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Friction and Wear Modelling in Fiber-Reinforced
Composites

L. Rodríguez-Tembleque1 and M.H. Aliabadi2

Abstract: This work presents new contact constitutive laws for friction and wear
modelling in fiber-reinforced plastics (FRP). These laws are incorporated to a nu-
merical methodology which allows us to solve the contact problem taking into
account the anisotropic tribological properties on the interfaces. This formulation
uses the Boundary Element Method for computing the elastic influence coefficients.
Furthermore, the formulation considers micromechanical models for FRP that also
makes it possible to take into account the fiber orientation relative to the sliding
direction, the fiber volume fraction, the aspect ratio of fibers, or the fiber arrange-
ment. The proposed contact and wear laws, as well as the numerical methodology,
are applied to compute and study wear in a carbon FRP. In these studies, it can
be observed how the fiber orientation, micromechanics, or sliding orientation af-
fect the normal and tangential contact compliance, as well as the contact traction
distribution and wear evolution.
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1. Introduction

Fiber-reinforced composite materials are increasingly being applied in many dif-
ferent structural and mechanical components in Aerospace, Automobile, Biome-
dicine [Scholz, Blanchfield, Bloom, Coburn, Elkington, Fuller, Gilbert, Muflahi,
Pernice, Rae, Trevarthen, White, Weaver, and Bond (2011)] or Building and Ci-
vil applications [Bank (2006)], due to their high values of specific strength and
stiffness, biocompatibility or durability. In many of these structural components,
fiber-reinforced plastics (FRP) are subjected to contact and interface loads. Some
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examples can be observed in mechanical joints between FRP profiles and stainless
steel connections, or pin-loaded FRP plates.

Although FRP are widely applied in many structural and mechanical systems, there
are not many numerical formulations that allow to analyze these polymer composi-
tes under different contact and wear conditions, especially due to the fact that par-
ticular contact and wear constitutive laws are required. Some experimental works
have studied the significant influence of fiber orientation on the wear and frictio-
nal behavior of FRP composites. The works of [Ohmae, Kobayashi, and Tsukizoe
(1974); Sung and Suh (1979); Tsukizoe and Ohmae (1983); Cirino, Friedrich, and
Pipes (1988); Jacobs, Friedrich, Marom, Schulte, and Wagner (1990); Vishwanath,
Verma, and Rao (1993)] and the book of [Friedrich (1993)], and more recently, the
works of [Larsen, Andersen, Thorning, Horsewell, and Vigild (2007)] and [Shar-
ma, Rao, and Bijwe (2009)], must be mentioned. Those experimental works showed
that the friction coefficient depends on several factors including the combination of
materials, the surface roughness or the fiber orientation (i.e. the largest coefficient
of friction was obtained when the sliding was normal to the fiber orientation, while
the lowest one was obtained when the fiber orientation was transverse) (see Fig.1).
Even considering a sliding direction on a plane parallel to the direction of fibers,
[Ohmae, Kobayashi, and Tsukizoe (1974)] observed that the friction coefficient
sliding in parallel direction was smaller than in the transverse direction. So proper
contact constitutive laws have to take into account the fiber orientation. Further-
more, experimental works also show the importance of the micromechanics of the
anisotropic bulk.

Several semi analytical works have dealt with the problem of FRP contact and
interaction modeling. The works of [Ning and Lovell (2002); Ning, Lovell, and
Morrow (2004); Ning, Lovell, and Slaughter (2006); Batra and Jiang (2008); Jiang
and Batra (2010); Leroux and Nélias (2011); Bagault, Nélias, and Baietto (2012);
Bagault, Nélias, Baietto, and Ovaert (2013a)] and [Bagault, Nélias, Baietto, and
Ovaert (2013b)] should also be mentioned. However, due to their intrinsic mathe-
matical complexity, analytical solutions incorporate several restrictive assumptions,
e.g. rigid indenter, half-plane space, etc.

