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Improved MPS-FE Fluid-Structure Interaction Coupled
Method with MPS Polygon Wall Boundary Model

N. Mitsume1, S. Yoshimura1, K. Murotani1 and T. Yamada1

Abstract: The MPS-FE method, which adopts the Finite Element (FE) method
for structure computation and the Moving Particle Simulation (MPS) method for
fluid computation involving free surfaces, was developed to solve fluid-structure
interaction problems with free surfaces. The conventional MPS-FE method, in
which MPS wall boundary particles and finite elements are overlapped in order
to exchange information at a fluid-structure interface, is not versatile and reduces
the advantages of the software modularity. In this study, we developed a non-
overlapping approach in which the interface in the fluid computation corresponds
to the interface in the structure computation through an MPS polygon wall model.
The accuracy of the improved MPS-FE method was verified by solving a dam break
problem with an elastic obstacle and comparing the result obtained with that of the
conventional MPS-FE method and particle FEM.

Keywords: Fluid-Structure Interaction, Free Surface, Moving Particle Simula-
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1 Introduction

Large facilities such as electric power plants built along coastal regions are vul-
nerable to tsunamis. The resulting damage to the equipment and instruments has
the potential to cause catastrophic harm to people and devastate the locality. The
Fukushima Daiichi nuclear disaster in Japan is a prominent example of this. It is
economically impossible to completely mitigate the effects of disasters of extreme
severity; however, damages and loss can be minimized through appropriate mea-
sures.

Regarding tsunami simulation, a great deal of research [Westerink, Luettich, Feyen,
Atkinson, Dawson, Roberts, Powell, Dunion, Kubatko, and Pourtaheri (2008); Cre-
spo, Gómez-Gesteira, and Dalrymple (2007)] has been conducted on the simulation
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of free surface flows using various numerical analysis methods. Although inunda-
tion areas and forces acting on structures can be modeled well by such simulations,
the deformation and destruction of structures and the way in which water enters
damaged structures are yet to be well understood. Clarifying these mechanisms
will be of great value to disaster mitigation design. To this end, Fluid-Structure
Interaction (FSI) analysis involving free surface flows is required.

The Finite Element Method (FEM) has been widely used for FSI analyses [Bazilevs,
Calo, Hughes, and Zhang (2008); Takizawa and Tezduyar (2011)]; however, in
many of these applications, such as the vibration of airfoils, no free surfaces were
present. In mesh-based methods including FEM, the fluid dynamics equations
have a Eulerian basis, which means they have difficulty in dealing with a free
surface. The level set method, the Volume Of Fluid (VOF) method, and the Ar-
bitrary Lagrangian-Eulerian (ALE) method have been developed and applied for
computing free surface flows and FSI problems involving free surfaces. Recently,
the Particle Finite Element Method (PFEM) was developed [Oñate, Idelsohn, Pin,
and Aubry (2004)] and used to solve challenging problems [Idelsohn, Marti, Li-
mache, and Oñate (2008); Ryzhakov, Rossi, Idelsohn, and Oñate (2010); Oñate,
Celigueta, Idelsohn, Salazar, and Suarez (2011)]. This is an FEM-based full La-
grangian description of a fluid; therefore, it readily expresses free surfaces as the
fluid domain boundaries. However, PFEM has a relatively high computational cost
due to remeshing.

Mesh-free particle methods, such as the Smoothed Particle Hydrodynamics (SPH)
method [Lucy (1977)] and the Moving Particle Simulation (MPS) method [Koshizuka
and Oka (1996)], have also attracted attention. They discretize strong form equa-
tions and do not need node connectivity information. Based on a Lagrangian de-
scription of the fluid, they can deal with free surfaces easily and do not have the
computational cost associated with mesh generation. Mesh-free particle methods
have been applied to the dynamic analysis of solids and used to solve FSI problems
[Antoci, Gallati, and Sibilla (2007); Rafiee and Thiagarajan (2009)]. However, in
contrast with the FEM automatically satisfying the Neumann boundary condition
on the edge of a structure, mesh-free particle methods address the condition explic-
itly due to strong formulations.

