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Dynamic Response of Borehole in Poroelastic Medium
with Disturbed Zone
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Abstract: Dynamic response of an infinite cylindrical borehole in a poroelastic
medium with an excavation disturbed zone is investigated in this paper. The bore-
hole is subjected to axisymmetric time-harmonic loads and fluid sources applied to
its surface, which is either fully permeable or impermeable. The governing equa-
tions based on Biot’s poroelastodynamics theory are solved by using two scalar po-
tentials and two vector potentials. The general solutions are then derived through
the application of Fourier integral transform with respect to the vertical coordinate.
An exact stiffness matrix scheme is established from the derived general solutions
to include the excavation disturbed zone. Boundary value problems corresponding
to a borehole with the disturbed zone subjected to axisymmetric loads and fluid
sources are formulated, and selected numerical results are presented to portray dy-
namic response of a borehole in a poroelastic medium with consideration of exca-
vation disturbed zone.

Keywords: Borehole, Dynamic response, Exact stiffness matrix method, Exca-
vation disturbed zone, Poroelasticity.

1 Introduction

The study of dynamic response of a cylindrical borehole in soils and rocks has
useful applications to several engineering disciplines. For example, the analysis
of impact, from gas explosion inside a mine, on the surrounding rock is impor-
tant in evaluating the damage caused by gas explosions. In the past, several re-
searchers [e.g. Jordan (1962); Parnes (1986)] investigated dynamic response of
deep cylindrical borehole in an isotropic or transversely isotropic elastic medium to
axisymmetric loading applied to the borehole surface. Geomaterials are generally
two-phase materials with solid skeleton and pores filled with water, and commonly
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known as poroelastic materials. The first theory of elastic wave propagation in a
poroelastic medium was established by Biot (1956) by adding inertia terms to his
quasistatic theory [Biot (1941)]. A review of literature reveals that Biot’s theory
of poroelasticity [Biot (1941)] has been widely employed for investigating vari-
ous problems related to quasi-static response of a cylindrical borehole in a poroe-
lastic medium [Detornay and Cheng (1988); Rajapakse (1993); Cui, Cheng and
Abousleiman (1997); Abousleiman and Chen (2010); Kaewjuea and Senjuntichai
(2014)]. However, a limited number of studies related to dynamic response of a
borehole in a poroelastic medium have appeared in the literature when compared to
its quasi-static counterpart despite their relevance to geotechnical engineering and
earthquake engineering. An example is a study by Lu and Jeng (2006), who con-
sidered a wave propagation problem related to an infinite borehole in a poroelastic
medium.

Borehole drilling process is a primary factor in causing changes of physical, me-
chanical and hydraulic properties around the borehole such as bulk modulus, shear
modulus, desaturation and strength [Sato, Kikuchi and Sugihara (2000)]. The soil
or rock zone, where its properties are changed, is called an excavation disturbed
zone (EDZ). The level of change depends on the soil/rock properties, the stress
field, the borehole geometry, the drilling method and the excavation time. The
EDZ is thus one of the most important factors that affect the stability of borehole
and could have a significant influence on stresses and pore pressure in the vicinity
of borehole. The characterization of the EDZ has been investigated over the last fif-
teen years by several researchers. For example, Sato, Kikuchi and Sugihara (2000)
performed an excavation disturbed experiment at Tono mine in central Japan to ob-
serve the soil/rock properties change such as fracturing, stress redistribution and
desaturation; and width of the EDZ induced by excavation process. The study of
the character and the extent of excavation damage at the underground research lab-
oratory (URL) located in Manitoba, Canada was presented by Martino and Chan-
dler (2004). Later, Armand, Lebon, Cruchaudet, Rebours, Morel and Wileveau
(2007), and Shao, Schuster, Sonnke and Brauer (2008) studied the geological and
hydraulic characterization, the influence of rock mechanical properties and excava-
tion method of EDZ at the URL Meuse/Haute-Marne in France. Kwon et al. (2008,
2009) investigated the influence of the EDZ on thermal, hydraulic and mechanical
behaviors near the borehole during the construction of the KAERI underground
research tunnel in Korea. It has been recommended that the EDZ should be con-
sidered as an important parameter during the design of underground facilities. A
recent study by Kaewjuea and Senjuntichai (2014), who investigated quasi-static
response of a cylindrical borehole in a poroelastic medium with disturbed zone,
also confirms a significant influence from the EDZ on stresses and pore pressure in
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the vicinity of borehole. To our knowledge, studies related to a cylindrical borehole
in a poroelastic medium under dynamic loading with the consideration of excava-
tion disturbed zone have never been reported in the literature.

