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A Wavelet Method for the Solution of Nonlinear Integral
Equations with Singular Kernels

Jizeng Wang1,2, Lei Zhang1 and Youhe Zhou1

Abstract: In this paper, we propose an efficient wavelet method for numerical so-
lution of nonlinear integral equations with singular kernels. The proposed method
is established based on a function approximation algorithm in terms of Coiflet scal-
ing expansion and a special treatment of boundary extension. The adopted Coiflet
bases in this algorithm allow each expansion coefficient being explicitly expressed
by a single-point sampling of the function, which is crucially important for dealing
with nonlinear terms in the equations. In addition, we use the technique of inte-
gration by parts to transform the original integral equations with non-smooth or
singular kernels into regular ones with smooth kernels. Then, we incorporate the
proposed function approximation algorithm into the Galerkin method for the so-
lution of the transformed nonlinear integral equations. Numerical examples show
that the proposed wavelet method is much more accurate and efficient than several
others.

Keywords: Coilfet, wavelet Galerkin method, nonlinear integral equations, sin-
gular kernel.

1 Introduction

An integral equation is a functional equation with unknown function under the
integration sign [Baker (1977)]. Integral equations arise in a great many branches of
science, including potential theory, acoustics, elasticity, fluid mechanics, radiative
transfer and even theory of population.

Recently, using multiresolution techniques and wavelets to develop numerical sche-
mes for the solution of differential and integral equations has become increasingly
popular [Beylkin, Coifman, and Rokhlin (1991); Alpert, Beylkin, Coifman, and
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Rokhlin (1993); Amaratunga, Williams, Qian, and Weiss (1994); Sweldens (1995);
Chen, Micchelli, and Xu (1997); Kaneko, Noren, and Novaprateep (2003); Wang
(2001); Zhou, Wang, and Zheng (1999); Zhou, Wang, Wang, and Liu (2011); Liu,
Wang, and Zhou (2013); Liu, Wang, Zhou and Wang (2013)]. Although in appli-
cations, many mathematical tools have been demonstrated valid, yet wavelet appli-
cations to the solution of nonlinear integral equations with singular kernels arising
in different areas of mechanics, physics and engineering have been very limited. It
was Belykin et al. [Beylkin, Coifman, and Rokhlin (1991)] who first proposed a
wavelet method to solve the integral equations. Their work focused on the sparse
discretization of linear integral operators, which leading to a fast numerical algo-
rithm. The reason of the sparse and accurate discretization is mainly due to the
compact support and vanishing moment properties of wavelets. Later on, works
by Alpert et al. [Alpert, Beylkin, Coifman, and Rokhlin (1993)] and Chen et al.
[Chen, Micchelli, and Xu (1997)] continuously attempted to develop a fast wavelet
algorithm for the linear second kind integral equations. For the nonlinear integral
equations with continuous kernel, several wavelet methods have been proved avail-
able, which includes the Galerkin methods based on the Legendre wavelets [Mah-
moudi (2005)] and the B-spline wavelets [Sahu and Ray (2013)], and collocation
method based on the Haar wavelet [Babolian and Shahsavaran (2009)]. However,
only a class of simple nonlinear integral equations with common nonlinear terms
in the form of polynomials was studied. For the nonlinear integral equations with
singular kernels, efficient methods with high accuracy are still very limited [Liang,
Liu and Che (2001); Xiao, Wen and Zhang (2006); Gao and Jiang (2007); Galperin,
Kansa, Makroglou and Nelson (2000); Panigrahi and Nelakanti (2012)].

Coiflets are the most efficient wavelets in constructing one-point quadrature for-
mula with very high precision [Sweldons and Piessens (1994); Wang (2001); Male-
knejad, Lotfi and Rostami (2007)]. This interesting property is very convenient
in dealing with nonlinear differential and integral equations [Liang, Liu and Che
(2001); Maleknejad, Lotfi and Rostami (2007); Liu, Wang, and Zhou (2013); Liu,
Wang, Zhou and Wang (2013)]. For most wavelet Galerkin methods without us-
ing this property, solution procedures will inevitably involve complicated integral
computations associated with the scaling functions even in solving certain simple
nonlinear integral equations [Avudainayagam and Vani (2000); Liu, Qin, Liu and
Cen (2010)]. Based on this fact, a Coiflet-based algorithm for numerical solution
of the second kind integral equations with continuous and weakly singular kernels
is proposed in the present study. Numerical examples are considered to verify the
efficiency and accuracy of the proposed method.
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2 Function approximation based on series expansion of scaling functions

For a function f (x)∈L2(R), if ϕ(x) represents a Coiflet scaling function [Daubechies
(1993)], then we can have [Daubechies (1993)]

f (x) = lim
j→∞

+∞

∑
k=−∞

c j,kϕ j,k(x)≈
+∞

∑
k=−∞

cn,kϕn,k(x) (1)

in which cn,k =
∫ +∞

−∞
f (x)ϕn,k(x)dx, ϕn,k(x) = 2n/2ϕ(2nx− k), and integer n is the

so-called resolution level.