In the numerical context and based on the Finite Element Method (FEM), the
works of [Xiaoyu (1995)] and [Lovell (1998)] started to study some contact pro-
blem between composites. The indentation problem of fiber reinforced polymer
was initially studied by [Vàradi, K., Flöck, and Friedrich (1998)]. Later, [Vàra-
di, Nèder, Friedrich, and Flöck (1999)] presented a FEM formulation involving
macro- and micro-contact analysis, and more recently, [Goda, Vàradi, Wetzel, and
Friedrich (2004a,b)] studied the fiber–matrix debonding process. As it can be obser-
ved in these works, a very fine mesh must be considered to approximate the contact
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problem between these composite domains. The Boundary Element Method (BEM)
has been a well recognized, in general, very accurate and efficient numerical tool for
studying contact and interface problems in FRP materials. Using the BEM, [Oka-
da, Fukui, and Kumazawa (2004)] and [Wang and Yao (2005)] studied particle-
reinforced composites, [Araújo and Gray (2008)] and [Wang and Z.H.Yao (2008)]
simulated carbon nanotube reinforced composites and [Távara, Mantic, Graciani,
Canas, and París (2010)] analyzed composite interlaminar crack propagation. [Var-
na, Paris, and del Cano (1997); Han, Ingber, and Schreyer (2006); Graciani, Mantic,
París, and Varna (2009)] and [Távara, Mantic, Graciani, and París (2011)] studied
the fiber–matrix debonding problem, [Mallardo and Alessandri (2000)] deal with
optimization/identification analysis of inclusions (i.e. fibers) in frictionless unilate-
ral contact with the matrix, and [Rodríguez-Tembleque, Buroni, Abascal, and Sáez
(2013)] and [Rodríguez-Tembleque, Sáez, and Buroni (2013)] studied fiber reinfor-
ced composites under frictional indentation problems. However, all these numerical
works solve different contact problems assuming frictionless contact, or constant
friction (and wear) coefficients, which are, for example, independent of fiber orien-
tation and sliding direction.

This work presents new contact constitutive laws for friction and wear modelling in
FRP. These proposed laws are incorporated to a boundary-element-based methodo-
logy like [Rodríguez-Tembleque, Abascal, and Aliabadi (2010, 2011); Rodríguez-
Tembleque, Buroni, Abascal, and Sáez (2011); Rodríguez-Tembleque, Abascal,
and Aliabadi (2012a,b); Rodríguez-Tembleque and Abascal (2013)], which allows
to solve the contact problem taking into account both the mechanical and the tribo-
logical anisotropic characteristics (i.e. anisotropic bulk properties and anisotropic
wear and frictional conditions). Furthermore, the formulation considers microme-
chanical models for FRP [Hopkins and Chamis (1988)] and [TuckerIII and Liang
(1999)], that also makes it possible to consider the fiber orientation relative to the
sliding direction, the fiber volume fraction, the aspect ratio of fibers, or the fiber
arrangement. The proposed contact and wear laws, and the numerical methodo-
logy, are applied to compute and study wear in carbon FRP, showing the influence
of fiber volume fraction, fiber orientation and sliding orientation and fiber aspect
ratio on contact tractions, normal and tangential contact compliance or wear evolu-
tion.

2. Contact problem formulation

The contact problem between two linear anisotropic elastic bodies Ωα , α = 1,2
with boundary ∂Ωα defined in the Cartesian coordinate system {xi} in R3 is con-
sidered. In order to know the relative position between both bodies at all times (τ),
a gap variable is defined for the pair I ≡ {P1,P2} of points (Pα ∈ ∂Ωα ,α = 1,2),
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(a) (b) (c)
Figura 1: Schematic diagram of a unidirectional FRP indicating the sliding direc-
tions: (a) Longitudinal, (b) Transverse, and (c) Normal (µL ≤ µT ≤ µN).

as g = BT (x2− x1), where xα is the position of Pα at every instant (xα = Xα +
uα

o +uα ), and matrix B = [e1|e2|n] is a base change matrix defined in [Rodríguez-
Tembleque, Abascal, and Aliabadi (2012a,b); Rodríguez-Tembleque and Abascal
(2013); Rodríguez-Tembleque, Buroni, Abascal, and Sáez (2013)] and [Rodríguez-
Tembleque, Sáez, and Buroni (2013)], which expresses the pair I gap in relation to
the local orthonormal base (see Fig. 2).

The expression for the gap can be written as:

g = ggo +BT (u2−u1) (1)

where ggo = gg + go, gg = BT (X2−X1) is the geometric gap between two solids
in the reference configuration, and go = BT (u2

o−u1
o) the gap due to the rigid body

movements. In this work, the reference configuration for each solid (Xα ) that will be
considered is the initial configuration (before applying load). Consequently, gg may
also be termed initial geometric gap. In Eq.(1) two components can be identified:
the normal gap, gn = ggo,n + u2

n− u1
n, and the tangential gap or slip, gt = ggo,t +

u2
t −u1

t , being uα
n and uα

t = [uα
t1,u

α
t2] the normal and tangential components of the

displacements.