In recent years, a coupling approach using the FEM in structures and mesh-free par-
ticle methods in fluids has been investigated for use in FSI analysis. The FEM/SPH
coupling method [Lu, Wang, and Chong (2005)] was originally developed to com-
pute blast and penetration analyses and was later applied to FSI analysis [Yang,
Jones, and McCue (2012)].

We developed the MPS-FE method [Mitsume, Yoshimura, Murotani, and Yamada
(2014)] which adopts the MPS method for fluid computation involving free surfaces
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and the FEM for structure computation. The method combines the advantages of
both methods and achieves efficiency and robustness as a result. However, the
conventional MPS-FE method, in which MPS wall boundary particles and finite
elements are overlapped in order to exchange information on fluid-structure in-
terfaces, has difficulty in dealing with complex shaped fluid-structure boundaries,
because the wall particles have to be set as uniform grids for accurate execution of
the MPS. The result is cumbersome interpolation for the exchange of physical val-
ues and node-particle correspondence relation data for the interpolation are needed.
Thus, the conventional MPS-FE method lacks versatility and reduces the software
modularity.

In the present study, we improve the conventional MPS-FE method by using the
MPS polygon wall boundary model [Harada, Koshizuka, and Shimazaki (2008);
Yamada, Sakai, Mizutani, Koshizuka, Oochi, and Murozono (2011)] instead of
the MPS wall particle model. Since the MPS polygon wall boundary model can
express wall boundaries as plane polygons, the interface in the fluid computation
now corresponds to that in the structure computation. This improvement overcomes
the problems in the conventional method and improves versatility.

The outline of the present paper is as follows. The discretizations of the governing
equations for the MPS method and the FEM are presented in Section 2 and Section
5, respectively. In Section 3, we describe the computation of the pressure on the
polygons that is necessary to apply the polygon model to the MPS-FE computation,
and discuss the accuracy and applicability in Section 4. Considering the pressure on
the polygons, the formulation and algorithm of the improved MPS-FE is presented
in Section 6. In order to verify the proposed method, an FSI problem involving a
free surface is solved in Section 7. Conclusions complete the paper in Section 8.

2 MPS formulation for fluid dynamics

2.1 Governing equations

The Navier-Stokes equations and the continuity equation for a quasi-incompressible
Newtonian fluid in a Lagrangian reference frame are given as follows:

Dvvv
Dt

=− 1
ρ

∇p+ν f ∇
2vvv+ggg (1)

1
ρ

∂ρ

∂ t
+∇ · vvv = 0 (2)

where ρ is the density of the fluid, vvv is the velocity vector, p is the pressure, ν f is
the kinetic viscosity, and ggg is the gravitational acceleration vector.
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2.2 MPS discretization

In the MPS discretization, the differential operators acting on a particle i are evalu-
ated using the neighboring particles j that are located within an effective radius re.
Pi represents the set of the neighboring particles of the particle i as follows:

Pi = { j | re > |xxxi j|∧ j 6= i}. (3)

In this section, φi j denotes φ j− φi, where φ represents a property of the particle.
The neighboring particles are weighted using the weight function of their separation
from particle i, r = |xxxi j|. In the original MPS, the weight function is given as

w(r) =


re

r
−1 (0≤ r < re)

0 (re ≤ r).
(4)

To calculate the weighted average, a normalization factor termed the particle num-
ber density is defined as

ni = ∑
j∈Pi

w(|xxxi j|). (5)

In the MPS method the fractional step algorithm is applied for time discretization,
so each time step is divided into prediction and correction steps, as follows:
1© Prediction step
vvv∗− vvvn

∆t
= ν f

〈
∇

2vvv
〉n

+ggg (6)

2© Correction step

vvvn+1− vvv∗

∆t
=−

1
ρ
〈∇p〉n+1 . (7)

Here vvv∗ is the intermediate velocity. The angle brackets 〈〉 indicate discretization
by the MPS differential operators which are given as follows:

