boundary traction respectively,
n j is the normal vector to boundary S at point q, ūi and p̄i are prescribed bound-
ary displacement and traction on Sui and Spi, respectively, and the non-zero initial
conditions

ui(q,0) = u0
i (q), ∀q ∈V

u̇i(q,0) = ν
0
i (q), ∀q ∈V

(4)

in which u̇i is the first derivative of displacement with respect to time.
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Firstly, on the basis of the superposition principle valid for linear time-invariant
systems, we can assume the complete solution of Eq. (1) can be computed by
adding the initial displacement to the displacement increment, just as

ui(q, t) = ui(q,0)+∆ui(q, t) (5)

Substituting Eq. (5) into Eq. (1) gives

(λ +G)∆u j,i j(q, t)+G∆ui, j j(q, t)+ [(λ +G)u j,i j(q,0)+Gui, j j(q,0)]

+ρbi(q, t) = ρ∆üi(q, t)
(6)

We can define the pseudo-force per mass for the initial displacement as

f u0
i (q, t) =

1
ρ
[(λ +G)u j,i j(q,0)+Gui, j j(q,0)]H(t−0) (7)

where H(t − 0) represents the Heaviside function. It is different from that in 2D
wave propagation problems. It should be mentioned that this pseudo-force is di-
vided by the density in order to preserve uniformity with the definition of body
force in the governing equation.

Then, based on the momentum principle “impulse=momentum change”, the con-
tribution of the change in momentum from t = 0− to t = 0 is equivalent to that of
the impulse force f v0

i (q, t) per mass, i.e.∫
V

ρ

∫ 0

0−
f v0
i (q, t)dtdV (q) =

∫
V

ρ[u̇i(q,0)− u̇i(q,0−)]dV (q) (8)

in which, u̇i(q,0−) = 0. It means the system is initially at rest until an impulse
force is applied. There is no instantaneous change in the displacement because the
time duration is too short for displacement to develop.

By substituting the initial velocity in Eq. (4) into the Eq. (8), we can obtain the
pseudo-force for initial velocity just as

f v0
i (q, t) = v0

i (q)δ (t) (9)

in which, δ (t) is the Dirac delta function centered at time t = 0 and its value is zero
at all times other than zero. This is same as the pseudo-force for initial velocity in
2D case [Abreu et al. (2006)] although the formulations are different. A discrete
time sampling of the pseudo-force will be presented in the next sub-section.

Finally, using the pseudo-forces in Eq. (7) and Eq. (9), the Eq. (1) with non-zero
initial conditions can be transformed into a new set of governing equation with
respect to the displacement increment ∆ui(q, t) as

(λ+G)∆u j,i j(q, t)+G∆ui, j j(q, t)+ρ[bi(q, t)+f u0
i (q, t)+f v0

i (q, t)]=ρ∆üi(q, t) (10)
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with completely null initial conditions

∆ui(q,0) = 0, ∀q ∈V

∆u̇i(q,0) = 0, ∀q ∈V
(11)

and new boundary conditions

∆ūi(q, t) = ūi(q, t)−ui(q,0), ∀q ∈ Sui

∆ p̄i(q, t) = p̄i(q, t)− pi(q,0), ∀q ∈ Spi (12)

The complete solution of the original governing Eq. (1) can be obtained by first
solving the transformed Eq. (10) with completely null initial conditions by consid-
ering the pseudo-forces f u0

i (q, t) and f v0
i (q, t) as the effective external forces, and

then adding the result ∆ui(q, t) to the initial displacement ui(q,0).

2.2 Calculation of the pseudo-forces

Before solving the Eq. (10), one must find the nodal values of the pseudo-force
f u0
i (q, t) and f v0

i (q, t) at all domain points. When t>0, we can simplify the f u0
i (q, t)

in Eq. (7) into

f u0
i (q) =

1
ρ
[(λ +G)u j,i j(q,0)+Gui, j j(q,0)] (13)

As mentioned in the paper of Mansur et al. (2004), the pseudo-force f u0
i (q) can be

computed through two ways:

I. When the analytical expression for ui(q,0) is available, it is sufficient to compute
the Eq. (13) analytically to obtain f u0

i (q).

II. When the values of ui(q,0) can not be expressed analytically, we can compute
f u0
i (q) numerically by solving the following well-known Navier equation

(λ +G)u j,i j(q,0)+Gui, j j(q,0)+ [−ρ f u0
i (q)] = 0 (14)

which is the governing equation of elastostatics problem. In Eq. (14), the displace-
ment ui(q,0) is introduced as the input data and the body force f u0

i (q) represents
the unknown variable. Numerical implementation in detail can refer to the refer-
ence [Brebbia (1978)]. However, for 2D scalar wave propagation problems, it will
become a Poisson equation.