3. Anisotropic frictional contact law

The unilateral contact law involves two conditions in the Contact Zone (Γc): impe-
netrability and no cohesion. Therefore for each pair I ≡ {P1,P2} ∈ Γc: gn ≥ 0 and
tn ≤ 0. The variable tn is the normal contact traction defined as: tn = BT

n t1 =−BT
n t2,

where tα is the traction of point Pα ∈ Γα
c expressed in the global system of referen-

ce, and Bn = [n] is the third column of matrix B = [Bt |Bn]. Tangential traction is
defined as: tt = BT

t t1 =−BT
t t2. Finally, the variables gn and tn are complementary:
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Figura 2: Contact pair I of points Pα ∈ ∂Ωα (α = 1,2).

gn tn = 0, so this set of relations may be summarized as the so-called Signorini
conditions: gn ≥ 0, tn ≤ 0, gn tn = 0.

Friction constitutive laws for FRP can be accurately approximated by a convex
elliptical friction cone, according to experimental works. The principal axes of the
ellipse coincide with the orthotropic axes (Fig.3(a)). The generic form of such an-
isotropic limit friction is given by

f (tt , tn) = ||tt ||µ −|tn|= 0 (2)

where || • ||µ denotes the elliptic norm ||tt ||µ =

√
(te1/µ1)

2 +(te2/µ2)
2, and the

coefficients µ1 and µ2 are the principal friction coefficients in the directions {e1,e2}.
Eq. (2) constitutes an ellipse whose principal axes are: µ1|tn| and µ2|tn| (see Fig.
3(b)). The classical isotropic Coulomb’s friction criterion is recovered in Eq.(2)
considering µ1 = µ2 = µ . The allowable contact tractions t must satisfy: f (tt , tn)≤
0, defining an admissible convex region for t: the Friction Cone (C f ). An as-
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sociated sliding rule is considered, so the sliding direction is given by the gra-
dient to the friction cone and its magnitude by the factor λ : ġe1 =−λ∂ f/∂ te1 and
ġe2 = −λ∂ f/∂ te2 . To satisfy the complementarity relations: f (tt , tn) ≤ 0, λ ≥ 0,
λ f (tt , tn) = 0, the expression for λ factor is: λ = ||ġt ||∗µ , where the norm || • ||∗µ is
dual of ||• ||µ , so: ||ġt ||∗µ =

√
(µ1ġe1)

2 +(µ2ġe2)
2. Thus: te1 =−||tt ||µ µ2

1 ġe1/||ġt ||∗µ
and te2 =−||tt ||µ µ2

2 ġe2/||ġt ||∗µ . To sum up, the unilateral contact condition and the
elliptic friction law defined for any pair I ≡ {P1,P2} ∈ Γc of points in contact can
be compiled as follows, according to their contact status: no contact (tn = 0, gn ≥ 0
and tt = 0), contact-adhesion (tn ≤ 0, gn = 0 and ġt = 0) and contact-slip (tn ≤ 0,
gn = 0 and tt =−|tn|M2ġt/||ġt ||∗µ ). The tangential slip velocity (ġt) is expressed at
time τk as: ġt ' ∆gt/∆τ , where ∆gt = gt(τk)−gt(τk−1) and ∆τ = τk− τk−1, accor-
ding to a standard backward Euler scheme. M is a diagonal matrix:

M=

[
µ1 0
0 µ2

]
(3)

whose coefficients are

µ1 = µL +(µN−µL) ϕ̂ (4)

µ2 = µT +(µN−µT ) ϕ̂ (5)

The expressions above establish a new constitutive friction law which can be ap-
plied to model friction in FRP. Parameter (0 ≤ ϕ̂ ≤ 1) is the nondimensional fiber
orientation constant (ϕ̂ = 2ϕ/π ), being (0≤ ϕ ≤ π/2) the fiber orientation relative
to direction e1 (see Fig. 3(c)), and {µL, µT , µN} are the friction coefficients in lon-
gitudinal, transverse and normal direction, respectively, that can be obtained from
experimental works like [Ohmae, Kobayashi, and Tsukizoe (1974)] and [Tsukizoe
and Ohmae (1983)]. So the anisotropic friction surface (2) is also a function of the
fiber orientation parameter (ϕ̂):

f (tt , tn, ϕ̂) = ||tt ||µ(ϕ̂)−|tn|= 0 (6)

In Fig.4 it can be observed how an orthotropic friction cone is obtained when the
fibers are parallel to the sliding plane (ϕ̂ = 0), and an isotropic friction cone is ob-
tained when the fibers are normal to the sliding plane (ϕ̂ = 1), which it is according
to experimental works like [Ohmae, Kobayashi, and Tsukizoe (1974)] and [Sung
and Suh (1979)].

The combined normal-tangential contact problem constraints (i.e. the unilateral
contact condition and the elliptic friction law) can be formulated as [Rodríguez-
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(a)

(b)

(c)
Figura 3: (a) Continuous parallel fibers perpendicular to normal vector. (b) Elliptic
friction law. (c) Unidirectional FRP direction and sliding direction.
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Figura 4: Friction surface ( f (tt , tn, ϕ̂)/|tn|= 0) as a function of the fiber orientation
ϕ̂ .