Table 1: Coiflet filter coefficients for N = 2, 4, and 6.
k N = 2 (M1 = 4) N = 4 (M1 = 4) N = 6 (M1 = 7)
0 5.456145913796356e-02 1.689380907695821e-03 −2.392638657280051e-03
1 -1.795614591379636e-01 -1.816639282073453e-02 −4.932601854180402e-03
2 -1.091229182759271e-01 3.507862062605389e-02 2.714039971139949e-02
3 83591229182759271e-01 7.074394036809258e-02 3.064755594619984e-02
4 1.054561459137964e+00 -2.197082915811749e-01 −1.393102370707997e-01
5 3.204385408620364e-01 -1.013118304071172e-01 −8.060653071779983e-02
6 8.067593419102440e-01 6.459945432939942e-01
7 1.061135780078056e+00 1.116266213257999e+00
8 3.968448038803485e-01 5.381890557079980e-01
9 -1.047986487449172e-02 −9.961543386239989e-02
10 -2.066385574316280e-02 −7.992313943479994e-02
11 -1.921632058008399e-03 5.149146293240031e-02
12 1.238869565706006e-02
13 −1.583178039255944e-02
14 −2.717178600539990e-03
15 2.886948664020020e-03
16 6.304993947079994e-04
17 −3.058339735960013e-04

Noting that the Coiflet scaling function ϕ(x) has a compact support = [0, 3N−1],
then ϕ(x) can be constructed by using the filter coefficients ak, k=0,1,2,3. . . 3N-1,
in Tab 1 [Wang (2001)] in terms of the relation below,

ϕ(x) =
3N−1

∑
k=0

akϕ(2x− k) (2)

Such a scaling function has the unique property of shifted moments∫ +∞

−∞

(t−M1)
k
ϕ(t)dx = 0 1≤ k < N−1 (3)
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Considering Eq. (3) one can have

cn,k =
∫ +∞

−∞

f (x)ϕn,k(x)dx≈ 2n/2 f (
k+M1

2n ) (4)

with a degree of accuracy of N− 1. Combining Eqs. (1) and (4) yields

f (x)≈
+∞

∑
k=−∞

f (
k+M1

2n )ϕ(2nx− k) (5)

Such an approach to approximation is attractive because of its simplicity and a
degree of accuracy of N− 1. Moreover, if it has f (x) ∈Cγ , γ ≤ N−1, the precision
of Eq. (5) immediately becomes [Sweldons and Piessens (1994); Wang (2001)]

|| f (x)− P̄n f (x)||2 ≤ O(2−nγ). (6)

And by using Eq. (5), we can derive the following rules [Wang (2001)]:

Rule 1: for the composite function ΠΠΠ[ f (x)] of f (x), we have

ΠΠΠ[ f (x)]≈∑
k

ΠΠΠ[ f (
k+M1

2n )]ϕ(2nx− k) (7)

Rule 2: for a derivative or integration operator D, we have

D f (x)≈∑
k

f (
k+M1

2n )Dϕ(2nx− k) (8)

As we know, the wavelet theory is established on the whole real line. For many
applications, the functions involved are usually defined on a bounded interval. In
order to apply wavelets in these applications, some modifications will have to be
made. Several constructions of wavelets on a bounded interval have become avail-
able [Cohen, Daubechies and Vial (1993); Sweldens (1995)]. However, all these
constructions are mathematically difficult, and the resulting wavelets are compli-
cated to be applied to numerical analysis. We thus need to find a simple alternative
solution. To be specific, let us consider the case of a unit interval [0, 1]. Given a
function f (x) on [0, 1], the most obvious approach is to set f (x) = 0 outside [0, 1],
and then using wavelet theory on the whole real line. However, for a general func-
tion f (x) this padding with 0 usually introduces discontinuities at the endpoints 0
and 1, for instance the simple function f (x) = 1, x ∈ [0,1]. Just as Cohen et al. [Co-
hen, Daubechies and Vial (1993)] and Sweldens [Sweldens (1995)] have pointed
out that, because wavelets are effective for detecting singularities, the presence of
artificial discontinuities is likely to introduce significant errors. Another approach
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is to consider the function to be periodic with period one, f (x+1) = f (x). How-
ever, unless the behavior of the function f (x) at 0 matches that at 1 the periodic
version of f (x) has singularities there. A simple function like f (x) = x,x ∈ [0,1],
gives a good illustration of this. A third method, which works if the bases functions
are symmetric, is to use reflection across the edges. This preserves continuity, but
introduces discontinuities in the first derivative.

What is really needed is that functions do not introduce discontinuities in up to a
certain order of derivative at the endpoints 0 and 1.

Consider a functiong(x) ∈ L2[0,1], we define

d0,i =
dig(0)

dxi ,d1,i =
dig(1)

dxi , i = 0,1,2, · · · . (9)

By applying Taylor expansion, the function can continue at endpoints 0, 1 as

g(x) =


M
∑

i=0

d0,i
i! xi x ∈ (−δ , 0)

g(x) x ∈ [0, 1]
M
∑

i=0

d1,i
i! (x−1)i x ∈ (1, 1+δ )