If we impose the effect of the impulse pseudo-force f v0
i (q, t) = v0

i (q)δ (t) to a short
time duration [0,∆t] averagely, the equivalent pseudo-force for initial velocity will
become

f v0
i (q) = v0

i (q)/∆t (15)
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which can be computed easily no matter the values of v0
i (q) can be expressed ana-

lytically or not. After computing all nodal values of the pseudo-force f u0
i (q, t) and

f v0
i (q, t), we can employ the CQM-based BEM to solve the new governing equation

(10).

3 The CQM-based BEM formulation and its numerical implementation

The time-domain boundary integral formulation corresponding to the governing
Eq. (10) can be expressed as (Manolis and Beskos, 1988):

Ci j(p)∆u j(p, t) =
∫
s

t∫
0

us
i j(p,q; t− τ)∆p j(q,τ)dτdS(q)

−
∫
s

t∫
0

ps
i j(p,q; t− τ)∆u j(q,τ)dτdS(q)

+ρ

∫
V

t∫
0

us
i j(p,q; t− τ)b j(q,τ)dτdV (q)

+ρ

∫
V

t∫
0

us
i j(p,q; t− τ) f v0

j (q,τ)dτdV (q)

+ρ

∫
V

t∫
0

us
i j(p,q; t− τ) f u0

j (q,τ)dτdV (q)

(16)

where Ci j = δi j/2 when the source point p belongs to smooth surfaces, Ci j = δi j

when p in domain (δi j = 1 when i = j, otherwise δi j = 0), us
i j(p,q; t − τ) and

ps
i j(p,q; t − τ) are time-dependent fundamental solutions, represent the displace-

ment and traction in direction j at field point q and at time t due to a unit concen-
trated load at source point p in direction i and at time τ , respectively.

Unlike dealing with the time integration analytically in the conventional time-
domain BEM, the convolution between the fundamental solutions and the corre-
sponding nodal values in Eq. (16) is performed numerically in the CQM-based
BEM. If we discretize the time interval [0, t] into M time steps of duration ∆t, the
discretized time nodal tm = m∆t, where m=1,2,. . . ,M. Then, apply the CQM proce-
dure and the pseudo-forces f u0

i (q) in Eq. (13) and f v0
i (q) in Eq. (15) to Eq. (16),
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the following representation arises

Ci j(p)∆u j(p,m∆t) =
m

∑
a=0

∫
s

ωm−a(ûs
i j, p,∆t)∆p j(q,a∆t)ds(q)

−
m

∑
a=0

∫
s

ωm−a(p̂s
i j, p,∆t)∆u j(q,a∆t)ds(q)

+ρ

m

∑
a=0

∫
V

ωm−a(ûs
i j, p,∆t)b j(q,a∆t)dV (q)

+ρ

∫
V

ωm(ûs
i j, p,∆t) f v0

j (q)dV (q)+ρ

m

∑
a=0

∫
V

ωm−a(ûs
i j, p,∆t) f u0

j (q)dV (q)

(17)

In this formulation, the effect of the pseudo-force f v0
i (q, t) = v0

i (q)δ (t) is imposed
to the first time step [0,∆t] averagely, being null at the subsequent ones.

For more details of the derivation process of CQM, please refer to Reference [Schanz
and Antes (1997)]. The quadrature weights in the above formulation are

ω
(
mûs

i j, p,∆t) =
ℜ−m

M+1

M

∑
l=0

[ûs
i j(p,q,

γ(ℜeil 2π

M+1 )

∆t
)e−ilm 2π

M+1 ] (18)

ω
(
m p̂s

i j, p,∆t) =
ℜ−m

M+1

M

∑
l=0

[p̂s
i j(p,q,

γ(ℜeil 2π

M+1 )

∆t
)e−ilm 2π

M+1 ] (19)

Here, γ(z) (where z = ℜeil 2π

M+1 ) is the quotient of the characteristic polynomials of a
linear multistep method according to Lubich (1988), for example, the backward dif-
ferentiation formula of second order γ(z) = 1.5−2z+0.5z2. If an error ε (ε ≥ 10-10

according to Abreu et al. (2006)) is assumed in the computation of ûs
i j(p,q, γ(z)

∆t ),
the choice of ℜM+1 =

√
ε yields an error of order O(

√
ε). Note that the calculation

of the quadrature weights (19) and (20) is based on the Laplace transformed fun-
damental solutions ûs

i j(p,q,s) and p̂s
i j(p,q,s), see Reference [Manolis and Beskos

(1988)].