This paper presents dynamic response of an infinite cylindrical borehole in a poroe-
lastic medium with excavation disturbed zone subjected to axisymmetric time-
harmonic loading. The general solutions are derived based on Biot’s poroelasto-
dynamics theory and Fourier transform. Both shear modulus and permeability of
the medium are assumed to be changed from their original values in the disturbed
zone. In the present study, the EDZ is discretized into a number of infinitely long
tubular layers with small thickness and homogeneous properties perfectly bonded
together. Boundary value problems corresponding to a borehole subjected to ax-
isymmetric loading applied at its surface are formulated. Two extreme hydraulic
boundary conditions at the borehole surface, i.e. fully permeable and imperme-
able surfaces, are considered. Selected numerical results are presented to portray
the influence of poroelastic effects and the excavation disturbed zone on dynamic
response of borehole.

2 Governing equations and general solutions

Consider an infinite cylindrical borehole in a poroelastic medium with excavation
disturbed zone subjected to axisymmetric loadings defined with a cylindrical coor-
dinate system (r,θ ,z) as shown in Fig. 1. The governing equations for axisymmet-
ric motions of a poroelastic medium, in the absence of body forces (solid and fluid)
and a fluid source, can be expressed according to Biot (1962) as
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∂ z2 ; the superscript dot denotes the derivative of field vari-
ables with respect to the time parameter t; ui and wi denote the displacement in the i
direction (i = r,z) of the solid matrix and the fluid displacement relative to the solid
displacement respectively; ε is the dilatation of the solid matrix; ζ is the variation
of the fluid content per unit reference volume defined as ζ = −wi,i; µ and λ are
the shear modulus and Lame′ constant of the bulk material respectively; ρ and ρ f



210 Copyright © 2014 Tech Science Press CMES, vol.101, no.3, pp.207-228, 2014

denote the mass densities of the bulk material and the pore fluid respectively; m is
a density-like parameter defined as m = ρ f /β , in which β is porosity; and b is a
parameter accounting for the internal friction due to the relative motion between
the solid matrix and the pore fluid. If internal friction is neglected then b = 0. In
addition, the parameters α (0≤ α ≤1) and M (0≤ M < ∞) are Biot’s parameters
accounting for compressibility of the two-phase material [Biot (1941)]. For a com-
pletely dry material, α=0 and M=0, whereas for a material with incompressible
constituents, α= 1 and M→ ∞.

The constitutive relations for a homogeneous poroelastic material [Biot (1941)] can
be expressed as
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∂ur

∂ r
+λε−α p (5)
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∂uz

∂ z
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Figure 1: Infinite borehole in poroelastic medium with excavation disturbed zone.
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where σrr, σθθ , σzz and σrz denote the total stress components of the bulk material,
and p is the excess pore fluid pressure (suction is considered negative), which can
be expressed in terms of dilatation and variation of fluid volume as

p =−αMε +Mζ (9)

In addition, the fluid discharge in the i-direction (i = r,z), denoted by qi, is defined
as

qi =
∂wi

∂ t
(10)

The governing equations, Eqs. (1)-(4), can be solved by using the following
Helmholtz representation for axisymmetric vector fields.
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where φi(i=1, 2) and ϕi(i=1,2) are scalar and vector fields respectively.

Substituting Eqs. (11)-(14) into Eqs. (1)-(4) together with the assumption that
the motion is time-harmonic with a factor of eiωt where ω is the frequency of
excitation, yields two sets of partial different equations for scalar fields ϕ1, ϕ2 and
vector fields φ1, φ2 as follows:[
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Note that the term eiωt is suppressed from all expressions for brevity. The above
partial differential equations are reduced to ordinary differential equations by per-
forming Fourier transform with respect to the z-coordinate. The Fourier transform
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of a function f (r,z) with respect to the vertical coordinate and the inverse relation-
ship are given by [Sneddon (1951)]

f̃ (r,ξ ) =
1

2π

∞∫
−∞

f (r,z)eiξ zdz (19)

f (r,z) =
∞∫
−∞

f̃ (r,ξ )e−iξ zdξ (20)

where a tilde (˜) denotes the Fourier transform of a function and ξ is the Fourier
transform parameter.

