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Direct Volume-to-Surface Integral Transformation for 2D
BEM Analysis of Anisotropic Thermoelasticity

Y.C. Shiah1, Chung-Lei Hsu1 and Chyanbin Hwu1,2

Abstract: As has been well documented for the boundary element method (BEM),
a volume integral is present in the integral equation for thermoelastic analysis. Any
attempt to directly integrate the integral shall inevitably involve internal discretiza-
tion that will destroy the BEM’s distinctive notion as a true boundary solution tech-
nique. Among the schemes to overcome this difficulty, the exact transformation
approach is the most elegant since neither further approximation nor internal treat-
ments are involved. Such transformation for 2D anisotropic thermoelasticity has
been achieved by Shiah and Tan (1999) with the aid of domain mapping. This pa-
per revisits this problem and presents a modified transformation for 2D anisotropic
thermoelasticity, where no domain distortion is involved. Being defined in the orig-
inal Cartesian coordinate system, the volume integral is analytically transformed to
the boundary using the Stroh formalism. This transformation is favorable especially
when the corresponding anisotropic field is directly calculated without resorting to
the domain mapping technique. In the end, numerical examples are provided to
show the validity of such a transformation.

Keywords: Direct volume-to-surface integral transformation, 2D anisotropic
thermoelasticity, boundary element method.

1 Introduction

In engineering practice, thermoelastic analysis often plays an important role to
ensure the integrity of structures when subjected to thermal loads. Being recog-
nized as an efficient numerical tool, the BEM is characterized by its notion that
only the boundary needs to be modeled. However, for treating thermal effects,
an additional volume integral appears in the boundary integral equation (BIE) that
shall destroy the BEM’s notion as a truly boundary solution technique. This is
because any means to directly integrate the extra volume integral will inevitably in-
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volve "cell" discretization throughout the whole domain. Over the years, there have
been several techniques proposed to avoid such domain discretization, such as the
Monte Carlo method [Gipson and Camp (1985)], the particular integral approach
[Lachat (1975); Deb and Banerjee (1990)], the dual reciprocity method [Nardini
and Brebbia (1982)], the multiple reciprocity method [Nowak and Brebbia (1989)],
and the exact transformation method [Rizzo and Shippy (1977)], abbreviated as
ETM herein. Among these schemes mentioned above, the ETM is fundamentally
the most appealing because it restores the BEM analysis as a purely boundary solu-
tion technique yet without involving further numerical approximation and internal
treatments per se. Although the ETM had been widely employed to treat equivalent
body-force effects in isotropic elasticity, such a transformation for 2D anisotropic
elasticity was not achieved until Zhang et al. (1997) first derived the transformed
boundary integrals for 2D elastic analysis involving body forces. Following this
success, Shiah and Tan (1999) proposed a volume-to-surface integral transforma-
tion by use of domain mapping, through which the thermal field is mapped onto
an equivalent "isotropic" domain. Accounting for anisotropic effects, this coordi-
nate transformation enables the use of Green’s 2nd Identity to exactly transform
the volume integral into boundary ones (Shiah and Tan, 1999), albeit defined in the
new coordinate system. Following this success, Shiah et al. (2005) extended such
treatment to the thermoelasticity problem when concentrated heat sources were
present. Also, this scheme has been applied by Shiah and Tan (2000) to the prob-
lem of thermoelastic fracture of dissimilarly joined anisotropic materials. Applying
this approach, Shiah et al. (2010) further derived the Somigliana Identity for the
thermoelastic analysis at interior points. Such an approach for treating 3D ther-
moelastic analysis in generally anisotropic bodies has remained extremely scarce,
if there is any. The only one that can be found to our best knowledge is presented
by Shiah and Tan (2012), which simply treats transversely isotropic bodies. All
kernel functions used in the references listed above for the 2D problems are based
upon the formulations given by Lekhnitskii (1981). Generally speaking, this trans-
formation works well as a subsequent elastic analysis after solving the thermal field
by the domain mapping technique. However, when the anisotropic thermal field is
to be solved directly, such a treatment appears to be less straightforward.