(10)

where δ > 0, i= 0, 1, 2,. . . , M. It can be seen that such a boundary extension
treatment does not introduce discontinuities at endpoints 0 and 1. However, in
practical applications, the derivatives at endpoints sometimes are unknown or even
do not exist at all. And therefore we have to apply equidistant numerical difference
to approximate or replace (when they do not exist.) them via the discrete points in
[0, 1] as

d0,i =
m

∑
j=0

p0,i, jg j,d1,i =
m

∑
j=0

p1,i, jg2n− j (11)

where p0,i, j, p1,i, jare parameters associated with numerical difference and gk =
g(k/2n), i= 1,2,. . . , m. Hence Eq. (10) becomes

g(x) =



M
∑

i=0

1
i! x

i
m
∑
j=0

p0,i, jg j x ∈ (−δ , 0)

g(x) x ∈ [0, 1]
M
∑

i=0

1
i!(x−1)i

m
∑
j=0

p1,i, jg2n− j x ∈ (1, 1+δ )

=



m
∑
j=0

g j
M
∑

i=0
p0,i, j

1
i! x

i x ∈ (−δ , 0)

g(x) x ∈ [0, 1]
m
∑
j=0

g2n− j
M
∑

i=0
p1,i, j

1
i!(x−1)i x ∈ (1, 1+δ )
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or

g(x) =



m
∑
j=0

g jT0, j(x) x ∈ (−δ , 0)

g(x) x ∈ [0, 1]
m
∑
j=0

g2n− jT1, j(x) x ∈ (1, 1+δ )

(12)

where T0, j(x) =
M
∑

i=0
p0,i, j

1
i! x

iT1, j(x) =
M
∑

i=0
p1,i, j

1
i!(x− 1)i. Taking n, which satisfy

2n > m+1, as the scale of scaling series, and then applying the approximation for-
mula (5) to function (12), it yields

g(x)≈
2n−1

∑
k=2−3N

g(
M1 + k

2n )ϕ(2nx− k)

≈
−1

∑
k=2−3N+M1

m

∑
j=0

g jT0, j(
k
2n )ϕ(2

nx− k+M1)

+
2n

∑
k=0

gkϕ(2nx− k+M1)+
2n+M1

∑
k=2n+1

m

∑
j=0

g2n− jT1, j(
k
2n )ϕ(2

nx− k+M1)

=
m

∑
j=0

g j

−1

∑
k=2−3N+M1

T0, j(
k
2n )ϕ(2

nx− k+M1)

+
2n

∑
k=0

gkϕ(2nx− k+M1)+
m

∑
j=0

g2n− j

2n+M1

∑
k=2n+1

T1, j(
k
2n )ϕ(2

nx− k+M1)

=
m

∑
k=0

gk[b0,k,n(x)+ϕ(2nx− k+M1)]

+
2n−m−1

∑
k=m+1

gkϕ(2nx− k+M1)+
2n

∑
k=2n−m

gk[b1,k,n(x)+ϕ(2nx− k+M1)]

or

g(x)≈
2n

∑
k=0

gkΦn,k(x) (13)

where

Φn,k(x) =


b0,k,n(x)+ϕ(2nx− k+M1), i f 0≤ k ≤ m

ϕ(2nx− k+M1), i f m+1≤ k ≤ 2n−m−1
b1,k,n(x)+ϕ(2nx− k+M1), i f 2n−m≤ k ≤ 2n

, (14)
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and

b0,k,n(x) =
−1

∑
j=2−3N+M1

T0,k(
j

2n )ϕ(2
nx− j+M1),

b1,k,n(x) =
2n+M1

∑
j=2n+1

T1,2n−k(
j

2n )ϕ(2
nx− j+M1).

(15)

Thus, after applying the rules of scaling transform and Taylor expansion, we ob-
tain the modified approximation series (13). It can be seen that such approximation
manner does not introduce discontinuity up to Mth order derivatives at the end-
points 0 and 1.

When we use the Coiflets-like bases to the numerical example at the end of the
paper, here, for M = 3, m = 3, we take the 4-point Malkoff formula of numerical
difference:

{2−in p0,i, j}=


1 0 0 0
−11

6 3 −3
2

1
3

2 −5 4 −1
−1 3 −3 1

 {2−in p1,i, j}=


1 0 0 0
11
6 −3 3

2 −1
3

2 −5 4 −1
1 −3 3 −1


(16)

where i=0,1,2,3, j=0,1,2,3 and from here onward, such a numerical difference for-
mula will be used in all the relative numerical examples of this paper.

3 Nonlinear integral equations with continuous kernel

We consider the nonlinear Fredholm integral equations of the second kind with
continuous kernel as below

f (x)+
∫ 1

0
K(x,y, f (y))dy = q(x), 0≤ x≤ 1 (17)

where f , K are given smooth functions. Two approaches have been considered here.
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3.1 Approach 1: Galerkin method with L2(R) Coiflet bases

If f , K, and q all belong to L2(R), the functions in Eq. (17) can be approximated
by the Coiflet scaling bases on L2(R) as

f (x)≈
2n−1

∑
k=2−3N

f (xk)ϕ(2nx− k)

q(x)≈
2n−1

∑
k=2−3N

q(xk)ϕ(2nx− k)

K(x,y, f (y))≈
2n−1

∑
j=2−3N

2n−1

∑
k=2−3N

K(x j,yk, fk)ϕ(2ny− j)ϕ(2nx− k)