After lengthy manipulations, it can be shown that the general solutions of Fourier
transforms of ϕi(i=1, 2) and φi(i=1,2) can be expressed as

ϕ̃1(r,ξ ) = AI0(γ1r)+BK0(γ1r)+CI0(γ2r)+DK0(γ2r) (21)

ϕ̃2(r,ξ ) = χ1 [AI0(γ1r)+BK0(γ1r)]+χ2 [CI0(γ2r)+DK0(γ2r)] (22)

φ̃1(r,ξ ) = EI0(γ3r)+FK0(γ3r) (23)

φ̃2(r,ξ ) = χ3 [EI0(γ3r)+FK0(γ3r)] (24)

where A(ξ ), B(ξ ), C(ξ ), D(ξ ), E(ξ ), and F(ξ ) are arbitrary functions to be deter-
mined by applying appropriate boundary and/or continuity conditions relevant to
a given problem, and γi (i=1, 2, 3) and χi (i=1, 2, 3) are defined in Appendix A.
In addition, In and Kn are modified Bessel functions of the first and second kinds
respectively of order n [Watson (1944)]. Thereafter, the general solutions for dis-
placements, stresses, excess pore pressure and fluid discharge can be obtained in
terms of the arbitrary functions, A(ξ ) to F(ξ ), by using Eqs. (5)-(14), as follows:

ũr =γ1 [AI1(γ1r)−BK1(γ1r)]+ γ2 [CI1(γ2r)−DK1(γ2r)]

+ iξ γ3 [EI1(γ3r)−FK1(γ3r)]
(25)

ũz = iξ [AI0(γ1r)+BK0(γ1r)+CI0(γ2r)+DK0(γ2r)]− γ
2
3 [EI0(γ3r)+FK0(γ3r)]

(26)

w̃r =γ1χ1 [AI1(γ1r)−BK1(γ1r)]+ γ2χ2 [CI1(γ2r)−DK1(γ2r)]

+ iξ γ3χ3 [EI1(γ3r)−FK1(γ3r)]
(27)

w̃z =iξ {χ1 [AI0(γ1r)+BK0(γ1r)]+χ2 [CI0(γ2r)+DK0(γ2r)]}
− γ

2
3 χ3 [EI0(γ3r)+FK0(γ3r)]

(28)
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p̃ = η1 [AI0(γ1r)+BK0(γ1r)]+η2 [CI0(γ2r)+DK0(γ2r)] (29)

σ̃rr =β1 [AI0(γ1r)+BK0(γ1r)]−2µγ1r−1 [AI1(γ1r)−BK1(γ1r)]

+β2 [CI0(γ1r)+DK0(γ1r)]−2µγ2r−1 [CI1(γ1r)−DK1(γ1r)]

+ iξ γ
2
3 [EI0(γ3r)+FK0(γ3r)]− iξ γ3r−1 [EI1(γ3r)−FK1(γ3r)]

(30)
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1 +αη1) [AI0(γ1r)+BK0(γ1r)]+2µγ1r−1 [AI1(γ1r)−BK1(γ1r)]

− (λL2
2 +αη2) [CI0(γ2r)+DK0(γ2r)]+2µγ2r−1 [CI1(γ2r)−DK1(γ2r)]

+2µiξ γ3r−1 [EI1(γ3r)−FK1(γ3r)]
(31)

σ̃zz =− (2µξ
2 +λL2

1 +αη1) [AI0(γ1r)+BK0(γ1r)]

− (2µξ
2 +λL2

2 +αη2) [CI0(γ1r)+DK0(γ1r)]

−2µiξ γ
2
3 [EI0(γ3r)+FK0(γ3r)]

(32)

σ̃rz =2µiξ γ1 [AI1(γ1r)−BK1(γ1r)]+2µiξ γ2 [CI1(γ1r)−DK1(γ1r)]

−µγ3(ξ
2 + γ

2
3 ) [EI1(γ3r)−FK1(γ3r)]

(33)

where ηi, βi, and Li(i=1, 2) are defined in Appendix A.

