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Numerical Analysis for the Mooring System with
Nonlinear Elastic Mooring Cables
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Abstract: This paper presents numerical analysis for the mooring system with
nonlinear elastic mooring cables. The equation of motion for nonlinear elastic
mooring cable is established by utilizing finite element method. A marine moor-
ing system of floating rectangular box with nonlinear elastic cables is taken as an
illustrative example. The dynamic analysis, static analysis, and uniformity analysis
are carried out for the polyester mooring system and the results are compared with
those of the steel wire and the chain mooring system. Results from the present
study can provide valuable recommendations for the design and construction of the
mooring system with nonlinear elastic mooring cables.

Keywords: nonlinear elastic mooring cables, finite element method, numerical
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1 Introduction

Compared with the steel wire or chain, the polyester cable has lighter mass and
higher corrosion resistance. Currently, trends aim at station-keeping of floating
structure via mooring in deeper water. Polyester cable is considered to be an attrac-
tive option for deepwater mooring systems. Polyester cable has many advantages
over steel wire and chain, however one of the major challenges lies in an accu-
rate understanding of the full-scale physical properties. Other than the steel wire
or chain, the mechanical properties of polyester cable are generally nonlinear and
time- dependent and exhibit viscoelasticity and viscoplasticity.

The nonlinear elastic mooring cable has significant effects on the performances of
the mooring system and the calculations are more complicated than the linear ones,
and they are related to dynamic responses and mooring forces of the mooring sys-
tem. Therefore, it is necessary and significant to make research about for mooring
system with nonlinear elastic mooring cables.
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The nonlinear elastic mooring cable has been an interest topic in marine hydro-
dynamics research in the past few decades. Various methods have been presented
for obtaining material property of nonlinear elastic. Del Vecchio (1992) proposed
a method for determining the modulus of the polyester rope at constant tempera-
ture. Francois and Davies (2008) carried out experiments on the characterization
of polyester mooring cables. Liu et al. (2014) made experimental investigation on
nonlinear behaviors of synthetic fiber ropes. Some researchers [Yuan et al. (2010);
Huang et al. (2013); Beltrán and Williamson (2011); Ćatipović et al. (2011)] pre-
sented various computational methods for nonlinear elastic mooring cables. And,
the finite element methods have been developed to solve nonlinear dynamics prob-
lems of flexible structure, nonlinear elastic-plastic material and catenary structure
[Okamoto and Omura (2003); Nishioka et al. (2007); Kim et al. (2010)].

However, those methods still need to be further improved to enable easier numerical
implementation utilizing classical finite element method codes, and the researches
about the comparison of dynamic and static analysis between steel wire, chain and
the polyester mooring system has not been seen.

In the present study, the equation of motion for a nonlinear elastic mooring cable
of a mooring system is built and the finite element method is used to obtain the
dynamic responses of the system. A mooring system of floating rectangular box
with nonlinear elastic cable is taken as the numerical model. The dynamic analysis,
static analysis, and uniformity analysis are made for the polyester mooring system.

2 Methodology

2.1 Equation of motion for the mooring system

In Fig. 1, two coordinate systems are defined to describe the motions of floating
structure, i.e. the fixed reference coordinate system O−XY Z with origin in the free
surface and the body fixed coordinate system o− xyz with origin at the centre of
gravity of floating structure.

To carry out calculation of the coupled model the force and the moment of each
mooring cable should be included into dynamics of a floating body. Considering the
combined effects of current, wind and wave, the equation of motion for a mooring
system with nonlinear elastic cable can be written as [Buchner et al. (2001)]

([Mm]+ [M∞
a ]){ẍ(t)}+

∫ t
0 [K(t− τ)]{ẋ(t)}dτ+

+[C]{x(t)}= {FWA(t)}+{FM(t)}+{FWI(t)}+{FCU(t)}
(1)

where [Mm] and [M∞
a ] are the mass and added mass matrices, respectively,

[K(t− τ)] is the delay function matrix, [C] is the hydrostatic resilience matrix,
{ẍ(t)}, {ẋ(t)} and {x(t)} are the acceleration, velocity and displacement matrices,
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Figure 3:  Definition of the coordinate systems of the mooring system. 
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Figure 1: Definition of the coordinate systems of the mooring system.

respectively, and {FWA(t)}, {FM(t)}, {FWI(t)} and {FCU(t)} are the wave force,
cable tension, wind force and current force, respectively.