〈∇p〉i =
d
n0 ∑

j∈Pi

[
xxxi j

|xxxi j|
pi j

|xxxi j|
w(|xxxi j|)

]
(8)

〈
∇

2vvv
〉

i =
2d

λ 0n0 ∑
j∈Pi

[vvvi jw(|xxxi j|)] . (9)

Here d is the number of dimensions and n0 is the initial value of the particle number
density given by Eq.(5). Similarly to n0,λ 0 is a quantity calculated for the initial
geometry:

λi =
∑ j∈Pi |xxxi j|2w(|xxxi j|)

∑ j∈Pi w(|xxxi j|)
. (10)
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2.3 Pressure calculation

To calculate the correction step, Eq.(7), the pressure values in the next time step
pn+1 are required. For the pressure calculation, there are Semi-Implicit MPS (SI-
MPS) methods [Koshizuka and Oka (1996)] in which the pressure Poisson equation
is solved implicitly to determine the pressure values and an Explicit MPS (E-MPS)
[Shakibaenia and Jin (2010)] method that assumes weak compressibility.

The present study employs the E-MPS method to compute the FSI with a free
surface and is validated in Section 7. Assuming the weak compressibility of fluids,
the explicit calculation of the pressure can be written as

pn+1
i = c2

ρ

(
n∗i
n0 −1

)
(11)

where c is a parameter set arbitrarily to satisfy the conditions of stability and in-
compressibility. In addition, the E-MPS uses the following pressure gradient model
instead of Eq.(8):

〈∇p〉i =
d
n0 ∑

j∈P

[
xxxi j

|xxxi j|
p j + pi

|xxxi j|
w(|xxxi j|)

]
. (12)

3 MPS polygon wall boundary model

In general, MPS computations use wall particles to model wall boundaries as il-
lustrated in Fig. 1. However, since the particles have to be set in uniform grids to
correctly calculate the particle number density defined by Eq.(5), the wall particle
model ineffectively simulates complex shaped boundaries. Harada et al. proposed
the polygon wall boundary model [Harada, Koshizuka, and Shimazaki (2008)]
which can express wall boundaries as plane polygons. By applying the polygon
wall boundary model to an SI-MPS computation, they showed that the number of
matrix elements in the pressure Poisson calculation and the computation time are
reduced. A polygon wall boundary model applying the E-MPS has also been pro-
posed [Yamada, Sakai, Mizutani, Koshizuka, Oochi, and Murozono (2011)]. The
differences between these two methods stem from the character of the pressure gra-
dient term. In the present study, we use Yamada’s polygon wall boundary model
because it has higher stability than Harada’s.

3.1 Wall weight function

To implement the polygon wall with no particles, the interpolation of the contribut-
ing part (green area at the right of Fig. 1) within the particle number density compu-
tation is required. The wall weight function is defined by the sum of the virtual wall
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Figure 1: Wall particle model and polygon wall model

particles’ weights created inside the wall. Using the distance between the particle
and the wall |xxxib|, the wall weight function z(|xxxib|) is defined as

z(|xxxib|) = ∑
j∈wall

w(|xxxi j|). (13)

Within the neighboring particles j ∈ Pi of particle i, we define the fluid particles as
j ∈ particle and the virtual wall particles as j ∈ wall. The particle number density
Eq.(5) can be divided into the contributions of the fluid particles and the wall weight
function as follows:

ni = ∑
j∈particle

w(|xxxi j|)+ ∑
j∈wall

w(|xxxi j|)

= ∑
j∈particle

w(|xxxi j|)+ z(|xxxib|). (14)

In the actual computation, the wall weight function is determined by the linear inter-
polation of values at the discrete distance d0,d1, · · · ,dn(= re), which are calculated
in advance of fluid computation.