It can be shown that the general solutions for axisymmetric deformations of a
poroelastic medium in the Fourier transform domain, given by Eqs. (25)-(33), can
be expressed in the following matrix form.

u(r,ξ ) = R(r,ξ )C(ξ ) (34)

f(r,ξ ) = S(r,ξ )C(ξ ) (35)

where

u(r,ξ ) =
[

ũr ũz p̃
]T (36)

f(r,ξ ) =
[

σ̃rr σ̃rz w̃r
]T (37)

and

C(ξ ) =
[

A B C D E F
]T (38)

The elements of matrices R and S in the above equations are given in Appendix A.
In the ensuing section, the general solutions are employed to establish an exact stiff-
ness matrix scheme to investigate dynamic response of a borehole in a poroelastic
medium with excavation disturbed zone.
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3 Borehole in excavation disturbed zone

Naturally, a primary factor affecting the soil/rock properties around a borehole is
an excavation process. The zone where the properties and conditions have been
changed is known as an excavation disturbed zone (EDZ) [Sato, Kikuchi and Sug-
ihara (2000); Martio and Chandler (2004); Malmgren, Saiang, Töyrä and Bodare
(2007); Shao, Schuster, Sonnke and Brauer (2008); Kwon and Cho (2008); Kwon,
Lee, Cho, Jeon and Cho (2009)]. The properties of the EDZ could be estimated
based on laboratory and in situ tests [Lai, Cai, Ren, Xie and Esaki (2006); Kwon,
Lee, Cho, Jeon and Cho (2009)]. The shear modulus of the EDZ is normally re-
duced from its original value before excavation. On the other hand, the permeability
in the EDZ could be increased from the original value due to an excavation. Con-
sider a cylindrical borehole with the EDZ of a length d as shown in Fig. 1. It is
assumed that the shear modulus in the EDZ linearly decreases from the borehole
surface, and the permeability in the medium increases uniformly in the disturbed
zone according to the following equations.

µ(r) = µ0 [m1(r−a−d)+1] (39)

and

b(r) = m2b0 (40)

where µ0 and b0 denote the original values of the shear modulus and the parame-
ter b, which is defined as a ratio between fluid viscosity and intrinsic permeability,
respectively before excavation. In addition, m1 and m2 are non-negative constants
representing the degree of disturbance due to drilling process in the shear modulus
and the parameter b respectively. Since b is inversely proportional to permeability,
m2 should then be less than one. The poroelastic medium in Fig. 1 is then separated
into two zones, i.e. the disturbed zone (a≤ r < d) and the undisturbed zone (r > d).
To incorporate the influence of excavation disturbed zone, the EDZ is discretized
into a total of N infinitely long tubular layers with small thickness perfectly bonded
together. Each discretized layer is homogeneous and governed by Biot’s poroelas-
todynamics theory. The following relationship can be established by using Eqs.
(34) and (35) for the nth layer.

F(n) = K(n)U(n) (41)

where K(n) is an exact stiffness matrix in the Fourier transform space describing the
relationship between the generalized displacement vector U(n) and the generalized
force vector F(n) for the nth layer, in which,

U(n) =
[

u(n)(rn,ξ ) u(n)(rn+1,ξ )
]T

(42)
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F(n) =
[
−f(n)(rn,ξ ) f(n)(rn+1,ξ )

]T
(43)

In Eqs. (42) and (43), U(n) is a column vector of generalized displacements of the
nth layer whose elements are related to the Fourier transforms of displacements and
pore pressure of the inner (r = rn) and outer (r = rn+1) surfaces of the nthlayer; F(n)

is a column vector of generalized forces whose elements are related to the Fourier
transforms of traction and fluid displacement of the inner and outer surfaces of the
nth layer. In addition, the matrices u(n) and f(n) are identical to u and f given by
Eqs. (34) and (35) respectively, except that the material properties of the nth layer
are employed with r = rn or r = rn+1. Similarly, the stiffness matrix K(N+1) for the
undisturbed zone (r > d in Fig. 1) is obtained by establishing the relationship be-
tween the generalized displacement vector U(N+1) and the generalized force vector
F(N+1).