In order to treat the corners of a body surfaces in a simple manner, we adopted
discontinuous elements to discretize the boundary and domain of the model. After
discretizing all faces with BN discontinuous elements and domain with DN discon-
tinuous cells, integrals in Eq. (17) will be carried out over all elements and cells.
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The discretized version of Eq. (17) for each source point qk can be written as:

C(
i jqk)∆um

j (qk) =
m

∑
a=0

BN−1

∑
n=0

∆pa
j(qn)Ga

i j(qk,qn)−
m

∑
a=0

BN−1

∑
n=0

∆ua
j(qn)Ha

i j(qk,qn)

+ρ

m

∑
a=0

DN−1

∑
n=0

(ba
j(qn)+ f u0

j (qn))Fa
i j(qk,qn)+ρ

DN−1

∑
n=0

f v0
j (qn)Fm

i j (qk,qn)

(20)

It should be mentioned that in order to reduce the geometric error, the boundary
face method (BFM) which is proposed by Zhang et al. (2009), is employed in the
numerical implementation in this paper. The BFM is implemented directly based
on the boundary representation data structure (B-rep) that is used in most CAD
packages for geometry modeling. Each bounding surface of geometry model is
represented as parametric form by the geometric map between the parametric space
and the physical space. Both boundary integration and variable approximation are
performed in the parametric space. The integrand quantities are calculated directly
from the faces rather than from elements, and thus geometric error will be reduced
significantly. This method has been successfully used in the calculations of 3D
potential problems [Qin, et al. (2010)], elasticity problems [Huang et al. (2012);
Zhou et al. (2012)], transient heat conduction problems [Guo et al. (2013); Zhou
et al. (2013)], acoustic problems [Wang et al. (2013)] and buckling problems [Li
et al. (2014)].

4 Numerical examples

Two numerical applications, e.g. longitudinal vibrations of a free beam and a can-
tilevered beam, are analyzed next in order to verify the accuracy of the numerical
results provided by the formulation presented in this work. Both beams have the
same geometric and material properties: the length L = 8.0m and the width and
height W =H = 2.0m as shown in Fig. 1, the Young’s modulus E = 1.1×105N/m2

and the mass density ρ = 2.0kg/m3. By setting the Poisson’s ratio υ = 0.0, the 3D
problem is reduced to a 1D problem, of which the analytical solution is available
[Graff (1975)].

The dimensionless parameter β = c1∆t/d, where d is the characteristic element
length, was used to control time-step length. In the traditional time-domain BEM,
it is suggested that β >0.5 because a too small time-step may cause instability in the
numerical scheme. But in the CQM-based BEM, much smaller value of β can be
adopted and will not induce the instability. In this two examples, we adopt β=0.2
to achieve relatively more accurate results. The beam is discretized into 72 linear
quadrilateral elements and 32 linear hexahedral elements as shown in Fig. 2(a). To
treat the corners of a body surfaces in a simple manner, we adopted discontinuous



196 Copyright © 2014 Tech Science Press CMES, vol.101, no.3, pp.187-206, 2014

Figure 1: Geometry of the beam and the boundary conditions: (a) free beam; (b)
cantilevered beam.

elements as shown in Fig. 2(b) and 2(c). The nodes on the face edge are shrunk
to inside the face or the domain by a parameter λ , which is defined by λ = a/b,
where b stands for the length of the element, a the distance of the node to the edge.
It was observed that the best value for λ is 0.25 for linear quadrilateral element,
and 0.167 for quadratic quadrilateral element.

4.1 longitudinal vibrations of a free beam under initial conditions

This example considers a slender beam free at two ends. Two analyses are per-
formed: in the first analysis initial displacement is applied as

u0(q) =−0.005x+0.02, (0≤ x≤ 8) (21)

and in the second analysis initial velocity is applied as

v0(q) = 2.5x−10, (0≤ x≤ 8) (22)
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Figure 2: Discretized model and the discontinuous elements: (a) discretized model;
(b) linear discontinuous quadrilateral element; (c) linear discontinuous hexahedral
element.

For the case of u0(x) = ax+b and v0(x) = cv0x+d, the analytical solution of one-
dimensional rod is given by

u(x, t) =
∞

∑
n=1,3,5...

(
−4al
n2π2 cos

cnπ

l
t +
−4cv0l2

cn3π3 sin
cnπ

l
t) · cos

nπx
l

(23)

in which l represents the length of rod. For detail derivation, please refer to [Graff
(1975)].