In this paper, a modified transformation process is presented to directly treat the
2D anisotropic thermoelasticity, where no coordinate transformation is involved.
All fundamental solutions in the derivations are based upon the Stroh formalism
[Hwu (2010)]. For demonstrating the validity of the transformation and of our
implementation in the BEM analysis, a few numerical examples are presented in
the end.
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2 BIE for 2D anisotropic thermoelasticity

For generally anisotropic elastic media in two dimensions, the constitutive law be-
tween stresses σ i j and strains ε i j with thermal effects is governed by the well-
known Duhamel-Neumann relation, that is

σi j =Ci jklεkl−βi jΘ , (1)

where Θ is the temperature change, Ci jkl are the material stiffness coefficients, and
β i j represents the thermal moduli, given by β i j = Ci jk jαkl , αkl being the coeffi-
cients of linear thermal expansion. The effective values of stiffness and thermal
moduli depend on the corresponding condition of either planestress or plane-strain
For the steady-state condition without heat source, the anisotropic temperature field
is governed by

ki jΘ,i j = 0, (2)

where ki j denotes the heat conductivity coefficients By the sequentially coupled
manner, the temperature field is first calculated for all thermal data on boundary
nodes, followed by the subsequent elastic analysis. Since this thermal analysis is
not the focus, it will not be further discussed here. So, all the following processes
just take the thermal data as known values, determined via the usual BEM analysis
as stated.

For a linear elastic body with thermal effects in the domain Ω, the displacement u j

and traction t j on the boundary surface Γ are cross-related with each other by the
well known BIE as follows:

ci j(ξ )u j(ξ )+
∫

Γ

T ∗i j(ξ ,x)u j(x)dΓ(x)

=
∫

Γ

U∗i j(ξ ,x)t j(x) dΓ(x)+
∫

Ω

Θ(x)β jkU∗i j,k(ξ ,x) dΩ(x)
, (3)

where ci j(ξ ) are the geometric coefficients of the source point ξ ; U∗i j(ξ ,x) and
T ∗i j(ξ ,x) are the fundamental solutions of displacements and tractions. As the main
issue of the present work, the last integral in Eq.(3) is a volume integral that needs to
be transformed to the boundary. In this study, the fundamental solutions are based
on the complex-variable Stroh formalism for anisotropic elasticity, which can be
written in a matrix form as [Hwu (2010)]

[U∗i j] = U∗ = 2Re{[AF(z)]T}, (4a)

[T ∗i j ] = T∗ = 2Re{[BF,s(z)]T}, (4b)



260 Copyright © 2014 Tech Science Press CMES, vol.102, no.4, pp.257-270, 2014

where

F(zα) =
1

2πi
< ln(zα − ẑα)> AT . (5)

In Eq.(4a) and (4b), A and B are the material eigenvector matrices, Re{} denotes
taking the real part of a complex value, the superscript T represents the transpose
of a matrix, and F,s = ∂F/∂ sgives the derivative of F along s, the tangential path of
the body. The angular bracket in Eq.(5) stands for a 3×3 diagonal matrix, in which
each element varies with the index α . In the above equations, the general complex
variables zα and ẑα for the field point and the source point, located respectively at
x = (x1,x2) and ξ = (x̂1, x̂2), are defined by

zα = x1 +µαx2, ẑα = x̂1 +µα x̂2, (6)

in which µα (α=1,2) are the material’s eigenvalues.

In the sequentially coupled manner, the temperature data, determined indepen-
dently via solving the BIE for the associated field problem, are treated as the known
values in Eq.(3). The work aims at transforming the volume integral into surface
ones. For brevity, the volume integral is denoted by

Vi =
∫

Ω

Θ(x)β jkU∗i j,k(ξ ,x) dΩ(x). (7)

Consider the following identity:∫
Ω

( fik jkΘ, jk−Θk jk fi, jk) dΩ =
∫

Ω

[( fik jkΘ, j),k− (Θk jk fi,k), j] dΩ, (8)

where fi is the component of an arbitrary function f . As a result of applying the
Green’s 2nd Identity to the right hand side of Eq. (8), one immediately obtains∫

Ω

( fik jkΘ, jk−Θk jk fi, jk) dΩ =
∫

Γ

( fik jkΘ, jnk−Θk jk fi,kn j) dΓ (9)

From the relation in Eq. (2), the first term in the integrand on the left hand side of
Eq. (9) vanishes and thus, Eq. (9) becomes∫