(18)

where xk =
k+M1

2n , x j =
j+M1

2n , yk =
k+M1

2n and fk = f (xk). Substituting Eq. (18) into
Eq. (17) gives

2n−1

∑
k=2−3N

f (xk)ϕ(2nx− k)+
2n−1

∑
k=2−3N

2n−1

∑
j=2−3N

K(xk,y j, f j)ϕ(2nx− k)
∫ 1

0
ϕ(2ny− j)dy

≈
2n−1

∑
k=2−3N

q(xk)ϕ(2nx− k)

(19)

Define

ϕ

∫ · · · ∫︸ ︷︷ ︸
m (x) =

∫ x

−∞

· · ·
∫ tm−1

−∞

ϕ(tm)dt1 · · ·dtm. (20)

Then we have

2n−1

∑
k=2−3N

{ f (xk)+1/2n
2n−1

∑
j=2−3N

K(xk,y j, f j)[ϕ
∫ (2n− j)−ϕ

∫ (− j)]}ϕ(2n− x)

≈
2n−1

∑
k=2−3N

q(xk)ϕ(2nx− k).

(21)

The Galerkin discretization scheme is applied to Eq. (21), giving the system of
nonlinear algebraic equations

2n−1

∑
k=2−3N

{ f (xk)+1/2n
2n−1

∑
j=2−3N

K(xk,y j, f j)[ϕ
∫ (2n− j)−ϕ

∫ (− j)]}Γ0,0
i,k ≈

2n−1

∑
k=2−3N

q(xk)Γ
0,0
i,k
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(22)

where Γ
0,0
i,k =

∫ 1
0 ϕ(2nx− i)ϕ(2nx− k)dx = 2−nδi,k. Then Eq. (22) can be changed

into

fk +1/2n
2n−1

∑
j=2−3N

K(xk,y j, f j)[ϕ
∫ (2n− j)−ϕ

∫ (− j)]≈ qk (23)

in which k = 2− 3N,3− 3N, · · · ,2n− 1 and ϕ

∫ · · · ∫︸ ︷︷ ︸
k (x) can be obtained from ref-

erences [Wang (2001); Chen, Wang, and Shih (1996)]. By solving Eq. (23) using
Newton-Rapson method, then the solution can be obtained.

3.2 Approach 2: Galerkin method with modified Coiflets bases

Considering Eq. (17) if f , K,and q all belong to L2[0,1], then we have

f (x)≈
2n

∑
k=0

f (xk)Φn,k(x)

q(x)≈
2n

∑
k=0

q(xk)Φn,k(x)

K(x,y, f (y))≈
2n

∑
k=0

2n

∑
j=0

K(x j,yk, fk)Φn,k(y)Φn, j(x)

(24)

where xk =
k
2n ,x j =

j
2n , yk =

k
2n and fk = f (xk). Substituting Eq. (24) into Eq. (17)

gives

2n

∑
k=0

f (xk)Φn,k(x)+
2n

∑
k=0

2n

∑
j=0

K(xk,y j, f j)Φn,k(x)
∫ 1

0
Φn, j(y)dy≈

2n

∑
k=0

q(xk)Φn,k(x).

(25)

Define

Φ

∫ · · · ∫︸ ︷︷ ︸
m

n,k (x) =
∫ x

−∞

· · ·
∫ tm−1

−∞

Φn,k(tm)dt1 · · ·dtm (26)

which can be obtained easily by the definition (19), thus Eq. (26) becomes

2n

∑
k=0
{ f (xk)+

2n

∑
j=0

K(xk,y j, f j)Φ
∫
n, j(1)}Φn,k(x)≈

2n

∑
k=0

q(xk)Φn,k(x). (27)
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Let Φn,i(x), i = 0,1, · · · ,2n be the weighted functions, multiplying both sides of Eq.
(27) by them and then taking integration from 0 and 1, we can obtain

2n

∑
k=0
{ f (xk)+

2n

∑
j=0

K(xk,y j, f j)Φ
∫
n, j(1)}Γ̄

0,0
i,k ≈

2n

∑
k=0

q(xk)Γ̄
0,0
i,k (28)

where Γ̄
0,0
i,k =

∫ 1
0 Φn,i(x)Φn,k(x)dx. Because the matrix {Γ̄0,0

i,k } is nonsingular, then
Eq. (28) can be changed into

fk +
2m−1

∑
j=2−3N

K(xk,y j, f j)Φ
∫
n, j(1)≈ qk. (29)

By solving Eq. (29) using Newton-Raphson method, the solution { fk,k=0,1, · · ·,2n}
can be obtained readily.

4 Integral equations with weakly singular kernel

We consider the Fredhlom integral equations of the second kind with weakly sin-
gular kernel given by

f (x)+
∫ 1

0
s(x,y) f (y)dy = q(x) (30)

where s(x,y) satisfies the conditions

|∂
rs(x,y)
∂xr | ≤M|x− y|α−r, |∂

rs(x,y)
∂yr | ≤M|x− y|α−r,x 6= y (31)

in which M is a positive constant, −1 < α ≤ 0 and r is nonnegative integer. First,
we will use integration by parts to change the form of the original Eq. (30) to
make the singular kernel become very smooth, then solve the resulting equation,
eventually convert the solution back to that of the original Eq. (30). The details are
as follows.