The global stiffness matrix of the EDZ can be assembled by using the continuity
conditions of traction and fluid flow at the layer interfaces. The final equation
system can be expressed as

F∗ = K∗U∗ (44)

where K∗ is a global stiffness matrix, which is a symmetric matrix with a bandwidth
of 6. In addition, U∗ and F∗ are the global vectors of generalized displacements and
generalized forces defined as

U∗ =
[

u(1) u(2) · · · u(n) · · · u(N) u(N+1)
]T

(45)

F∗ =
[

f(1) f(2) · · · f(n) · · · f(N) f(N+1)
]T

(46)

Consider a borehole in a poroelastic medium with the EDZ subjected to axisym-
metric loading as shown in Fig. 1. The boundary conditions for a borehole under
applied radial traction Fr(z) and applied vertical traction Fz(z) are given by

σ̃rr(1,ξ ) = F̃r(ξ ) (47)

σ̃rz(1,ξ ) = F̃z(ξ ) (48)

and p̃(1,ξ ) = 0 for fully permeable surface (49)

or q̃r(1,ξ ) = 0 for impermeable surface (50)

The boundary conditions for a borehole under applied fluid pressure P(z) are given
by

σ̃rr(1,ξ ) =−αP̃(ξ ) (51)
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σ̃rz(1,ξ ) = 0 (52)

and

p̃(1,ξ ) = P̃(ξ ) (53)

The boundary conditions for a borehole under applied fluid discharge Q(z) are
given by

σ̃rr(1,ξ ) =−α p̃(ξ ) (54)

σ̃rz(1,ξ ) = 0 (55)

and

q̃r(1,ξ ) = Q̃(ξ ) (56)

4 Numerical results and discussion

A computer program has been developed based on the solution procedure described
in the previous section to solve boundary value problems related to a borehole in
a poroelastic medium with excavation disturbed zone under axisymmetric time-
harmonic loading. This requires the solution of the system of linear simultaneous
equations given by Eq. (44). Since Eq. (44) is established in the Fourier transform
space, it has to be solved for discrete values of ξ . The integral with respect to ξ can
be reduced to a semi-infinite integral since the integrand is either an even or odd
function of ξ . To evaluate such integral numerically, it is common to truncate the
domain of integration from (0,∞) to (0, ξL) where ξL is a finite real number. This
integral is then computed by using an adaptive numerical quadrature scheme that
subdivides the interval of integration. The integral over each subinterval is eval-
uated by employing a 21-point Gauss–Kronrod rule. The subdivision continues
until the error from the approximation is less than a specified tolerance. A con-
vergence study was carried out to determine appropriate values of ξL used in the
truncation of the semi-infinite integrals, and the number of tubular layers (N) used
in the discretization of the EDZ. It is found that converged numerical results are
obtained when ξL ≥ 100 and N ≥20. All numerical results presented in this paper
thus correspond to the cases where ξL=100 and N=20.

4.1 Comparison with existing solutions

The accuracy of the present solution scheme is verified by comparing with the exist-
ing dynamic solutions for a borehole in both elastic and poroelastic media without
a disturbed zone. Parnes (1986) presented time-harmonic response of a cylindrical
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borehole in an elastic medium due to axisymmetric traction applied at its surface.
Fig. 2(a) shows comparisons of nondimensional radial displacement and tangential
stress along the radial direction (z/a=0) due to a radial ring load of magnitude P.
Poisson’s ratio equal to 0.25 and a nondimensional frequency of δ=2.0, defined as
δ = ωa

√
ρ/µ0, are used. The present solution is obtained by using 20 tubular lay-

ers (N = 20) of identical properties. In addition, m1 = 0 and m2 = 1 are considered to
represent a borehole without the disturbed zone. Excellent agreement between the
two solutions is noted in Fig. 2(a). Fig. 2(b) shows comparisons of vertical varia-
tions of the amplitudes of radial displacement and vertical stress at r/a=1.5 due to
a radial ring load of magnitude P applied at z/a= 0 of a borehole in a poroelastic
medium without the disturbed zone between the present solutions and those given
by Lu and Jeng (2006). The following material parameters are used: λ/µ0=0.333;
M/µ0=0.667; ρ f /ρ=0.488; α=0.95; m/ρ=3.333; and b∗ = ab0/

√
ρµ0= 577.40.

The borehole diameter is equal to 2a, and its surface is assumed to be fully per-
meable. Two nondimensional frequencies of δ=5.73 and 11.45 are considered.
Excellent agreement is once again observed between the present solutions and the
solutions given by Lu and Jeng (2006). The accuracy of the present solution scheme
is thus confirmed through these independent comparisons.

r/a

1 2 3 4 5


|u

r|
/P

, 
a

| 


|/

P
, 

a
| 

zz
|/

P

0.00

0.15

0.30

0.45

0.60

Radial displacement

Hoop stress

Vertical stress

Panes (1986)

    

  

 

(a) (b)

Figure 2: Comparison with existing solutions for a borehole in (a) elastic medium
and (b) poroelastic medium.