3.2 Viscosity term

The viscosity term discretized by the Laplacian model (9) is divided into fluid par-
ticle and polygon wall contributions:〈
∇

2vvv
〉

i =
〈
∇

2vvv
〉particle

i +
〈
∇

2vvv
〉wall

i . (15)

Assuming that the velocity of the wall b is a constant value vvvb within the effective
radius of the particle i, the contributing region of the polygon wall can be deformed
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as follows:〈
∇

2vvv
〉wall

i =
2d

λ 0n0 vvvib ∑
j∈wall

w(|xxxi j|) (16)

=
2d

λ 0n0 vvvib z(|xxxib|). (17)

Substituting the term into Eq.(15), the equation for the viscosity in the polygon wall
model is derived as follows:〈
∇

2vvv
〉

i =
2d

λ 0n0 ∑
j∈particle

[vvvi jw(|xxxi j|)]+
2d

λ 0n0 vvvib z(|xxxib|). (18)

3.3 Pressure gradient term

As is the case with the viscosity term, the pressure gradient term is divided into the
fluid particle and polygon wall contributions as follows:

〈∇p〉i = 〈∇p〉particle
i + 〈∇p〉wall

i . (19)

As mentioned, the present study adopts Yamada’s pressure gradient model [Ya-
mada, Sakai, Mizutani, Koshizuka, Oochi, and Murozono (2011)]:

〈∇p〉wall
i =

d
n0

xxxib

|xxxib|
pi

|xxxib|
z(|xxxib|) (20)

〈∇p〉i =
d
n0 ∑

j∈particle

[
xxxi j

|xxxi j|
p j + pi

|xxxi j|
w(|xxxi j|)

]
+

d
n0

xxxib

|xxxib|
pi

|xxxib|
z(|xxxib|). (21)

3.4 Pressure on the polygon wall

The computation of the pressure on a polygon is described briefly in Yamada’s
report, but is not clearly defined. Therefore, we formulate it here.

Let Wb be the set of fluid particles that are influenced by the presence of the poly-
gon wall b. The pressure on the polygon wall surface is the force exerted by the
fluid particles per unit area. As shown in Fig.2, the force on the polygon wall b ex-
erted by fluid particles fff b is the reaction to the sum of the pressure gradient forces
fff b j exerted by every particle j belonging to the set Wb as follows:

fff b =− ∑
j∈Wb

fff jb (22)

fff jb =−
mi

ρ
〈∇p〉wall

j (23)
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where mi is the fluid density and V is the volume occupied by a fluid particle.
Assuming that all fluid particle radii are identical and the initial particle spacing
is l0, the mass of each fluid particle can be calculated as mi = ρ(l0)d . Thus, the
pressure on the polygon wall can be computed as follows:

pb =

∑
j∈Wb

(l0)d 〈∇p〉wall
j

sb
(24)

where sb is the area of the polygon b.

Figure 2: The force on the polygon wall exerted by the fluid particles

4 Hydrostatic pressure calculation using MPS polygon wall boundary model

In order to verify the accuracy of the polygon wall boundary model with E-MPS
and the pressure computation described by Eq.(24), we analyzed a hydrostatic pres-
sure problem in a rectangular vessel and compared the result with the theoretical
solution. The theoretical hydrostatic pressure p is given by the following equation:

p = ρ|ggg|h (25)

where h is the depth from the static water surface.

The initial configuration of the hydrostatic pressure problem is shown in Fig .3.
The rectangular vessel’s depth is 0.1[m] and the width is 0.04[m]. We performed
simulations with several numbers of polygons for the right hand wall and computed
the pressures on the wall surfaces using Eq.(24). In E-MPS, weak compressibility
causes vertical vibrations of the fluid surface. To reach the static state as soon
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0.04

0
.1

[m]

Figure 3: Hydrostatic pressure
problem: initial configuration

Table 1: Hydrostatic pressure problem: calcula-
tion parameters

Time step width 5.0×10−5[s]
Number of particles 4000
Particle spacing 1.0×10−3[m]
Effective radius 2.9l 0[m]
Density 1.0×103[kg/m3]
Kinetic viscosity 1.0×10−4[m2/s]
Gravitational acceleration 9.8[m/s2]

as possible, we chose the highest value of viscosity that would not destabilize the
computations. Figure 4, Fig. 5, Fig. 6, and Fig. 7 show the average and standard
variation of the pressure values from 40000th to 41000th steps into the simulation,
with walls comprising 10, 50, 100, and 150 polygons, respectively.