Define

sk(x,y) = ∫ · · · ∫︸ ︷︷ ︸
k

s(x,y)dy, k = 1,2,3, · · · , (32)

and Ik(x,y) = hk(x,y)−hk(x,1), k = 1,2,3, · · · , in which

hk(x,y) = sk(x,y)−
k−1

∑
i=1

hi(x,1)yk−i/(k− i)!.
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Considering Eq. (31), it can be easily known that sk(x,y), Ik(x,y) ∈ Ck−1. Using
integration by parts to

∫ 1
0 s(x,y) f (y)dy, Eq. (30) can be reduced to

f (x)+ [ f (y)I1(x,y)]|y=1
y=0−

∫ 1

0
I1(x,y) f ′(y)dy = q(x). (33)

Because we have I1(x,1) = 0, then

f (x)− f (0)I1(x,0)−
∫ 1

0
I1(x,y) f ′(y)dy = q(x). (34)

Repeat the integration by parts to
∫ 1

0 I1(x,y) f ′(y)dy and consider the fact of Ik(x,1)=
0, we have

f (x)+
J

∑
ξ=1

(−1)ξ Iξ (x,0) f (ξ−1)(0)+(−1)J
∫ 1

0
IJ(x,y) f (J)(y)dy = q(x). (35)

Let g(x) = f (J)(x), and

g
∫ · · · ∫︸ ︷︷ ︸

n (x) =
∫ x

0
· · ·

∫ tη−1

0
g(t1)dt1 · · ·dtη , (36)

then we have

f (x) = g

∫ · · · ∫︸ ︷︷ ︸
J (x)+

J−1

∑
k=0

1
k!

xk f (k)(0). (37)

Thus Eq. (35) can be changed into

g

∫· · ·∫︸︷︷︸
J (x)+

J

∑
ξ=1

[(−1)ξ Iξ (x,0)+
1

(ξ −1)!
x(ξ−1)] f (ξ−1)(0)

+(−1)J
∫ 1

0
IJ(x,y)g(y)dy = q(x).

(38)

Substituting x = t1, t2, t3, · · · , tJ ∈ [0,1] into Eq. (38), ti 6= ρ/2n, where ρ is an
arbitrary integer, we have

g

∫ · · · ∫︸ ︷︷ ︸
J (ti)+

J

∑
ξ=1

[(−1)ξ Iξ (ti,0)+
1

(ξ −1)!
t(ξ−1)
i ] f (ξ−1)(0)

+(−1)J
∫ 1

0
IJ(ti,y)g(y)dy = q(ti)

(39)



138 Copyright © 2014 Tech Science Press CMES, vol.102, no.2, pp.127-148, 2014

in which i = 1,2, · · · ,J. In order to get the expression of f (k)(0), k = 1,2, · · · , we
change the formation of Eq. (39) to

J

∑
ξ=1

[(−1)ξ Iξ (ti,0)+
1

(ξ −1)!
t(ξ−1)
i ] f (ξ−1)(0)

= q(ti)−g

∫ · · · ∫︸ ︷︷ ︸
J (ti)− (−1)J

∫ 1

0
IJ(ti,y)g(y)dy.

(40)

Rewriting Eq. (40) to a matrix form, we can obtain

AF = B (41)

in which A = {ai, j}, F = { f0 j}, B = {bi}, and

ai, j = (−1) jI j(ti,0)+
t( j−1)
i

( j−1)!
, f0 j = f ( j−1)(0),

bi = q(ti)−g

∫ · · · ∫︸ ︷︷ ︸
J (ti)− (−1)J

∫ 1

0
IJ(ti,y)g(y)dy.

(42)

In order to solve Eq. (41) with unknown F, we denote the adjoint matrix of the
matrix A as ad jA = {ci, j, i, j = 1,2, · · · ,J}. Then

F = A−1B = (ad jA)B/detA. (43)

Substituting Eq. (43) into Eq. (38), it yields

g

∫ · · · ∫︸ ︷︷ ︸
J (x)−

J

∑
i=1

αi(x)g

∫ · · · ∫︸ ︷︷ ︸
J (ti)+

∫ 1

0
Θ(x,y)g(y)dy = Q(x) (44)

where

Q(x) = q(x)−
J

∑
i=1

αi(x)q(ti),

Θ(x,y) = (−1)JIJ(x,y)−
J

∑
i=1

αi(x)(−1)JIJ(ti,y), (45)

αi(x) =
J

∑
ξ=1

[(−1)ξ Iξ (x,0)+
x(ξ−1)

(ξ −1)!
]cξ ,i/detA.

Thus we obtain the transformed Eq. (44) after smoothing treatment.
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Using expansion formula (13) to unknown function g(x), it yields

g(x)≈
2n

∑
k=0

g(xk)Φn,k(x). (46)

And consider the definition (36), it gives

g

∫ · · · ∫︸ ︷︷ ︸
η (x) =

∫ x

0
· · ·

∫ tη−1

0
g(t1)dt1 · · ·dtη =

2n

∑
k=0

gkΦ

∫ · · · ∫︸ ︷︷ ︸
η

n,k (x). (47)

Use expansion formula (13) to Eq. (44) again, we have

Θ(x,y)g(y)≈
2n

∑
j=0

Θ(x,y j)g jΦn, j(y) (48)

where y j = j/2n,g j = g(y j). Then we have

2n

∑
k=0

gkΦ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (x)−
J

∑
i=1

αi(x)
2n

∑
k=0

gkΦ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (ti)+
2n

∑
j=0

Θ(x,y j)g jΦ
∫
n, j(1) = Q(x). (49)

Considering Eq. (49), and for the variable x, using the Eq. (13), we have

2n

∑
l=0
{

2n

∑
k=0

gkΦ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (xl)−
J

∑
i=1

αi(xl)
2n

∑
k=0

gkΦ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (ti)+
2n

∑
j=0

Θ(xl,y j)g jΦ
∫
n, j(1)}Φn,l(x)

=
2n

∑
l=0

Q(xl)Φn,l(x).