4.2 Borehole under applied radial traction

The first set of numerical results corresponds to the case where axisymmetric radial
traction of magnitude f0 is applied over a finite segment of h/a=1 at the borehole
surface (see Fig. 1). The following nondimensional parameters are considered for
the surrounding poroelastic medium in all numerical results presented hereafter:
λ/µ0=0.333; M/µ0=0.667; ρ f /ρ=0.5; α=0.95 and m/ρ=3.333. The influence
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from the size of excavation disturbed zone is presented first. Fig. 3 presents ra-
dial profiles of non-dimensional radial displacement at the mid-plane (z/a = 0) of
a fully permeable wall with b∗=1. The lengths of the excavation disturbed zone,
varied from d/a = 1 to 5, with m1=0.1 and m2=0.001 are considered. The influ-
ence from the size of EDZ on the radial displacement in the vicinity of the borehole
wall (r/a < 3) is clearly observed from the results presented in Fig. 3.

Nondimensional radial displacement at the center of loading (r/a = 1, z/a = 0) are
presented in Fig. 4 for the frequency range 0 < δ ≤ 10. The shear modulus is as-
sumed to be linearly varied with the radial direction (m1 = 0, 0.1 and 0.2) whereas
the permeability in the medium is assumed to be unchanged from the excavation,
i.e. m2=1.0. Two extreme cases of the hydraulic boundary conditions at the bore-
hole surface, i.e. fully permeable and impermeable, are considered. In addition, the
size of disturbed zone considered in this figure and in all figures presented hereafter
is assumed to be twice the borehole diameter, i.e. d/a = 4 [Sato, Kikuchi and Sugi-
hara (2000)]. Numerical results in Fig. 4 indicate that the change in shear modulus
in the excavation disturbed zone has a significant influence on the radial displace-
ment. Radial variations of both real and imaginary parts with δ for the same value
of m1 are similar for fully permeable and impermeable borehole walls. Both real
and imaginary parts of the radial displacement show more oscillatory variation with
δ for the borehole with higher degree of change in shear modulus (higher value of
m1). In addition, the radial displacement also increases with increasing m1 when
δ < 2. The influence of internal friction between solid and fluid, represented by the
parameter b, on the radial displacement is also considered with b∗=1 and 1000 in
Fig. 4. It is found that the difference between the solutions with b∗= 1 and 1000 is
typically within 5% for both real and imaginary parts irrespective of the hydraulic
boundary condition at the borehole wall.
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Figure 3: Profiles of radial displacement along the r-axis due to applied radial
traction at permeable wall.
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 Figure 4: Radial displacement at the center of loading due to radial traction on (a)
permeable wall and (b) impermeable wall.

Nondimensional tangential stresses at the center of loading (r/a = 1, z/a = 0) are
presented for both fully permeable and impermeable borehole walls in Figs. 5(a)
and 5(b) respectively. Tangential stress around the borehole is useful in the study of
borehole stability and fracturing. For a fully permeable borehole wall, both real and
imaginary parts of tangential stress show minor dependence on the internal friction
between solid and fluid (parameter b) similar to what observed from the radial
displacement presented in Fig. 4, whereas the internal friction has more influence
on the impermeable borehole. Contrarily to the radial displacement results shown
in Fig. 4, tangential stress decreases with increasing m1 when δ < 2. At higher
frequencies (δ ≥2), both real and imaginary parts of tangential stress show more
complicated variations with m1.

Nondimensional excess pore pressure at the center of loading (r/a = 1 and z/a= 0)
due to radial traction applied at an impermeable borehole wall is presented in Fig.
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 Figure 5: Tangential stress at the center of loading due to radial traction on (a)
permeable wall and (b) impermeable wall.

6(a). Numerical results presented in Fig. 6(a) indicate that excess pore pressure de-
pends very significantly on the internal friction b∗ and the change in shear modulus
m1. It can be seen that excess pore pressure corresponding to b∗=1 shows more os-
cillatory variation with δ when compared to that of b∗=1000. Excess pore pressure
increases with increasing m1 at lower frequencies (δ < 4) whereas it shows compli-
cated variations with higher frequencies (δ > 4). Figure 6(b) presents nondimen-
sional radial fluid discharge at the center of loading due to applied radial traction
at a fully permeable borehole wall. As expected, both real and imaginary parts of
fluid discharge are negligible whenδ → 0. It is also found that radial discharge
corresponding to b∗=1 is larger than that of b∗=1000 since b∗ is inversely propor-
tional to permeability, and it shows more oscillatory variation withδ similar to what
observed from the excess pore pressure shown in Fig. 6(a). In addition, both real
and imaginary parts of the radial discharge show minor dependence on the effect
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of EDZ when b∗=1000 over the whole frequency range of δ < 10.
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Figure 6: (a) Excess pore pressure and (b) radial discharge at the center of loading
due to applied radial traction.