The wind force provided by Ref. [OCIMF (1994)] is expressed as

FWI = 0.5v2
kChCsA (2)

where vk is the wind speed, Ch is the pressure and height coefficient, Cs is the shape
factor, and A is the windward area.

The current force in Eq. (1) can be given as

FCU = 0.5ρCDu2ACU (3)

where ρ is the density of water, CD is the hydraulic drag coefficient, u is the flow
velocity, and ACU is the incident flow area.

The linear three-dimensional potential theory is used to calculate the wave forces.
The first order wave force, the second order wave force are defined by linear transfer
function and quadratic transfer function, respectively, which is the most common
method for calculating wave forces of wet surfaces.

The irregular wave conditions can be expressed by the Pierson-Moskowitz wave
spectrum [Pillai and Prasad (2008)]

S(ω) =
1

2π

H2
s

4πT 4
z
(
2π

ω
)5 exp

[
− 1

πT 4
z
(
2π

ω
)4
]

(4)

where Hs is the significant wave height, Tz is the zero crossing period, and ω is the
wave frequency.

2.2 Equation of motion of the mooring cable

In Fig. 2, nonlinear elastic mooring cable is modeled as a space curve, which is
defined by a position vector r. Any point at the curve is defined by an arc length of
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extended mooring line s̃. Within dynamic analysis the position vector r is also the
function of time t.

 
  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Definition of the mooring cable element.

The equation of motion is established by force equilibrium on an equivalent seg-
ment of the mooring line based on Newton’s Second Law

dFE

ds̃
+qE = m̃r̈ (5)

where qE is the effective distributed load vector, m̃ is the distributed mass of the
extended mooring line, r̈ is the acceleration vector of the segment, and FE is the
cross section effective force vector expressed as

FE = TE
dr
ds̃

(6)

where TE is the effective tension force.

Combining Eq. (5) and Eq. (6) leads to

d
ds̃

(TE
dr
ds̃

)+qE = m̃r̈ (7)
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The elongation strain ε is defined as

ε =
ds̃−ds

ds
(8)

where s is the arc length related to non-extended case.

From Eqs. (8) and (7), we have

d
ds

(
TE

1+ ε

dr
ds

)+(1+ ε)qE = (1+ ε)m̃r̈ (9)

The effective distributed load vector qE is the summation of gravity, buoyancy, and
the hydrodynamic force vector qH of the cable. And qH can be expressed by the
Morison equation.

Thus, qE can be expressed as

qE =−ρÃg+ m̃g+qH (10)

with

Ã =
A

1+ ε
, m̃ =

m
1+ ε

(11)

where Ã and m̃ are the cross-sectional area and distributed mass variables related
to the extended case, respectively, while A and m are related to the non-extended
case, ρ is the density of water, g is the gravitational acceleration vector.

Substituting Eq. (10) and Eq. (11) in to Eq. (9), we have

d
ds

(
TE

1+ ε

dr
ds

)+mg−ρAg+qH = mr̈ (12)

With classical form of the elongation strain and the Lame formula, the elongation
strain ε of the cable submerged in water, can be written as

ε =
1
E

[
TE

A
− (1−2ν)p

]
(13)

where E is the Young’s modulus, p is hydrostatic pressure of the sea water, and ν

is the Poisson’s ratio.

For simplicity, the conserved Poisson’s ratio is adopted, i.e. the synthetic cable ν

is assumed to be 0.5 [Tjavaras et al. (1998)]. Thus, Eq. (13) can be expressed as

ε =
TE

AE
(14)
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An empirical formulation in Ref. [Tahar et al. (2008)] is used to represent the axial
stiffness AE of the polyester cable

AE = RHOL(α +β
TR

Bs
) ·106 (15)

where Bs is the minimum breaking strength, TR is the time dependant real tension,
α and β are the material constants depending on the type of polyester material
and their values usually come from the experimental results, and RHOL is the dry
weight per unit length of the cable.