(50)

Let Φn,ς (x), ς = 0,1, · · · ,2n be the weighted functions, multiplying both sides of
Eq. (50) by them and then taking integration from 0 and 1, we can obtain

2n

∑
l=0
{

2n

∑
k=0

gkΦ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (xl)−
J

∑
i=1

αi(xl)
2n

∑
k=0

gkΦ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (ti)+
2n

∑
j=0

Θ(xl,y j)g jΦ
∫
n, j(1)}Γ̄

0,0
ς ,l

=
2n

∑
l=0

Q(xl)Γ̄
0,0
ς ,l .

(51)
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Because the matrix {Γ̄0,0
ς ,l } is nonsingular, then Eq. (51) can be changed into

2n

∑
k=0

gkΦ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (xl)−
J

∑
i=1

αi(xl)
2n

∑
k=0

gkΦ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (ti)+
2n

∑
j=0

Θ(xl,y j)g jΦ
∫
n, j(1) = Q(xl),

(52)

then

2n

∑
k=0

gk[Φ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (xl)−
J

∑
i=1

αi(xl)Φ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (ti)+Θ(xl,yk)Φ
∫
n,k(1)] = Q(xl). (53)

Also, it can be changed into matrix form as

Hg = q (54)

where H = {hl,k}, g = {gk}T , q = {Q(xl)}T , l,k = 0,1, · · · ,2n, and

hl,k = Φ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (xl)−
J

∑
i=1

αi(xl)Φ

∫ · · · ∫︸ ︷︷ ︸
J

n,k (ti)+Θ(xl,yk)Φ
∫
n,k(1). (55)

Solving the Eq. (54) we can obtain the solution g = {gk}T .

5 Numerical examples

Six numerical examples are considered in this section, which include two linear
integral equations with continuous kernels (Examples 1 and 2); two nonlinear in-
tegral equations with continuous kernel (Example 3 and 4); two nonlinear integral
equations with weakly singular kernel (Example 5 and 6). All these examples were
solved by using the scaling function with N=6 and M1 = 7.

Example 1

As the first example, we consider [Liang, Liu and Che (2001); Xiao, Wen and
Zhang (2006)]

f (x)+
∫ 1

0
sin(4πx+2πy) f (y)dy = cos(2πx)+

1
2

sin(4πx) (56)

with exact solution: f (x) = cos(2πx).

Equation (56) has been solved by Liang et al. [Liang, Liu and Che (2001)] and
Xiao et al. [Xiao, Wen and Zhang (2006)] by using different methods. Liang et
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al. [Liang, Liu and Che (2001)] have shown that using the Galerkin method of
Daubechies wavelets in solving the integral equations has almost the same accu-
racy as that of noncontinuous multiwavelets. For the error defined by ε = ||Exact
solution – Approximation solution||2, Liang et al. [Liang, Liu and Che (2001)]
shows that ε = O(10−4) when the resolution level n = 5 and O(10−7) when the
resolution level n = 8. When Eq. (56) is solved by using the Galerkin method of
periodic Daubechies wavelets [Xiao, Wen and Zhang (2006)], the maximum error
becomes O(10−7) when the resolution level n = 5.

Table 2 shows the numerical results for example 1 based on our approach 1 when
n = 3, 4, 5. It can be seen from Tab. 2 that numerical results obtained by the
proposed method can reach much higher precision, with maximum absolute error
on the order of O(10−16), than the results obtained by other methods [Liang, Liu
and Che (2001); Xiao, Wen and Zhang (2006)].

Table 2: Absolute Errors for Example 1.
x n=3 n=4 n=5
0 2.220446049250313e-16 0.000000000000000E+00 0.000000000000000e+00

0.125 4.440892098500626e-16 0.000000000000000E+00 0.000000000000000e+00
0.25 6.901693502643938e-17 4.648517068615585e-17 7.80781917894856e-18
0.375 3.330669073875470e-16 0.000000000000000e+00 2.22044604925031e-16
0.5 4.440892098500626e-16 4.440892098500626e-16 2.22044604925031e-16

0.625 3.330669073875470e-16 1.110223024625157e-16 0.000000000000000e+00
0.75 2.431988140355359e-18 1.666961094280448e-17 5.12378556944903e-17
0.875 4.440892098500626e-16 1.110223024625157e-16 0.000000000000000e+00

1 0.000000000000000e+00 0.000000000000000e+00 1.11022302462516e-16

Example 2

f (x)+
∫ 1

0
sin(
√

y+ x)y f (y)dy = Acos(x)+Bsin(x)+ x (57)

in which A = 130sin(1)− 202cos(1), B = 130cos(1)+ 202sin(1)− 240. Exact
solution: f (x) = x. As the kernel “sin(