Tembleque, Abascal, and Aliabadi (2012a,b)] and [Rodríguez-Tembleque and Abas-
cal (2013)]:

t−PC f (t
∗) = 0 (7)

where the contact operator PC f was defined as PC f (t∗) = { PEρ
(t∗t ) PR−(t

∗
n) }T .

The normal projection function, PR−(·), and the tangential projection function, PEρ
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were also defined in [Rodríguez-Tembleque, Abascal, and Aliabadi (2012a,b)] and
[Rodríguez-Tembleque and Abascal (2013)], as well as the augmented traction
components (t∗)T = [(t∗t )T t∗n ]: t∗t = tt − rtM2gt and t∗n = tn + rngn. The parame-
ters rn and rt are the normal and tangential dimensional penalization parameters
(rn ∈ R+,rt ∈ R+), respectively.

4. Anisotropic wear law

A quasi-steady-state wear approximation similar to [Rodríguez-Tembleque, Abas-
cal, and Aliabadi (2010, 2011, 2012a,b)], [Paczelt, Kucharski, and Mróz (2012)],
[Paczelt and Mróz (2012)], [Stupkiewicz (2013)], [Cavalieri and Cardona (2013)]
and [Lengiewicz and Stupkiewicz (2013)], is considered. The wear constitutive law
is based on [Rodríguez-Tembleque, Abascal, and Aliabadi (2012a,b)]. In this work,
wear evolution can be expressed in the following wear rate form: ġw = iw |tn|Ḋs,
gw being the wear depth, Ḋs the tangential slip velocity module (Ḋs = ||ġt ||), and
iw, the dimensional wear coefficient or the specific wear rate. Assuming that the
wear intensity iw is a function of the sliding direction parameter αv (iw = iw(αv)),
wear velocity (ġw) depends on the sliding direction. αv is the measure of the orien-
ted angle between the given direction (e1) and the sliding velocity direction. Let
us consider an orthotropic wear law, iw(αv) =

√
(i1 cosαv)2 +(i2 sinαv)2, where:

cosαv = ġe1/||ġt ||, sinαv = ġe2/||ġt ||, and i1 and i2 are the principal intensity coef-
ficients:

i1 = iL +(iN− iL) ϕ̂ (8)

i2 = iT +(iN− iT ) ϕ̂ (9)

whose expressions (8) and (9) establish a new constitutive wear law which can be
applied to model friction in FRP. Finally, postulating the wear rate to be propor-
tional to the friction dissipation energy makes iL = kµL|tn|, iT = kµT |tn| and iN =
kµN |tn|, so they are related to friction coefficients through the wear factor k. So the
wear intensity can be written as iw = ||ġt ||i/||ġt ||, being ||ġt ||i =

√
(i1ġe1)

2 +(i2ġe2)
2.

Finally, the anisotropic wear law can be defined by

ġw = |tn| ||ġt ||i (10)

For quasi-static contact problems, wear depth defined on instant τk, is computed as

gw = gw(τk−1)+ |tn| ||∆gt ||i (11)

gw(τk−1) being the wear depth value on instant τk−1. Due to the fact that the depth
of removed material is computed for an instant τk, the normal contact gap (gn) at
the same time must be rewritten: gn = ggo,n +(u2

n−u1
n)+gw.
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5. Contact discrete variables and restrictions

The contact tractions (tc), the gap (g), and the displacements (uα , α = 1,2), are
discretized over the contact interface (Γc). To that end, Γc is divided into N f ele-
mental surfaces (Γe

c). These elements (Γe
c) constitute a contact frame. The contact

tractions are discretized over the contact frame as: tc ' t̂c = ∑
N f

i = 1 δPiλ i, where δPi

is the Dirac delta on each contact frame node i, and λ i is the Lagrange multiplier
on the node (i = 1...N f ) and collected in vector Λ. In the same way, the gap is ap-
proximated as g ' ĝ = ∑

N f

i = 1 δPiki. In the expression above, ki is the nodal value.
Therefore, taking into account the gap approximation, the discrete expression of
Eq. 1 can be written as:

(k)I = (kgo)I +(d2)I− (d1)I (12)

for every contact pair I. In the expression above, k is the contact pairs gap vec-
tor and kgo the initial geometrical gap and translation vector. Finally, the contact
restrictions (Eq. (7)) for every contact pair I can be expressed as:

(Λt)I−PEρ
( (Λ∗t )I) = 0 (13)

(Λn)I−PR−( (Λ
∗
n)I) = 0 (14)

where augmented contact variables are defined as: (Λ∗t )I = (Λt)I − rtM2(kt)I and
(Λ∗n)I = (Λn)I + rn(kn)I , and the value of ρ for the I pair: ρ = |PR−( (Λ

∗
n)I)|.