From Eq. (8) and considering the symmetric set, the axial elongation condition can
be obtained by an approximate form

1
1+ ε

(
dr
ds
· dr

ds
)−1− ε = 0 (16)

2.3 Finite element model for the mooring cable

From Eqs. (12), (14) and (16), the final form of governing equations of the cable
can be written as[
(TE −TE

TE

AE
+TE(

TE

AE
)2)r′i

]′
+mgi−ρAgi +qH

i = mr̈i (17)

[
1− TE

AE
+(

TE

AE
)2)

]
r′jr
′
j−1− TE

AE
= 0 (18)

with i, j = 1,2,3. It is noted that qH
i using new label to avoid confusion.

Based on Galerkin’s method [Zienkiewicz et al. (2005); Tahar et al. (2008);
Ćatipović et al. (2011)], the finite element discretization of the equation of mo-
tion Eq. (17) can be written as

(Mi jkl +MA
i jkl)Ü jk +(K0

ni jkl +λmK1
nmi jkl +λmλpK2

nmi jkl)λnU jk +Fil +FH
il = 0 (19)

in which,

Mi jkl =−
∫ L

0
mAlAkδi jds (20)

MA
i jkl =−

∫ L

0
(CAρA)Alei f gA′veg jhAkA′zU f vUhzds (21)

K0
ni jkl =−

∫ L

0
PnA′kA′lδi jds (22)
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K1
ni jkl =−

∫ L

0

1
AE

PnPmA′kA′lδi jds (23)

K2
ni jkl =−

∫ L

0

1
(AE)2 PnPmPpA′kA′lδi jds (24)

Fil = FC
il +

∫ L

0
mgids−

∫ L

0
(ρA)giAlds (25)

FH
il =

∫ L

0
(CMρA)Alei f gA′veg jhA′zv̇ jU f vUhzds+

+
∫ L

0
(
1
2

CDρA)
√
[eabc(vb−ArU̇brA′sUcs)][eade(vd−AtU̇dtA′uUeu)]·

· [Alei f gA′veg jh(v j−AkU̇ jk)A′zU f vUhz]ds

(26)

with a,b,c,d,e, f ,g,h,m,n, p = 1,2,3, k,r, t,u,v,z = 1,2,3,4, where L is the length
of each element, Mi jkl is the mass matrix due to the own mass, MA

i jkl is the added
mass matrix, K0

ni jkl , K1
nmi jkl , K2

nmi jkl is the geometric stiffness matrix and additional
stiffness matrix, respectively, δi j is the Kronecker delta, ei f g is the Levi-Civita sym-
bol, Al and Pn are the shape functions with Hermitian polynomials, CA, CM and CD

are the added mass, inertial and drag coefficients, Fil , FH
il and FC

il are the total nodal
force, hydrodynamic nodal force and external nodal force vector, and λm, λp, U jk
are unknown coefficients of time dependent.

Similarly, Eq. (18) can be written as

(B̂0
mkl +λnB̂1

nmkl +λnλpB̂2
nmpkl)U jlU jk +Ĉnmλn−Cm = 0 (27)

with the detailed coefficients expressed as

B̂0
mkl =

∫ L

0
PmA′kA′lds (28)

B̂1
nmkl =−

∫ L

0

1
AE

PnPmA′kA′lds (29)

B̂2
nmpkl =−

∫ L

0

1
(AE)2 PnPmPpA′kA′lds (30)

Ĉnm =−
∫ L

0

1
AE

PnPmds (31)

Cm =−
∫ L

0
Pmds (32)

where B̂0
mkl , B̂1

nmkl , B̂2
nmpkl is the geometric coefficient matrix and additional coeffi-

cient matrix, respectively, and Cm, Ĉnm are the vectors related to shape and stiffness.
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The Newton-Raphson iterative method [Kreyszig (1993)] is used to solve Eq. (19)
and Eq. (27) as follows(

Ĵ11(n+1,k)
i jkl Ĵ12(n+1,k)

nil

Ĵ21(n+1,k)
m jk Ĵ22(n+1,k)

mn

)(
∆U jk
∆λn

)
=−

(
R̂1(n+1,k)

il

R̂2(n+1,k)
m

)
(33)

with

Ĵ11(n+1,k)
i jkl =

4
∆t2 M̂(n+1,k)

i jkl + K̂(n+1,k)
ni jkl λn (34)