To demonstrate the accuracy of the CQM-based formulation, in Fig. 3 and Fig. 4
the displacement responses at point A(8,1,1) due to the initial displacement filed
and due to the initial velocity filed, respectively, are compared with analytical so-
lutions. One can observe that the numerical responses present a good agreement
with the analytical ones initially, but the accuracy of results get worse with the in-
crease in time. This is because the information from all earlier time steps must be
used in time-domain BEM, the errors of numerical integration will accumulate at
later time steps. To reduce the numerical damping, we can improve the precision of
numerical integration, for examples, use an inadequate number of sub-elements or
Gauss points and use high order interpolation functions. Recently, a Runge-Kutta
convolution quadrature method is presented in Reference [Banjai et al. (2012)],
which is preferable with regard to less numerical oscillations in the solution and
better representation of wave fronts. It will be very helpful to improve the accuracy
of results.



198 Copyright © 2014 Tech Science Press CMES, vol.101, no.3, pp.187-206, 2014

 
Figure 3: Displacement responses at point A of the free beam under initial dis-
placement.

 
Figure 4: Displacement responses at point A of the free beam under initial velocity.
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4.2 longitudinal vibrations of a cantilevered beam under initial conditions

In this case, a cantilevered beam fixed at one end (x=0) and free at the other end
(x=8) is considered. Two analyses were performed. The first analyses is carried out
by assuming initial conditions are

u0(q) = 0.005x, (0≤ x≤ 8)

v0(q) = 2.5, (0≤ x≤ 8)
(24)

For the case of u0(x) = ax+b and v0(x) = cv0x+d, the analytical solution of one-
dimensional rod is given by

u(x, t)=
∞

∑
n=1,3,5...

{ 4
nπ

[(−1)
n−1

2
2al
nπ

+b]cos
cnπ

2l
t+

8l
cn2π2[(−1)

n−1
2

2cv0l
nπ

+d]sin
cnπ

2l
t}·sin

nπx
2l

(25)

in which l represents the length of rod, c=
√

E/ρ is the wave propagation velocity.

The displacement responses at point A(8,1,1) and point B(4,1,1) obtained by the
present CQM-based BEM are compared with analytical solutions in Fig. 5 and Fig.
6 respectively. The traction response at the fixed end of beam is compared with
analytical solutions in Fig. 7. The numerical results are in a good agreement with
the analytical ones, demonstrating the accuracy of the proposed formulation.

In the previous analyses, the pseudo-forces which account for initial displacements
contribution are computed analytically because the analytical expression of u0(q)
is available. But in the second analysis of this sub-section, the cantilevered beam is
subjected to a non-uniform loading

p(x = 8) = 500z, (0≤ z≤ 2) (26)

at the free end as shown in Fig. 8. After the status of the beam is stable, release
the external force and observe the transient dynamic response of the beam. That
is to say, the initial displacement in this analysis is due to the elastic deformation.
In this case, the pseudo-forces which account for initial displacements contribution
are computed numerically according to the procedure described in the Section 2.

In Fig. 9, the displacement response of x direction at point A(8,1,1) obtained by the
CQM-based BEM is compared with the results provided by finite element method
(FEM) software. Traction response of x direction at point C(0,1,1) is depicted in
Fig. 10. Again, comparison is made with the results provided by the FEM software.
The results are in a good agreement, demonstrating the applicability of the proposed
method again.
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Figure 5: Displacement responses at point A of the cantilevered beam under initial
conditions.

 

Figure 6: Displacement responses at point B of the cantilevered beam under initial
conditions.
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Figure 7: Traction responses at the fixed end of the cantilevered beam under initial
conditions.

Figure 8: Cantilevered beam under a non-uniform loading.
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Figure 9: Displacement response of x direction at point A of the cantilevered beam
under non-analytical initial displacement field.

 
Figure 10: Traction response of x direction at point C of the cantilevered beam
under non-analytical initial displacement field.
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5 Conclusions

In this paper, a general method is presented to deal with non-null initial conditions
in the governing equation for 3D elastodynamic problems. This method is devel-
oped from the pseudo-force method which is proposed by Mansur et al. (2004) for
2D scalar wave propagation problems but not directly. In this method, the initial
conditions are transformed into equivalent pseudo-forces based on the linearity of
the problem and the momentum principle. The basic steps for the transformation
of the initial conditions, related to the displacement and its time derivative, are
presented and discussed in detail. A new set of equations of motion subjected to
completely null initial conditions is obtained finally. The CQM-based BEM for-
mulation is applied to compute dynamic responses numerically. To evaluate the
proposed method, longitudinal vibrations of a free beam and a cantilevered beam
are analyzed. Numerical results are compared with the analytical solutions or the
FEM solutions. They are in a good agreement, demonstrating the applicability
of this method. Besides, the whole transformation process is based on the gov-
erning equations. Therefore, this method can also be applied to the traditional
time-domain BEM formulation and other numerical method.
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