6. Discrete boundary element coupling equations for solids

The BEM formulation for an elastic continuum Ω with boundary ∂Ω is well known
and can be found in many classical texts such as [Aliabadi (2002)]. For a boundary
point (P ∈ ∂Ω), the Somigliana identity can be written as:

C̃ u(P)+CPV
{∫

∂Ω

T∗u dS
}
=
∫

Ω

U∗b dΩ+
∫

∂Ω

U∗t dS (15)

where u, t and b are, respectively, the displacements, the boundary tractions and the
body forces of Ω. U∗ = {U∗i j(P,Q)} is the fundamental solution tensor for displace-
ment (free-space Green’s functions), and T∗ = {T ∗i j(P,Q)} stands for the tractions
fundamental solution at point Q in the ith direction due to a unit load applied at
point P in the jth direction. The matrix C̃ is equal to 1

2 I for a smooth boundary
∂Ω, and CPV {

∫
· dS} denotes the Cauchy Principal Value of the integral

∫
· dS.
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The integral Equation (15) can be written as follows:

C̃u(P)+
Ne

∑
e=1

{∫
∂Ωe

T∗u dS
}
=

Ne

∑
e=1

{∫
∂Ωe

U∗t dS
}

(16)

in case of absence of body loads (b = 0), where the boundary ∂Ω is divided into
Ne elements, ∂Ωe ∈ ∂Ω, so: ∂Ω =

⋃Ne
e=1 ∂Ωe and

⋂Ne
e=1 ∂Ωe = Ø. The fields u and

t are approximated over each element ∂Ωe using shape functions, as a function of
the nodal values (de and pe): u ' û = Nde and t ' t̂ = Npe, being N the shape
functions approximation matrix.

In this work, the fundamental solution considered for an anisotropic media is the
one recently presented by [Buroni and Sáez (2013)], so after the discretization, the
Eq.(16) can be written as

C̃iui +
N

∑
j=1

H̃e
i de =

N

∑
j=1

G̃e
i pe (17)

being: H̃e
i =

∫
∂Ωe T∗N dΓ , G̃e

i =
∫

∂Ωe U∗N dΓ, the integrals over the element e
when the collocation point is the node i. Finally, the contribution for all i nodes can
be written together in matrix form to give the global system of equations,

H̃d− G̃p = F (18)

where d and p are the displacements and tractions nodal vectors, respectively. Ma-
trices G̃ and H̃ are constructed collecting the terms of matrices H̃e

i and G̃e
i , and F

contains the applied boundary conditions.

Eq.(18) can be written for contact problems as: Axx+Appc = F, being (x)T =
[(xe)

T (dc)
T ] the nodal unknowns vector that collects the external unknowns (xe),

and the contact nodal displacements (dc). pc is the nodal contact tractions. Ap is
constructed with the columns of G̃ belonging to the contact nodal unknowns, and
Ax = [Ax Ad ] with the columns matrices H̃ and G̃, corresponding to the exterior
unknowns (Ax), and the contact nodal displacements (Ad).

Considering a boundary element discretization for every solid Ωα (α = 1,2), the
resulting BEM-BEM non-linear coupling equations set can be expressed according
to [Rodríguez-Tembleque, Abascal, and Aliabadi (2012b)], as

 A1
x 0 A1

p C̃1 0
0 A2

x −A2
p C̃2 0

(C1)T −(C2)T 0 Cg




x1

x2

Λ

k

=


F1

F2

Cgkgo

 (19)
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The first two groups of rows in the expression above represent the equilibrium of
each solid Ωα (α = 1,2). The third row is the contact kinematics equations and
the last row express the nodal contact restrictions. Vector Λ represents the nodal
contact tractions, so that: p1

c = C̃1Λ and p2
c = −C̃2Λ. Eq.(19) can be expressed,

according to Rodríguez-Tembleque, Abascal, and Aliabadi (2012b), as:

[
R1 R2 Rλ Rg

] 
x1

x2

Λ

k

= F̄ (20)

xα being the solid Ωα (α = 1,2) unknowns, vector Λ represents the nodal contact
tractions, and the matrices R1, R2, Rλ and Rg, and vector F̄, the corresponding
block matrices of these coupling systems.