Ĵ12(n+1,k)
nil = K̂(n+1,k)

ni jkl U (n+1,k)
jk (35)

Ĵ21(n+1,k)
m jk =−(B̂0

mkl +λnB̂1
nmkl +λnλpB̂2

nmpkl)
(n+1,k)U (n+1,k)

jl (36)

Ĵ22(n+1,k)
mn =−1

2
Ĉmn−

1
2
(B̂1

nmkl +2λpB̂2
nmpkl)

(n+1,k)U (n+1,k)
jl U (n+1,k)

jk (37)

R̂1(n+1,k)
il =(

4
∆t2 M̂(n+1,k)

i jkl + K̂(n+1,k)
ni jkl λn)U

(n+1,k)
jk + F̂(n+1,k)

il

− M̂(n+1,k)
i jkl (

4
∆t2Un

jk +
4
∆t

V n
jk +V n

jk)

(38)

R̂2(n+1,k)
m =−1

2

(
(B̂0

mkl +λnB̂1
nmkl +λnλpB̂2

nmpkl)
(n+1,k)

U (n+1,k)
jl U (n+1,k)

jk +Ĉmnλ
(n+1,k)
n −Cm

)
(39)

where Ĵ11
i jkl , Ĵ12

nil , Ĵ21
m jk and Ĵ22

mn compose a Jacobian matrix while R̂1
il and R̂2

m are parts
of a residual vector, and k in superscripts denotes the iteration number within a time
step.

For a singe finite element, Eq. (33) is written as

(
Ĵ
)(n+1,k)

(∆y) =−
(
R̂
)(n+1,k) (40)

where Ĵ, ∆y, R̂ are the corresponding terms in the Eq. (33).

Iterative calculation is written as

(y)(n+1,k+1) =

{
(y)(n)+(∆y) f or f irst iteration
(y)(n+1,k)+(∆y) f or other iteration

(41)
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Figure 3: Layout of the mooring systems.

3 Numerical results and discussion

A marine mooring system of floating rectangular box is taken as an illustrative
example. Fig. 3 shows the layout of the mooring system. The physical parameters
are listed in Table 1. Some physical parameters are taken from the existed studies
[Arcandra (2001); Tahar et al. (2008); Huang et al. (2013)].

As structural scale is large we should consider diffraction condition to define the
corresponding position of lines in the water and diffraction units. The main con-
tributions of wave forces are the slowly varying wave drift forces and mean wave
drift forces. Since the structure has blunt shaped rectangular section, shape resis-
tance of drag force is prominent. For simplicity, it can be assumed that the force
due to wind and sea current has only constant components. The value of the wind
force and current force can be calculated by simplified engineering formulas, i.e.
Eq. (2) and Eq. (3), and coefficients of the formulas are obtained by the physical
experiments, professional standards [OCIMF (1994); MOT of PRC (2001)].

3.1 Dynamic analysis

The mooring system located in the ocean for long time and is subjected to vari-
ous complicated environmental forces like ocean wave, current, wind, etc, which
is random and time-varying and may induce the failure of the whole structure. The
anchoring cables have significant effects on the mooring performances of the float-
ing structure, and are related to system’s motion response and force. Thus, it is
necessary and significant to make dynamic analysis about the mooring system with
different cable material in the time domain.
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Table 1: Basic parameters of the numerical model.