Table 2: Ratio of polygon length to particle diameter in each division

Number of polygons Polygon length : particle diameter

10 10 : 1
50 5 : 1

100 1 : 1
150 2/3 : 1

The ratio of the polygon length to the particle diameter is shown in Table 2. The
average pressure values agree well with the theoretical values when the polygon
length is large compared to the particle diameter, as shown in Fig. 4 and Fig. 5.
In addition, since the pressure on the polygon is equivalent to the spatial average
of the computed pressure, the pressure dispersion is reduced in the case of longer
polygons. Several polygons have low pressure values in the cases where the poly-
gon length is the same or shorter than the particle diameter, shown by Fig. 6 and
Fig. 7. This occurs when polygons are not interacting with any particles, i.e.,
Wb = /0 in Eq.(24). In this case, a non-smooth pressure distribution on the wall
boundary results. In FSI simulations in particular, this in turn may cause unreason-
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Figure 4: Pressure on the right wall
(10 polygons)
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Figure 5: Pressure on the right wall
(50 polygons)
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Figure 6: Pressure on the right wall
(100 polygons)
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Figure 7: Pressure on the right wall
(150 polygons)

ably high-order vibration modes in the structure and destabilize the computation;
therefore, the polygon length should be set to more than twice the particle diameter
for stability of computation.

5 FE formulation for structure dynamics

5.1 Governing equations for finite deformation

The virtual work equation of the total Lagrangian formulation with geometric non-
linearity is given as follows:∫

Ωs

ρ
∂ 2uuu
∂ t2 ·δuuudΩ +

∫
Ωs

SSS : δEEEdΩ −
∫

Ωs

ρggg ·δuuudΩ −
∫

Γs

ttt ·δuuudΓ = 0 (26)

where Ωs is the structure dynamics domain with boundary Γs, SSS is the second Piola-
Kirchhoff stress tensor, EEE is the Green-Lagrange strain tensor, ρ is the density of
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the structure, and ttt is the boundary traction in the reference configuration. EEE and
SSS in Eq.(26) are expressed using the deformation gradient tensor FFF = ∂uuu

∂XXX + III as
follows:

EEE =
1
2
(FFFT FFF− III) (27)

SSS =CCC : EEE (28)

where III is the second-order identity tensor andCCC is the fourth-order elastic modulus
tensor. In the present study, the Saint Venant-Kirchhoff model, which represents the
linear relationship between the second Piola-Kirchhoff stress tensor and the Green-
Lagrange strain tensor, was used. In this case,CCC is expressed using the fourth-order
identity tensor III and Lamé constants λ and µ as follows:

CCC= λ III⊗ III +2µIII. (29)

5.2 Solution of non-linear problems

Because of the non-linear term in Eq.(26), non-linear solvers such as the Newton-
Raphson method are required. Using the Newton-Raphson method, the discretized
form of Eq.(26),

ΨΨΨ≡ fff −RRR(uuu)−MMMüuu = 0, (30)

is solved iteratively as follows:

KKKi
T duuui

n+1 = ΨΨΨ
i
n+1 (31)

uuui+1
n+1 = uuui

n+1 +duuui
n+1. (32)

Here n is the time step, i is the iteration counter, fff is the external force vector, RRR(uuu)
is the internal work vector, and MMM and KKKT are the global mass matrix and the global
tangent matrix, respectively, which are assembled from each element matrix.