√
y+ x)y” has no definition when y < 0, the

approach 1 in this case is no longer valid. Thus we use the approach 2 based on
the modified L2[0, 1] Coiflets-like bases to solve Eq. (57). Table 3 gives the results
when n=3, 4, 5. It can be seen that, the proposed approach 2 can also have very
high accuracy. The absolute error is on the order of O(10−8) for n=5.
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Table 3: Absolute Errors for Example 2.
x n=3 n=4 n=5
0 1.252297980161853e-05 9.867446204977927e-07 8.28536162872373e-08

0.125 1.196574130396533e-05 9.479860868244483e-07 7.97777389982546e-08
0.25 1.122178134765894e-05 8.944344797034987e-07 7.54569567384955e-08

0.375 1.030270927804278e-05 8.269255532544761e-07 6.99586940045016e-08
0.5 9.222866867442114e-06 7.465127214167922e-07 6.33687492479496e-08

0.625 7.999104726819084e-06 6.544508311945307e-07 5.57899559883168e-08
0.75 6.650519214224104e-06 5.521764361304804e-07 4.73405796785897e-08

0.875 5.198154605534633e-06 4.412855452162745e-07 3.81524697390390e-08
1 3.664674494308073e-06 3.235085015429462e-07 2.83690009261761e-08

Example 3

y(x) = x3 +
1
3
(cos1−1)+

∫ 1

0
s2 sin(y(s))ds. (58)

Exact solution: y(x) = x3. Table 4 shows the numerical results for example 3 based
on approach 1 when n = 3, 4, 5. This nonlinear integral equation with contin-
uous kernel also has been solved by the authors of reference [Galperin, Kansa,
Makroglou and Nelson (2000)] based on the trapezoidal formula and other tech-
niques associated with variable transformations. For the results with 40 grid points
obtained by using the second order Korobov transformation [Galperin, Kansa, Ma-
kroglou and Nelson (2000)] and the third order sidi transformation [Galperin, Kansa,
Makroglou and Nelson (2000)], the maximum absolute error is on the order of
O(10−6). However as shown in Tab. 4, our results have the maximum absolute
error on the order of O(10−7) when n = 4, corresponding to 16 grid points.

Table 4: Absolute Errors for Example 3.
x n=3 n=4 n=5
0 3.531590655497861e-05 1.27207428490686e-07 6.13724326525990e-10

0.125 3.531590655497861e-05 1.27207428466487e-07 6.13724352371489e-10
0.25 3.531590655497796e-05 1.27207428490123e-07 6.13724333506371e-10

0.375 3.531590655497796e-05 1.27207428486653e-07 6.13724342179989e-10
0.5 3.531590655497796e-05 1.27207428479714e-07 6.13724335241095e-10

0.625 3.531590655497796e-05 1.27207428479714e-07 6.13724349118883e-10
0.75 3.531590655497796e-05 1.27207428424203e-07 6.13724293607731e-10

0.875 3.531590655503347e-05 1.27207428479714e-07 6.13724404630034e-10
1 3.531590655503347e-05 1.27207428479714e-07 6.13724404630034e-10
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Example 4

f (x)−a
∫ 1

0
xy f b(y)dy = q(x) (59)

when a=1, b=3, and q(x) = ex-(x+2e3x)/9, the exact solution can be f (x) = ex.
This nonlinear integral equation has been solved in references [Mahmoudi (2005);
Babolian and Shahsavaran (2009)] by numerical methods based on the Legendre
and Haar wavelets, respectively. The maximum absolute error is about O(10−2) and
O(10−3) when the resolution level is n = 5 in [Babolian and Shahsavaran (2009)]
and n=3 in [Mahmoudi (2005)]. Table 5 lists the numerical results for example 4
based on our approach 1 when n = 3, 4, 5. However, as shown in Tab. 5, the results
by using the proposed approach 1 have the maximum absolute error O(10−6) for
n=3, which is obviously much better.

When a=1/2, b=2, and q(x) =7x/8. The exact solution is simply f (x) = x. This
nonlinear integral equation has also been numerically solved by Sahu et al. [Sahu
and Ray (2013)] by using the semi-orthogonal linear B-spline wavelets. They have
shown that the maximum absolute error is about O(10−5) when the resolution level
is n=4 [Sahu and Ray (2013)]. Table 6 lists the absolute errors of the numerical
solutions obtained by using the proposed approach 1 when n=3, 4, and 5, respec-
tively. When the resolution level n=3, our results exhibit the absolute error nearly
O(10−13), being several orders of magnitude smaller.