Designation Parameter Value
Length (m) 45
Width (m) 45
Height (m) 27.5

Structural Draft (m) 20
parameters Mass (t) 41512

Mass moment of inertia (kgm2) Ixx 4.5316E10
Mass moment of inertia (kgm2) Iyy 4.2748E10
Mass moment of inertia (kgm2) Izz 4.8877E10

Density of water (kg/m3) 1025
Depth of water (m) 80

Environmental Maximum wave zero crossing period (s) 60
parameters Maximum significant wave height (m) 2

Maximum current velocity (m/s) 4
Maximum wind velocity (m/s) 13.8

Direction (◦) 60
Pretension (kN) 20

Numbers of cable 4
Mooring Length of mooring cable (m) 110

parameters Diameter of mooring cable (m) 0.12
Minimum breaking load (N) Steel wire 7.250E6,

Chain 2.155E6,
Polyester 2.70E6

Dry weight (kg/m) Steel wire 70.37, Chain
88.22, Polyester 10.8

Stiffness (N) Steel wire 1.36E8, Chain
3.06E8, Polyester

(dynamic, linearized
stiffness 1.50E8,
α = 2.5,β = 2.0)

Fig. 4 shows the effect of cable length on mean dynamic mooring force of mooring
system, the variational laws of curves of cable 1 and cable 3 are similar, with the
increase of the cable in the range of 106∼116 m, the mean dynamic mooring force
is decreased. Due to the effect of dynamic stiffness of the polyester, the variational
laws of curves are not linear. With the increase of the cable length, there is a fraction
of cable lying on the seabed, and it does not have any influence on the cable tension
because its weight is counteracted by the seabed reaction. Thus, it can be seen that,
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the dynamic mooring force of the two cables do change abruptly from 110 m to
112 m, and the decrease slows down thereafter.

 

Figure 4: Mean dynamic mooring force of the polyester mooring system.

 

Figure 5: Dynamic mooring tension force of the cable 3.
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In Fig. 5, comparing with chain and steel wire, when with same pretension, the
polyester has smallest value of dynamic tension force and fastest rate of decay. The
maximum value of the dynamic tension force of polyester is only about 67.72%
and 91.58% of those in chain and steel wire, respectively. Due to the capacity in
absorbing dynamic tension force energy and little weight in water, the polyester
can effectively suppress the dynamic tension force of the mooring system, while
chain and steel wire need to enhance their minimum breaking load to avoiding be
broken in extreme environmental conditions.

Figs. 6-9 shows examples of the dynamic motion response time history signal of
mooring system with three kinds of mooring cables. In the present case, the surge
motion dominates over sway motion due to the upstream direction of the environ-
mental force more close to surge direction. The value of surge and sway motion
response of polyester mooring system is largest, while the value of roll and pitch
motion response is smallest in the three kind of mooring cables. It appears that the
polyester has significant suppression effect on the rotational degree of freedom of
the roll and pitch motion, while the suppression effect on the translational degrees
of freedom of the surge and sway motion is limited. The reason is that the dynamic
tension force is mainly provided by the horizontal dynamic motion response, gen-
erally speaking, smaller dynamic tension force lead to larger horizontal dynamic
motion response.

 

Figure 6: Dynamic surge motions of the mooing system.
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Figure 7: Dynamic sway motions of the mooing system.

 

Figure 8: Dynamic roll motions of the mooing system.
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Figure 9: Dynamic pitch motions of the mooing system.

The axial stiffness AE of the polyester is no longer constant but varies with the
magnitude of dynamics tension force, and the dynamics tension force is time vary-
ing in irregular wave conditions. Thus, complicated nonlinear coupling effect can
be occurred between the mooring cable and its mooring system. The Ref. [Tahar et
al. (2008)] noted that the heave motion and roll/pitch angles are little affected by
both the polyester mooring stiffness and tension, but the horizontal offset of surge
and sway motions are affected signally.

Figs. 10-12 shows examples of the phase diagram in surge, sway, and heave direc-
tion, respectively. Due to little effects by the polyester cable, there is no nonlinear
damping added in the heave direction, Fig. 12 shows the low frequency motion
in heave direction. The motional characteristic is of periodic cycle, and the heave
motion goes around at centre-of-gravity position of floating structure, and the mag-
nitude value is roughly constant. The surge motion dominates over sway motion
leads to prominent mooring-induced damping due to the significant effects of the
polyester. Fig. 10 shows characteristic of surge motions in damping decay, and the
stationary focal point is around at the point of 3 m. In Fig. 11, the phase diagram
in sway direction shows motional characteristic of chaos, the periodic motion is
broken by the nonlinear coupling effect of the polyester cable with the mooring
system.
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Figure 10: Phase diagram in surge direction.