7. Wear equations for contact problems

The wear depth for every instant can be discretized over the contact frame, as a
function of the nodal values as g(k)w ' ĝ(k)w = Ñwe, being Ñ the shape functions
matrix defined for the frame element Γe

c, and we the nodal wear depth vector of
element Γe

c. Therefore, the discrete form of kinematic equation for I pair, at instant
k, is

(k(k))I = (k(k)
go )I +(d2(k))I− (d1(k))I +(Cgnw(k))I (21)

where w(k) is a vector which contains the contact pairs wear depth, and matrix Cgn
is constituted using the Cg columns which affect the normal gap of contact pairs
[Rodríguez-Tembleque, Abascal, and Aliabadi (2012a,b)]. The discrete expression
of Eq. (11) can be written for I pair as

(w(k))I = (w(k−1))I + |(Λ(k)
n )I| ||(kk

t )I− (k(k−1)
t )I||i (22)

where Λ
(k)
n is a vector which contains the normal traction components of contact

pairs at instant k.

8. Solution Scheme

The quasi-static wear contact problem equations set Eq.{(13), (14), (20-22)} allow
to compute the variables on instant or load step (k), z(k)= [(x1)T (x2)T Λ

T kT wT ]T ,
when the variables on previous instant are known. In this work z(k) is compu-
ted using the iterative Uzawa predictor-corrector scheme proposed in [Rodríguez-
Tembleque, Abascal, and Aliabadi (2012a,b)] and [Rodríguez-Tembleque and Abas-
cal (2013)]:
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(I) Initialization: z(0) = z(k−1).

(II) Predictor step, solve:

[
R1 R2 Rg

] x1

x2

k

(n+1)

=−Rλ Λ
(n)+ F̄(k) (23)

being

F̄(k) =

 F1(k)

F2(k)

Cg

(
kg +k(k−1)

o +∆k(n)
o +Cgnw(k−1)

)
 (24)

In the expressions above, k is the load step index, whereas n is the iteration
index inside the load step.

(III) Corrector step, update the contact tractions Λ
(n+1) for every contact pair I:

(Λ
(n+1)
n )I = PR−( (Λ

(n)
n )I + rn(k

(n+1)
n )I ) (25)

(Λ
(n+1)
t )I = PEρ

( (Λ
(n)
t )I− rt M2(∆k(n+1)

t )I ) (26)

being (∆k(n+1)
t )I = [(k(n+1)

t )I− (k(k−1)
t )I], ρ = |(Λ(n+1)

n )I|, and the resulting
accumulated wear depth:

(w(n+1) )I = (w(k−1) )I + |( Λ
(n+1)
n )I| || (∆k(n+1)

t )I ||i (27)

(IV) Compute the error function: Ψ(Λ(n+1)) = ‖Λ(n+1)−Λ
(n)‖.

(a) If Ψ(Λ(n+1)) ≤ ε , the solution for the instant (k) is reached: z(k) =
z(n+1). Only in case the applied boundary condition is the external load
j-component (Q(k)

j ), before reaching the solution for instant (k), the re-
sultant applied loads on the contact zone (Γc) have to be calculated:

Q(n+1)
j =

∫
Γc

Λ
(n+1)
j dΓ (28)
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(a.1) If |Q(n+1)
j |> |Q(k)

j |+ εload , modify ∆k(n)
o and return to (II).

(a.2) Otherwise, the solution for instant (k) is reached: z(k) = z(n+1).
(b) Otherwise, return to (II) evaluating: Λ

(n) = Λ
(n+1) and iterate until the

convergence is reached.

After the solution at instant (k), z(k), is reached, the solution for the next
instant is achieved by setting: z(k−1) = z(k) and returning to (I).

9. Numerical studies

A steel sphere of radius R = 50 mm is indented on a carbon FRP half-space (see
Fig. 5(a)). The carbon FRP considered is IM7 Carbon/ 8551−7, whose mechanical
properties of fiber and matrix can be found in [Kaddour and Hinton (2012)] (Table
1). Not only does the fiber orientation have a considerable influence on the con-
tact pressure distribution, the variation of fiber volume fraction or the fiber aspect
ratio have to be considered when contact or wear in FRP are computed. Microme-
chanics allows to estimate the mechanical properties of composite materials from
the known values of the fiber and the matrix. There are different micromechanical
approaches. The simplest approach is the rule of mixtures, but it fails to represent
some of the properties with reasonable accuracy. A modified and more accura-
te micromechanical model was proposed by [Hopkins and Chamis (1988)]. Also
Halpin-Tsai proposed semi-empirical equations that have long been applied to pre-
dict the properties of short-fiber composites. A detailed review of their derivation is
given in [TuckerIII and Liang (1999)]. Both models are considered in the studies,
although in the literature, very sophisticated numerical models [Dong and Atluri
(2012, 2013)], that take into account micromechanics in heterogeneous materials,
can be found.

For simplicity, due to fact that the contact half-width (a) will be much less than the
radius (R), the solids are approximated by elastic half-spaces, each one discretized
using 320 linear quadrilateral boundary elements. Fig. 5(b) shows the details of the
meshes, where the half-space characteristic dimension is L = 1,2 mm.