Table 5: Absolute Errors for Example 4 with a=1, b=3.
x n=3 n=4 n=5
0 0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00

0.125 1.323169851907835e-06 9.514252274911428e-09 7.15421055730303e-11
0.25 2.646339703815670e-06 1.902850477186746e-08 1.43084433190666e-10
0.375 3.969509555945550e-06 2.854275704677889e-08 2.14627204897511e-10
0.5 5.292679407631340e-06 3.805700954373492e-08 2.86168866381331e-10

0.625 6.615849259983264e-06 4.757126181864635e-08 3.57711193998966e-10
0.75 7.939019111891099e-06 5.708551409355778e-08 4.29254409795021e-10
0.875 9.262188964687113e-06 6.659976703460302e-08 5.00796737412657e-10

1 1.058535881526268e-05 7.611401908746984e-08 5.72337732762662e-10

Example 5

f (x)−
∫ 1

0
ln |x− y|dy = x−0.5[x2 lnx+(1− x2) ln(1− x)− x−0.5]. (60)
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Table 6: Absolute Errors for Example 4 with a=1/2, b=2.
x n=3 n=4 n=5
0 0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00

0.125 1.00114361245573e-13 5.01543251374414e-14 3.18634008067420e-14
0.25 2.00228722491147e-13 1.00308650274883e-13 6.37268016134840e-14
0.375 3.00370839312336e-13 1.50490730987940e-13 9.56457135714572e-14
0.5 4.00457444982294e-13 2.00617300549766e-13 1.27453603226968e-13

0.625 5.00599561803483e-13 2.50799381262823e-13 1.59428026336172e-13
0.75 6.00741678624672e-13 3.00981461975880e-13 1.91291427142914e-13
0.875 7.00772773143399e-13 3.51163542688937e-13 2.23154827949656e-13

1 8.00914889964588e-13 4.01234601099532e-13 2.54907206453936e-13

Exact solution: f (x) = x. This is an integral equation of second kind with weakly
singular kernel. Equation (60) has been solved by the methods of reference [Liang,
Liu and Che (2001); Panigrahi and Nelakanti (2012)]. When the error is defined
as ε = ||Exact solution – Approximation solution||2, Liang et al. [Liang, Liu and
Che (2001)] have shown that this error associated with their results is on the order
of O(10−4) when the resolution level n = 5 and O(10−7) when the resolution level
n = 8. In addition, this error ε becomes O(10−2) when 8 grid points are used in
reference [Panigrahi and Nelakanti (2012)]. To solve this equation by our method,
we define J = 3, t1 = 0.2, t2 = 0.6, t3 = 0.9. Table 7 gives the numerical results when
n = 3, 4, 5. Interestingly, for the present method, the maximum absolute error is
O(10−14) when only 8 grid points, corresponding to n=3, have been used.

Table 7: Absolute Errors for Example 5.
x n=3 n=4 n=5
0 3.319566843629218e-14 8.881784197001252e-15 2.22044604925031e-16

0.125 3.574918139293004e-14 9.228728892196614e-15 1.24900090270330e-16
0.25 3.380629109983602e-14 8.215650382226158e-15 4.99600361081320e-16
0.375 3.169686735304822e-14 7.216449660063518e-15 9.43689570931383e-16

0.5 3.042011087472929e-14 6.994405055138486e-15 1.38777878078145e-15
0.625 3.042011087472929e14 7.438494264988549e-15 1.88737914186277e-15
0.75 3.252953462151709e-14 7.438494264988549e-15 2.44249065417534e-15
0.875 3.541611448554249e-14 7.438494264988549e-15 2.99760216648792e-15

1 3.375077994860476e-14 6.883382752675971e-15 3.55271367880050e-15
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Example 6

y(x) = f (x)+
∫ 1

0
y(s)/

√
|x− s|ds (61)

where f (x) = x−2x
√

1− x− 2
3(1−x)3/2− 4

3 x3/2. Exact solution: y(x) = x. This is
also an integral equation of second kind with weakly singular kernel. Galperin et
al. [Galperin, Kansa, Makroglou and Nelson (2000)] have solved Eq. (61) by using
a method based on the trapezoidal formula and variable transformations. When the
fourth order sidi transformation is used, for the results with 40 grid points, Galperin
et al. [Galperin, Kansa, Makroglou and Nelson (2000)] have shown that the abso-
lute maximum errors of their results is about O(10−3). To solve this equation by
using our method, we define J = 3, t1 = 0.2, t2 = 0.6, t3 = 0.9. Table 8 gives the
numerical results of Eq. (61) by using the proposed method when n = 3, 4, 5.
It can be seen that the maximum absolute error can reach O(10−12) with only 8
grid points has been used, which shows again much smaller error of the proposed
method than the method given by Galperin et al. [Galperin, Kansa, Makroglou and
Nelson (2000)].

Table 8: Absolute Errors for Example 6.
x n=3 n=4 n=5
0 1.76285652742081e-11 7.24753590475302e-13 3.69482222595252e-13

0.125 5.77654590827592e-12 2.68646216383672e-13 1.64201985342061e-13
0.25 2.63541966027958e-12 6.27553564669370e-14 1.00475183728577e-14

0.375 7.62706564572113e-12 2.70117261891301e-13 9.29811783123569e-14
0.5 9.18681797301701e-12 3.53606033343112e-13 1.44995127016045e-13

0.625 7.30504545742861e-12 3.13304937549219e-13 1.45994327738208e-13
0.75 1.96931360108010e-12 1.49102952207159e-13 9.60342916300760e-14

0.875 6.80877576542116e-12 1.39110944985532e-13 4.99600361081320e-15
1 1.90141236089403e-11 5.51558798633778e-13 1.57207580286922e-13

6 Conclusions

We have proposed the Coiflet-based methods to deal with the nonlinear integral
equations with weakly singular kernels. It can be seen from the numerical examples
that the proposed approach is very efficient and accurate comparing with several
existing methods.
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