Ω

Θk jk fi, jkdΩ =−
∫

Γ

( fik jkΘ, jnk−Θk jk fi,kn j)dΓ. (10)

It immediately follows that by making the following substitution

k jk fi, jk = β jkU∗i j,k, (11)
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one obtains

Vi =
∫

Γ

(Θk jk fi,kn j− fik jkΘ, jnk) dΓ. (12)

Now, the task remains to determine the explicit expression of fi according to Eq.
(11). Let f be denoted by f (zα) in what follows for the derivations. Expansion of
Eq. (11) results in the following matrix form:

kα f ′′i (zα) = βββ
T
1 u∗i,1 +βββ

T
2 u∗i,2 , (13)

where

kα = k11 +2k12µα + k22µ
2
α , βββ 1 =

[
β11
β21

]
, βββ 2 =

[
β12
β22

]
, u∗i =

[
U∗1i
U∗2i

]
. (14)

Thus, substitution of Eq.(4a) into Eq.(13) leads to

f ′′i (zα) =
1
π

Im
{

βββ
T
A <

1
kα(zα − ẑα)

> AT
}

ii, (15)

where

βββ
T
A=βββ

T
1 A+βββ

T
2 A < µα > . (16)

In Eq.(15), Im{} denotes the operation of taking imaginary part of the complex
variable in the curly bracket; ii is the unit base vector for the unit load applied in
the xi direction. As a result, direct integrations of Eq. (16) yield

fi(zα) =
1
π

Im
{

βββ
T
A < k−1

α (zα − ẑα)[ln(zα − ẑα)−1]> AT
}

ii. (17)

Performing spatial differentiations upon f results in

fi,1(zα) =
1
π

Im
{

βββ
T
A < k−1

α ln(zα − ẑα)> AT
}

ii (18a)

fi,2(zα) =
1
π

Im
{

βββ
T
A < µαk−1

α ln(zα − ẑα)> AT
}

ii. (18b)

Up to this point, there is still one more issue regarding the validity of the trans-
formation that needs to be resolved As pointed out by Shiah and Tan (1999), the
discontinuity along the branch cut of the logarithmic function in the domain will
invalidate the use of the Green’s Theorem to make such a transformation. In other
words, the condition for the identity to hold true lies in the analyticity of the in-
tegrand throughout the whole domain. As has been discussed by Shiah and Tan
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(1999), this issue can be resolved by simply re-defining the branch cut such that
it is directed in the outward normal direction. However, such a treatment does not
provide the general resolution especially when the boundary surface is concave or
multiply connected in geometry. Consider the general case when the negative x-
axis (x = x1− x̂1) cuts through the domain so that the intersected region is bounded
by [a1, b1], . . . [am, bm]. As a consequence, taking the similar treatment as Shiah
and Tan (1999) yields a series of extra line integrals added to the transformed BIE,
expressed as

ci ju j +
∫

Γ
T ∗i ju jdΓ

=
∫

Γ
U∗i jt j dΓ+

∫
Γ
(Θk jk fi,kn j− fik jkΘ, jnk) dΓ+

m
∑

n=1

∫ bn
an

Li(x) dx, (19)

where

Li(x) =−qik jkΘ, jnk +Θk jkqi,kn j, (20a)

qi =−2xRe
{

βββ
T
A < k−1

α > AT
}

ii,

qi,1 =−2Re
{

βββ
T
A < k−1

α > AT
}

ii, qi,2 =−2Re
{

βββ
T
A < µαk−1

α > AT
}

ii.
(20b)

To this end, Eq.(19) is a truly boundary integral equation that can be solved for
boundary unknowns via the usual BEM analysis. Next, a few numerical examples
are provided for illustrating the validity of the derived formulations.

3 Numerical examples

For verifying the veracity of the transformed BIE, a few tests were carried out,
where all material properties as tabulated in Table 1 just followed those used by
Shiah and Tan (1999) The illustrations are separated into two parts. The former
targets demonstration of the mathematical validity of the derived formulations,
whereas the latter is for showing our successful implementation For these purposes,
two example cases were studied as described in what follows.