Next, radial variations of nondimensional radial displacement, tangential stress, ex-
cess pore pressure, and fluid discharge due to uniform radial traction are illustrated
in Figs. 7 and 8 along the plane z/a=0. Solutions are presented for b∗=1 with m1=0,
0.1 and 0.2, and δ= 0.5 and 2.0. It can be seen from figure 7 that both radial dis-
placement and tangential stress in the vicinity of borehole (r/a < 3) depend signif-
icantly on both δ and m1. The maximum values of both real and imaginary parts of
radial displacement for δ = 0.5 occur at the borehole wall before decaying with the
radial distance. For higher frequency (δ=2.0), the displacement profiles show more
oscillatory variations, but the maximum values are still found at the borehole wall.
The radial displacement decreases with increasing the value of m1 in the vicinity of
borehole (r/a < 3), and the influence from the EDZ on the displacement could be
neglected when r/a > 5. Radial profiles of nondimensional tangential stress in Fig.
7(b) reveal that the maximum stresses are observed at the borehole wall, and then
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decay along the radial distance. The tangential stress deceases with increasing m1.
In addition, the profiles of tangential stress for δ=2 show more oscillatory variation
than those of the radial displacement shown in Fig. 7(a).
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 Figure 7: Profiles of (a) radial displacement and (b) tangential stress along the
r-axis due to applied radial traction at permeable wall.

Figs. 8(a) and 8(b) present variations of nondimensional excess pore pressure and
fluid discharge respectively along the radial direction at the mid-plane (z/a=0) for
fully permeable borehole surface. Numerical results indicate that the excavation
disturbed zone has a significant influence on both excess pore pressure and fluid
discharge for δ = 2.0, whereas the solutions at lower frequency (δ=0.5) are nearly
independent of m1, especially when r/a > 5. Both real and imaginary parts of
pore pressure when δ = 2.0 show oscillatory variation along the radial direction.
The peak values of fluid discharge shown in Fig. 8(b) are observed at the borehole
surface, which are the same as those of the radial displacement and tangential stress
presented in Fig. 7. This is consistent with the fact that the maximum solutions
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occur at the point of applied loading. Excess pore pressure is equal to zero at the
wall due to the specified boundary condition. In addition, both excess pore pressure
and fluid discharge diminish to negligible level when r/a > 10.
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Figure 8: Profiles of (a) excess pore pressure and (b) radial discharge along the
r-axis due to applied radial traction at a permeable wall.

4.3 Borehole under applied fluid pressure

The final set of numerical results corresponds to the case where time-harmonic
fluid pressure of magnitude p0 is applied over segment of h/a=1 at the borehole
wall (see Fig. 1). The permeability in the disturbed zone is changed according
to Eq. (40) with m2 = 0.1, 0.5 and 1.0 whereas the shear modulus in the medium
remains the same, i.e. m1 = 0. In addition, the solutions in Figs. 9 and 10 are
presented for b∗= 1. Figs. 9(a) and 9(b) show radial variations of nondimensional
radial displacement and tangential stress respectively along the mid-plane (z/a=
0) over the range 0 ≤ r/a ≤ 5. Radial profiles presented in Figure 9 reveal that
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radial displacement and tangential stress show minor dependence on the change in
permeability (m2). It can also be seen that radial profiles of radial displacement
and tangential stress for δ = 0.5 are quite smooth along the plane z/a = 0 when
compared to oscillatory variations observed in the displacement and stress profiles
for δ = 2.0. It is noted that the displacement and tangential stress due to the applied
fluid pressure can be neglected when r/a > 5.
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 Figure 9: Profiles of (a) radial displacement and (b) tangential stress along the
r-axis due to applied fluid pressure.