9.1. Spherical indentation problem: validation

In order to validate the contact formulation, a finite element model has been deve-
loped with the commercial FE software ANSYS (version 13.0). The mesh is shown
in Fig. 5(c) and it considers 23017 finite elements to discretize the solids: a quarter
of sphere and a block of 100× 50× 50 mm. The sphere is subjected to a normal
indentation go,x3 =−0,02 mm over a IM7 Carbon/ 8551−7 with a volume fraction
of 30 % and fiber alignment: ϕ = 0o. Both FE and BE Hertzian pressure distribu-
tion are compared in Fig. 6. An excellent agreement between both solutions can be
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Cuadro 1: Mechanical properties of fiber and matrix.

Fiber IM7
Longitudinal Young modulus Ef1 (GPa) 276
Transverse Young modulus Ef2 (GPa) 19
Transverse Young modulus Ef3 (GPa) 19
In-plane shear modulus Gf12 (GPa) 27
Transverse shear modulus Gf23 (GPa) 7
Poisson ratio νf12 0.2
Poisson ratio νf13 0.2
Matrix 8551−7 epoxy
Elastic modulus Em (GPa) 4.08
Elastic shear modulus Gm (GPa) 1.478
Poisson ratio νm 0.38

observed. Both experiments were conducted on a Windows 7 64-bit machine with
the following hardware: Intel Core i5 CPU running at 2.5GHz with 8 GB of me-
mory. As the number of elements are significantly higher in the FE approximation,
the BE one is about four times faster than ANSYS for the considered meshes.

9.2. FRP normal and tangential compliance studies

Now, the sphere is subjected to a normal displacement go,x3 = −0,02 mm and a
tangential translational displacement of module: go,t = 0,008 mm, which forms an
angle θ with axis x1 (see Fig. 5(a)). The proposed frictional law is considered, being
the friction coefficients: µL = 0,4, µT = 0,5 and µN = 0,55, according to [Ohmae,
Kobayashi, and Tsukizoe (1974)] for carbon FRP. In this indentation problem is
studied the influence of: the fiber orientation, the sliding direction, and the micro-
mechanics of FRP (i.e. the fiber volume fraction or the aspect ratio of fibers in the
contact variables.

First, the influence of fiber orientation and fiber volume fraction on normal and
contact compliance are considered for continuous fiber composites. The influence
of fiber volume fraction V̄f can be studied for: V̄f = {0,30,0,45,0,60}. Figures 7 (a)
and (b) show the normal and tangential contact compliance variation with the fiber
orientation and fiber volume fraction, relative to the load for the fiber alignment
ϕ = 0o and V̄f = 0,30.

For the normal load (Fig. 7(a)), the largest loads occur in the normal fiber orienta-
tion (ϕ = 90o), and high differences can be observed for ϕ greater than 45o. The
tangential contact compliance relative to the load Q(ϕ = 0) (see Fig. 7(b)), pre-
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(a)

(b)

(c)
Figura 5: (a) Sphere indentation over a FRP halfspace. (b) Boundary elements mesh
details. (c) Finite elements mesh details.
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Figura 6: Contact pressure profile for a IM7 Carbon/ 8551−7 with a volume frac-
tion of 30 %, considering FE and BE approximations.

sents a different behavior. The largest discrepancies occur for a fiber orientation in
the interval [0o,45o]. It can be observed in both cases, how normal and tangential
contact compliances increase with the volume fraction V̄f, and this increase in their
values is even more significant when the fiber alignment ϕ is greater than 45o.

The behavior of the proposed frictional law is validated studying the influence of
the sliding direction θ . Examining the Fig.8, where tangential contact compliance
variation for V̄f = 0,60 is presented, it is found that the orientation of the fibers
has an important effect on frictional response. For different sliding directions (θ =
{0o,45o,90o}), important discrepancies occur for a fiber orientation in the interval
[0o,45o], but for ϕ = 90o, the tangential compliance is not affected by θ . This is
because we recover the isotropic frictional behavior (µ1 = µ2 = µN) when ϕ = 90o

(see Fig. 1 (c) and Fig. 4).

Finally, the influence of the aspect ratio of fibers (l/d) is studied, l and d being the
fiber length and diameter, respectively. In that case, the Halpin-Tsai micromecha-
nical model for short-fiber FRP presented in [TuckerIII and Liang (1999)] is consi-
dered for that purpose. Fig. 9 (a) shows the influence of the fiber aspect ratio (l/d =
{10,20,50,100}) on the normal contact compliance, for a fixed volume fraction:
V̄f = 0,30. The lower values for l/d are considered, the lower normal compliance
are obtained. These discrepancies are observed for a fiber alignment ϕ greater than
45o. Fig. 9 (b) shows the tangential compliance. It can be observed how its values
are not significantly affected by the fiber aspect ratio.
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(a) (b)
Figura 7: Normal (a) and tangential (b) contact compliance variation with the fiber
orientation and fiber volume fraction.