Table 1: Material properties for the numerical examples

E11
(GPa)

E22
(GPa)

ν12 G22
(GPa)

α11 α22 k11 k12

55 21 0.25 9.7 6.3×10−6

(/˚C)
20×10−6

(/˚C)
3.46

(W/m˚C)
0.35

(W/m˚C)
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3.1 Case 1

For the first example (Fig.1) consider a (2m×2m) square plate under the plane
stress condition. For treating general anisotropy, the principal axes are assumed to
be rotated by 20 counterclockwise. For the choice of defining the coordinate origin
at its center, the temperature is assumed to be distributed by

Θ = 3x2
1−5.7223x1x2−5x2

2, (21)

which satisfies Eq.(2) in accordance with the conductivities defined in the global
Cartesian coordinates. Also shown in Fig.1 is the boundary discretization for the
BEM modeling, where only 8 quadratic isoparametric elements are used. For show-
ing the veracity of the volume-to-surface integral transformation, computations of
the both, namely the volume integral as well as the transformed boundary ones,
were carried out for all16 source points. As mentioned earlier for treating the dis-
continuity issue, the boundary integrals with the addition of the extra line integral
were evaluated. Table 2 lists the results computed for all source points. As can be
seen in Tab.2, the numerical values computed by both methods agree very minor
discrepancy.
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Figure 1: BEM mesh for computing the boundary integrals

For further illustration of our implementation to analyze a more general case, con-
sider the heat conduction problem, depicted in Fig.2, with the boundary conditions:
Θ=100˚C and 0˚C are specified on AB and CD, respectively, while the other sur-
faces are insulated.
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For the elastic boundary conditions, all surfaces excluding the surface AB, assumed
to be free of tractions, are constrained in their normal directions. Also shown in
Fig.2 is the boundary discretization, where only 28 quadratic elements are em-
ployed. The principal axes are arbitrarily rotated by 60 counterclockwise to yield

β11 = 4.6375×105 Pa, β12 = β21 =−6.9867×102 Pa, β22 = 4.6294×105 Pa.

(22)

Table 2: Numerical values of the volume integral and the boundary integrals -
Case1

Node Coord.
V1 V2

Eq.(7) Eq.(12) % Diff. Eq.(7) Eq.(12) % Diff.

1 (-1.0,-1.0) 5.707E-06 5.694E-06 0.23% 5.888E-06 5.884E-06 0.06%

2 (-1.0,-0.5) 8.300E-06 8.298E-06 0.02% -1.427E-05 -1.427E-05 0.00%

3 (-1.0, 0.0) 2.700E-06 2.707E-06 0.26% -1.088E-05 -1.088E-05 0.03%

4 (-1.0, 0.5) -9.607E-07 -9.553E-07 0.56% -1.285E-06 -1.282E-06 0.18%

5 (-1.0, 1.0) -5.442E-07 -5.418E-07 0.45% 4.752E-06 4.754E-06 0.04%

6 (-0.5, 1.0) 6.556E-06 6.557E-06 0.01% -5.193E-06 -5.193E-06 0.00%

7 ( 0.0, 1.0) 7.398E-06 7.403E-06 0.07% -1.536E-05 -1.536E-05 0.00%

8 ( 0.5, 1.0) 3.478E-06 3.482E-06 0.10% -1.754E-05 -1.754E-05 0.00%

9 ( 1.0, 1.0) -5.707E-06 -5.694E-06 0.23% -5.888E-06 -5.884E-06 0.06%

10 ( 1.0, 0.5) -8.300E-06 -8.298E-06 0.02% 1.427E-05 1.427E-05 0.00%

11 ( 1.0, 0.0) -2.700E-06 -2.707E-06 0.26% 1.088E-05 1.088E-05 0.03%

12 ( 1.0,-0.5) 9.607E-07 9.553E-07 0.56% 1.285E-06 1.282E-06 0.18%

13 ( 1.0,-1.0) 5.442E-07 5.418E-07 0.45% -4.752E-06 -4.754E-06 0.04%

14 ( 0.5, -1.0) -6.556E-06 -6.557E-06 0.01% 5.193E-06 5.193E-06 0.00%

15 ( 0.0, -1.0) -7.398E-06 -7.403E-06 0.07% 1.536E-05 1.536E-05 0.00%

16 (-0.5,

-1.0)

-3.478E-06 -3.482E-06 0.10% 1.754E-05 1.754E-05 0.00%

To verify the BEM results, the problem was also analyzed using ANSYS, commer-
cial software based on the finite element method. For the ANSYS analysis, a total
number of 104 PLANE223 elements were employed. For the comparison, the total

displacements, U0 =
√

u2
1 +u2

2, calculated for all sides are plotted in Fig.3.