5.3 Time integration scheme

The time integration scheme used in the present study is Newmark’s β method :

uuun+1 = uuun +∆tu̇uun +(
1
2
−β )∆t2üuun +β∆t2üuun+1 (33)

u̇uun+1 = u̇uun +(1− γ)∆tüuun + γ∆tu̇uun+1. (34)

In this study, we use the coefficient values β = 0.3025 and γ = 0.6, which add nu-
merical damping. This kind of damping has been frequently used as a stabilization
technique for FSI computation [Ishihara and Yoshimura (2005); Bazilevs, Calo,
Hughes, and Zhang (2008)].
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6 Improved MPS-FE fluid-structure interaction method

6.1 Fluid-structure interaction model

MPS-FE Improved MPS-FE

fluid particle

MPS polygon wall
finite element

fluid particle

wall particle finite element

Figure 8: Conventional and improved MPS-FE

In the present study, the force on the polygon wall b exerted by the particles j
is described by fff jb. In addition, the point on the polygon surface from which a
line perpendicular to the surface can extend to the particle is termed the effective
position of the particle. In d-dimensional computations, an effective position on a
polygon wall can be expressed as a (d−1)-dimensional vector xxxΓ using an arbitrary
(d− 1)-dimensional basis. Furthermore, there are shape functions in the normal-
ized natural coordinate ξξξ expressed as NΓ

i (ξξξ )(i = 1,2, · · ·nΓ
node) on the surfaces of

a d-dimensional solid element, where nΓ
node is the number of nodes on the element

surface. The effective position xxxΓ
j of particle j expressed in the normalized natural

coordinate is ξξξ j. The point loads, fff particle
jb , which particles j ∈Wb exert on the

polygon b are distributed as equivalent nodal forces fff node
i on the node i using the

shape function NΓ
i (ξξξ ) over the element surface as follows:

fff node
i = ∑

j∈Wb

NΓ
i (ξξξ j) fff particle

jb . (35)

The pressure on the polygon described by Eq.(24) means the pressure values are
constant. To replace Eq.(35) which expresses the fluid force as point loads, the
equivalent nodal forces representing the pressure distribution p(xxx) are expressed as
follows:

fff node
i =

∫
Γ

N(xxx)p(xxx)dxxx (36)

=
∫

Γ

N(ξξξ )p(ξξξ )det JJJdξξξ (37)
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where JJJ is the Jacobian matrix. If the pressure distribution on the polygon b is
computed using Eq.(24), the pressure values on the polygon are constant, pb, and
det JJJ is equivalent to the area of the polygon sb. Hence, Eq.(37) can be rewritten as
follows:

fff node
i = pbsb

∫
Γ

NΓ
i (ξξξ )dξξξ . (38)

In this study, we used Eq.(38) for the computation of the problem presented in
Section 7.

6.2 Partitioned coupling scheme

In the present study, the finite deformation FEM and the E-MPS method were used
for FSI simulations. In this case, the fluid and structure computation time in a
time step are quite different because the structure problem is solved implicitly and
involves nonlinear iterations, whereas the fluid problem is solved explicitly. Addi-
tionally, the E-MPS computation requires a finer temporal resolution than the FEM.
Therefore, the present study adopts a conventional serial staggered (CSS) scheme
[Farhat and Lesoinne (2000)] as an FSI coupling strategy, which applies fluid com-
putation to subcycling steps in order to set different values for the fluid time step ∆ts
and the structure time step ∆t f . Furthermore, the pressures exerted on the structure
are averaged over k = ∆ts/∆t f fluid subcycles in order to suppress the nonphysical
pressure oscillation in the MPS.

The procedure at the nth time step is summarized below.

1© Determine the predicted values of displacement ûuun+1 and velocity ˆ̇uuun+1 from
the previous values.

2© Perform the MPS calculation k times and determine the averaged pressures
exerted by the MPS wall boundary particles p as follows:

p =
1
k

k

∑
i=1

pn+ i
k
. (39)

3© Convert the obtained pressures p into the nodal equivalent forces fff n+1 given
by Eq.(38).