Figures 10(a) and 10(b) present profiles of nondimensional excess pore pressure
and fluid discharge respectively along the radial distance 0≤ r/a≤ 5 at z/a= 0 due
to time-harmonic fluid pressure applied at the borehole surface. It is found that both
real and imaginary parts of both pore pressure and fluid discharge show smooth
variations with r/a for δ = 0.5, but more oscillatory variations when δ = 2.0 sim-
ilar to what observed from radial displacement and tangential stress profiles illus-
trated in Fig. 9. At δ = 0.5, both pore pressure and fluid discharge are maximal at
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the borehole surface and decrease along the radial distance before diminish to neg-
ligible level when r/a > 5. At higher frequency (δ = 2.0), both pore pressure and
discharge show more dependence on the change in permeability in the excavation
disturbed zone. It is found that a borehole with higher value of m2 shows lower
amplitudes of pore pressure and discharge than those correspond to lower value of
m2.
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Figure 10: Profiles of (a) excess pore pressure and (b) radial discharge due to ap-
plied fluid pressure.

5 Conclusion

The dynamic response of a cylindrical borehole in a poroelastic medium with an
excavation disturbed zone subjected to time-harmonic loading is presented in this
paper. A set of general solutions to the governing equations from Biot’s poroelas-
todynamics theory is derived by using Helmholtz representation for axisymmetric
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vector fields and the Fourier integral transforms. These solutions are used to formu-
late boundary value problems corresponding to a borehole with the disturbed zone
subjected to axisymmetric loading applied at its surface. The presented numeri-
cal results indicate that dynamic response of borehole depends on several factors
such as material properties, degree of disturbance from drilling process, hydraulic
boundary conditions along the borehole surface and the loading types. It is found
that radial displacement, tangential stress, pore pressure and fluid discharge depend
significantly on the change in shear modulus in the disturbed zone. The influence
of internal friction due to relative motion between solid and fluid becomes less
influence on radial displacement and tangential stress, but it has a significant influ-
ence on excess pore pressure and fluid discharge. The solutions along the radial
direction show more oscillatory variations when the frequency excitation and the
change in shear modulus increase. The solutions presented in this paper are useful
to study several problems related to dynamic response of borehole in a poroelastic
medium. For example, the present solutions can be employed to study wave propa-
gation problems corresponding to the empty and liquid-filled cylindrical boreholes
in a fluid-saturated porous medium. In addition, the derived analytical solutions
can also be extended for stress analysis of a borehole under transient loadings by
employing an appropriate technique such as the fast Fourier transforms.
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Appendix A

The matrices R and S in Eqs. (34) and (35) corresponding to dynamic response of
a borehole problem are given by

R =

 γ1I1(γ1r) −γ1K1(γ1r) γ2I1(γ2r) −γ2K1(γ2r) iξ γ3I1(γ3r) −iξ γ3K1(γ3r)
iξ I0(γ1r) iξ K0(γ1r) iξ I0(γ2r) iξ K0(γ2r) −γ2

3 I0(γ3r) −γ2
3 K0(γ3r)

η1I0(γ1r) η1K0(γ1r) η2I0(γ2r) η2K0(γ2r) 0 0


(A1)

S=

[
β1I0(γ1r)−2µγ1r−1I1(γ1r) β1K0(γ1r)−2µγ1r−1K1(γ1r) β2I0(γ2r)−2µγ2r−1I1(γ2r)

2µiξ γ1I1(γ1r) −2µiξ γ1K1(γ1r) 2µiξ γ2I1(γ2r)
γ1χ1I1(γ1r) −γ1χ1K1(γ1r) γ2χ2I1(γ2r)

β2K0(γ2r)−2µγ2r−1K1(γ2r) iξ γ3
[
γ3I0(γ3r)− r−1I1(γ3r)

]
iξ γ3

[
γ3K0(γ3r)− r−1K1(γ3r)

]
−2µiξ γ2K1(γ1r) −µγ3(ξ

2 + γ2
3 )I1(γ3r) µγ3(ξ

2 + γ2
3 )K1(γ3r)

−γ2χ2K1(γ2r) iξ γ3χ3I1(γ3r) −iξ γ3χ3K1(γ3r)

]
(A2)

where

ηi = (α +χi)ML2
i , i = 1, 2; βi = 2µγ

2
i −λL2

i −αηi, i = 1, 2;

χi =
(λ +α2M+2µ)L2

i −ρω2

ρ f ω
2−αML2

i
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ρ f ω
2

ibω−mω2
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√
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√
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√
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√
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