Figura 8: Tangential contact compliance variation with the fiber orientation and the
sliding direction.
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(a) (b)
Figura 9: Normal (a) and tangential (b) contact compliance variation with the fiber
orientation.

9.3. FRP under fretting-wear conditions

The previous indentation problem is now studied under fretting wear conditions.
The sphere is subjected to a normal displacement go,x3 =−0,02 mm and a repeated
alternating tangential translational displacement of module go,t (see Fig. 10), which
forms an angle θ with axis x1.

The carbon FRP considered is again IM7 Carbon/ 8551−7, being the wear coeffi-
cients: iL = 5× 10−10 MPa−1, iT = 6,25× 10−10 MPa−1 and iN = 6,875× 10−10

MPa−1. In this fretting problem, the influence of the fiber orientation, the sliding di-
rection, and the micromechanics of FRP (i.e. the fiber volume fraction or the aspect
ratio of fibers) in the contact variables, are also studied.

The wear volume evolutions after 100,000 cycles are presented in Fig.11 for diffe-
rent fiber orientations and different fiber volume fractions: V̄f = {0,30,0,45,0,60},
being the applied tangential load amplitude go,t = 0,08 mm, and the tangential load
orientation θ = 0o. The figure shows the enormous influence of the fiber orientation
in the resulting wear volume (RWV). This influence is even more significant when
the fiber volume fraction increases (see Fig.12).

The influence of the aspect ratio of fibers (l/d) in the resulting wear volume is also
studied. Fig. 13 shows the influence of the fiber aspect ratio (l/d = {10,20,50,100})
in the RWV, for a fixed volume fraction: V̄f = 0,30. The lower values for l/d are
considered, the lower RWV values are obtained. These discrepancies are observed
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for a fiber alignment ϕ greater than 45o, as it happens for the normal contact com-
pliance. The RWV are not significantly affected by the fiber aspect ratio when ϕ is
lower than 45o.

Finally, Fig.14 shows the influence of the sliding direction (θ ) on the resulting wear
volume for a fiber volume fractions V̄f = 0,6, and different fiber orientations. Exa-
mining Fig.14, it is found that the variation of the orientation of the sliding direction
has and important effect on the magnitude of wear, when the fiber orientation is in
the interval [0o,45o]. For ϕ = 90o, the RWV is not affected by θ , so an isotropic
wear behavior is recovered, according with the proposed constitutive wear law.

Figura 10: Cyclic tangential load.

10. Summary and conclusions

In the present work we propose new wear and friction constitutive laws and its nu-
merical implementation, to study FRP materials under contact conditions. They are
based on [Rodríguez-Tembleque, Abascal, and Aliabadi (2012a,b)], [Rodríguez-
Tembleque, Buroni, Abascal, and Sáez (2013)] and [Rodríguez-Tembleque, Sáez,
and Buroni (2013)], but the novelty with respect to these previous works is that the
influence of the fiber orientation (ϕ) can be taken into account to compute the tri-
bological properties on the surfaces (i.e. friction and wear coefficients). This allows
us to have more realistic contact constitutive equations to simulate fiber-reinforced
composite materials under frictional and wear conditions.

The methodology is based on the BEM, which proves to be a very suitable numeri-
cal method for this kind of tribological problems, obtaining a good approximation
on contact and wear variables with a low number of elements, what makes faster
the problem solution.
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(a) (b)

(c)
Figura 11: Wear volume evolution for different fiber volume fractions, and different
fiber orientations: (a) ϕ = 0o, (b) ϕ = 45o, (c) ϕ = 90o.
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Figura 12: Influence of fiber orientation and fiber volume fraction on the resulting
wear volume (RWV).

Figura 13: Influence of fiber orientation and fiber aspect ratio (l/d) on the resulting
wear volume.
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Figura 14: Influence of the fiber orientation and the sliding direction in the RWV.

Some contact and fretting wear studies on a carbon FRP are presented to show
the importance of considering this new constitutive tribological properties. In other
cases, we could over- or underestimate wear and contact magnitudes. For example,
the normal contact compliance occurs for a normal fiber orientation (ϕ = 90o), and
high differences can be observed for ϕ greater than 45o. In contrast, the tangential
contact compliance presents the largest discrepancies for a fiber orientation in the
interval [0o,45o].

Finally, it should be noted that the contact constitutive laws and the presented for-
mulation should be extended not only to study aligned fiber reinforced composites
in contact, but also to particle reinforced composite materials.
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