Displayed in Fig. 4(a) and Fig. 4(b) are the resulting stresses calculated for
AB−DC and BC−AD, respectively. As can be seen from these plots, analyses
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Figure 2: Problem definition and the BEM mesh for Case 1
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Figure 3: Displacements on the boundary- Case 1
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by the both approaches are in excellent agreements, which have indeed confirmed
the validity of our BEM analysis. The only obvious discrepancies in the calculated
stresses occur at places near corners, where discontinuities are present; otherwise,
all the BEM-calculated stresses at other places are very satisfactory indeed. For
yielding more accurate results, more refined meshes, of course, are necessary espe-
cially near the corners. Since this issue is beyond the scope of this paper, the details
will not be further discussed. Next, another example case will be analyzed to show
the capability of the present approach in treating a multiply connected domain.

3.2 Case 2

For further demonstration of our implementation to analyze a more complicated
geometry, the second case treats a concentric hollow disk as schematically shown
in Fig. 5(a). For the boundary conditions, the outer surface is fully constrained and
the inner is assumed to be free of tractions. Suppose the temperature changes of
100˚C and 0˚C are prescribed over the outside and the inside surface, respectively.
Also, the principal axes are rotated by 300 counterclockwise to yield

β11 = 4.6294×105 Pa, β12 = β21 =−6.9867×102 Pa, β22 = 4.6375×105 Pa.

(23)
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Figure 4: Stress distributions on edges- Case 1: (a) for AB−DC, (b) for BC−AD.

As shown in Fig. 5, only 32 quadratic elements were used for the BEM modeling.
Again, for providing comparison of results by an independent approach, the prob-
lem was also analyzed using ANSYS, where 7294 PLANE223 elements were used.



Direct Volume-to-Surface Integral Transformation 267 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1 

x2 

o=0
0
 

i=100
0
 

di = 1 m 

do = 2 m 

o i 

0° 

 

 

Figure 5: Problem definition and the BEM mesh for Case 2.

Figure 6 displays the calculated displacements on the inner surface as a function of
θ , being the angle measured counterclockwise from the x1-axis.

The corresponding hoop stresses on the inner surface calculated by the BEM and
ANSYS are plotted altogether in Fig. 7(a) for comparison. Also, all the stresses
computed for the constrained outside surface are displayed in Fig. 7(b).

As expected, the results obtained by both approaches are in good agreement. As
aforementioned for Case 1, more refined BEM meshes can always be employed to
increase accuracy of analysis; the present analysis by the coarse meshes is simply
to show our successful implementation and the veracity of formulations.

4 Conclusive remarks

For the 2D thermoelastic BEM analysis, it is well known that the thermal effect
reveals itself as a domain integral. To restore the BEM’s feature of boundary dis-
cretization, the domain integral needs to be transformed to the boundary. In this
paper, a direct analytical transformation for 2D anisotropic thermoelasticity in-
volving no coordinate transformation is presented. All kernel functions, including
the newly constructed one, are based on the Stroh formalism. Since no coordinate
transformation is involved, the present approach appears to be more straightforward
especially when the thermal field is directly calculated without resorting to the tech-
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Figure 6: Displacements on the inner surface-Case 2.

 

 

 

 

 

 

 

 

 

 

 

 

                                      (a)                                                                 (b) 

 

 

 

(degrees)

0 100 200 300

H
o
o
p
 s

tr
e
ss

 


  

(M
P

a
)

-60

-55

-50

-45

-40

-35

ANSYS

BEM

(degrees)

0 100 200 300

S
tr

e
ss

e
s 

(M
P

a
)

-12

-10

-8

-6

-4

-2

0

2

4



BEM



rrANSYS

ANSYS

r  ANSYS

 

Figure 7: Distributions of stresses on the surfaces- Case 2, (a) hoop stress on the
inner surface; (b) stresses on the outside surface.



Direct Volume-to-Surface Integral Transformation 269

nique of domain mapping. The derived formulations have been implemented in the
BEM. The successful implementation is demonstrated by a few examples, show-
ing that the BEM analyses are indeed in satisfactory agreements with the ANSYS
analysis.
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