 

Figure 11: Phase diagram in sway direction.
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Figure 12: Phase diagram in heave direction.

3.2 Static analysis

Horizontal restoring stiffness plays very important role in global performance of
the mooring system, and its values depends on the stiffness, self-weight, and mean
minimum breaking load of the mooring cable, which necessitates careful consider-
ation during the early stage of design.

In the present study, a static cable analysis is conducted in order to obtain the
tension-displacement characteristics of the mooring system. In Fig. 13, in both ca-
ble cases, the restoring force increases with the static surge offset Comparing with
the steel wire and the chain mooring system, the static-offset curve of polyester
shows hardening effect, it is observed that the restoring force provided by the
polyester mooring system is medium when the surge offset is below 0.7m and sig-
nificantly greater than the other two one when the offset above 0.7m. The difference
value of the restoring force between provided by the polyester and steel wire is -
13000 N in the point of 0.2 m, while is larger than 54000 N in the points of 1.0
m, and it can expect that the difference value huge when the surge offset increases.
This is expected because the modulus of a polyester cable increases with the in-
crease in tension, while the modulus of steel wire and the chain remain unchanged.

The result shows that the polyester mooring line system provides larger nonlinear
horizontal stiffness to the mooring system, which can enhance the global perfor-
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Figure 13: Static surge offset curve with same pretension of the mooring system.

mance of the mooring system located in complex ocean environmental conditions,
especially in deeper water.

3.3 Uniformity analysis

In mooring system, if there are huge discrepancies between mooring cables, slack
in one or more cables could be encountered, while taut in the other cables which
undertake most of the force of the mooring system. The slack of cable might induce
the temporary dynamic instability of the floating structure for loss of restraint. Be-
sides, when the cable transits alternatively between the states of slack and taut, the
instant tension force of a large value i.e. impulse force might occur, which might
cause a sudden breakage of the cable, beside, the fatigue failure can be produced
easier.

Uniformity analysis is made for reduce the risk of the slack phenomenon. The
standard deviations of peak mooring force and mean mooring force of each four
cables are taken to make analysis about the uniformity of the mooring forces. 100
computational cases with variational environmental parameters are calculated. And
the mean values of those cases are taken to make comparisons about the three kind
of cable.

In Fig. 14, the standard deviation of peak value and mean value of polyester is only
about 48.89%, 23.12% of those in chain, respectively. The polyester has minimum
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Figure 14: Uniformity of the mooring forces.

standard deviation which implies polyester has higher uniformity of mooring force
than steel wire and chain, indicating that polyester has the lowest risk of causing a
sudden breakage of the cable. Zhang (2008) noted that, for different cable material,
when with some pretension, smaller density and larger modulus can suppress slack
phenomenon better, it can be used to explain the aforementioned results.

3.4 Discussion

To keep the safety of the mooring system, the numerical simulation in the de-
sign stage for the mooring system located in complicated marine environment is
necessary and significant, while physical model experiments are generally expen-
sive and time consuming. The polyester mooring cable has a highly non-linear
load-extension curve complicating the mooring system design, thus the numerical
method has been seen less as set, and this disadvantage restricted its wide practical
application.

The numerical model and methodology based on the finite element method has been
successfully developed in this present study. Thus, the engineers can easily use the
present method to make the numerical simulation to get more knowledge of the
static and dynamic behavior of the mooring system with nonlinear elastic mooring
cables. Steel wire or chain produce a nearly linear load-extension curve over the
range of loading involved in most mooring designs, and their mechanical properties
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are simple and have mature use and experience, thus, make the comparison with
them, the polyester mooring system can get the useful design consults. Overall,
the present study can promote widely practical application of the nonlinear elastic
mooring cables.

4 Conclusions

A mathematical method for dynamics motion of nonlinear elastic mooring cable
is built utilizing finite element method. The marine mooring system of floating
rectangular box with nonlinear elastic cables is taken as an illustrative numerical
example. The dynamic analysis, static analysis, and uniformity analysis are made
for the polyester mooring system while comparing with the steel wire and the chain
mooring system. The presented study can be used to obtained valuable recommen-
dations for the design and construction of the mooring system with nonlinear elastic
mooring cables.
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