4© Perform the FEM calculation to obtain the updated displacements uuun+1 and
velocities u̇uun+1.
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Figure 9: Presented weak coupling scheme based on CSS

7 Verification of the improved MPS-FE method

In order to verify the improved MPS-FE method, we solved the dam break prob-
lem with an elastic obstacle and compared the results with those obtained by other
methods.

7.1 Simulation setup

The initial configuration of the dam break problem with an elastic obstacle is illus-
trated in Fig. 10. This problem was initially solved by [Walhorn, Kölke, Hübner,

0.292 

0
.2

9
2

 

0.146 

0.012 

0
.0

8
 

0.584 

Figure 10: Verification problem: initial configuration (units: m)
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and Dinkler (2005)] using a space-time FEM and has since been investigated in
other works [Idelsohn, Marti, Limache, and Oñate (2008); Ryzhakov, Rossi, Idel-
sohn, and Oñate (2010); Rafiee and Thiagarajan (2009); Kassiotis, Ibrahimbegovic,
and Matthies (2010)]. Calculation parameters are given in Table 3 and Table 4.

Table 3: Verification problem: fluid parameters

Time step width 1.0×10−6[s]
Number of particles 10658
Particle spacing 2.0×10−3[m]
Effective radius 5.8×10−3[m]
Density 1.0×103[kg/m3]
Kinetic viscosity 1.0×10−6[m2/s]
Gravitational acceleration 10.0[m/s2]

Table 4: Verification problem: structure parameters

Time step width 1.0×10−4[s]
Number of elements 120
Young’s modulus 1.0×106[kg/s2m]
Poisson’s ratio 0.0
Density 2.5×10−3[kg/m3]
Gravitational acceleration 10.0[m/s2]

7.2 Simulation result and comparison with other methods

Figure 11 shows the displacement of the upper-left corner of the elastic obstacle
at each time step. In the figure, the result of the improved MPS-FE method is
compared with that of the conventional MPS-FE method [Mitsume, Yoshimura,
Murotani, and Yamada (2014)] and the particle FEM (PFEM) [Ryzhakov, Rossi,
Idelsohn, and Oñate (2010)]. Whereas the computation of the conventional MPS-
FE method in the previous study did not use any numerical damping for stabiliza-
tion, the conventional MPS-FE computation shown here uses the same damping
conditions as the improved MPS-FE method as described in Section 5.3. Snap-
shots of the simulation using the proposed method are shown in Fig. 12.

As shown in Fig. 11, the improved MPS-FE result is in good agreement with the
PFEM result. Although the conventional MPS-FE result is also in agreement with
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that of the PFEM to some degree, unnatural vibration after the initial deflection and
a phase shift after 0.8[s] are observed. As mentioned previously, in the conven-
tional MPS-FE approach, which uses the pressure values on the wall particles to
exchange physical values, the forces on the fluid particles exerted by the structure
are not consistent with the force on the structure computed by interpolation using
the pressure on the wall particles. Since this inconsistency causes the fluid particles
to exhibit unstable behavior near the fluid-structure interface, some fluid particles
become too close or too far from the wall particles. The result is incorrect free
surface determination and unreasonably high pressure values near the interface,
leading to unnatural vibrations. The phase shift after 0.8[s] in the conventional
MPS-FE method also comes from the inconsistency in exchanging physical values,
which causes excessive decays in the energy. In converting the pressure on the wall
particles to the equivalent nodal forces, energy is not conserved. In contrast, the
improved MPS-FE method overcomes the problems in the transmission of force
from the fluid to the structure by computing the force on the polygon wall directly
using Eq.(24).

8 Conclusions

In the present paper, the improved MPS-FE method was proposed in which the
MPS polygon wall boundary model is applied instead of using MPS wall particles,
as were adopted in the conventional MPS-FE method. The computation method
used to evaluate the pressure on the polygon wall was presented and the FSI model
for the improved MPS-FE method was formulated. To verify the proposed method,
the dam break problem with an elastic obstacle was solved. Comparing the result of
the proposed method with that of the conventional method and PFEM indicated that
the improved MPS-FE has adequate accuracy and higher stability and versatility.
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