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Inverse Green Element Solutions of Heat Conduction
Using the Time-Dependent and Logarithmic Fundamental

Solutions

Akpofure E. Taigbenu1

Abstract: The solutions to inverse heat conduction problems (IHCPs) are pro-
vided in this paper by the Green element method (GEM), incorporating the loga-
rithmic fundamental solution of the Laplace operator (Formulation 1) and the time-
dependent fundamental solution of the diffusion differential operator (Formulation
2). The IHCPs addressed relate to transient problems of the recovery of the temper-
ature, heat flux and heat source in 2-D homogeneous domains. For each formula-
tion, the global coefficient matrix is over-determined and ill-conditioned, requiring
a solution strategy that involves the least square method with matrix decomposi-
tion by the singular value decomposition (SVD) method, and regularization by the
Tikhonov regularization method. Comparisons of the two formulations are made
using five numerical examples of transient IHCPs. Using the same spatial and tem-
poral discretizations, the GEM with the logarithmic fundamental solution is gener-
ally more superior in accuracy and computational speed than the formulation with
the time-dependent fundamental solution.

Keywords: Inverse heat conduction problems, Green element method, time de-
pendent fundamental solution, logarithmic fundamental solution, singular value de-
composition, Tikhonov regularization.

1 Introduction

The considerable interest that continues to attend the solution of inverse heat con-
duction problems (IHCPs) is due to their many practical applications in the fields of
Engineering and the Sciences where heat, mass and energy transport processes oc-
cur and, from a computational perspective, the numerical intrigues and challenges
that arise when solving these problems. The classes of IHCPs range from the re-
covery of temperature and heat flux [Cialkowski and Grysa (2010); Reinhardt et
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al. (2007); Sladek et al. (2006)] to the estimation of flow and medium param-
eters [Char et al. (2008); Yang (1998); Sawaf et al. (1995)] to the recovery of
the spatial and temporal distributions of heat sources/sinks [Wei and Wang (2012);
Mierzwiczak and Kolodziej (2010); Yan et al. (2008)] to the recovery of initial data
distributions [Pereverzyev et al. (2005); Masood et al. (2002)], and to the recovery
of the geometric profiles of boundary and medium features [Yang et al. (2009);
Mera et al. (2004)]. Two classes of IHCPs addressed in this paper are the recov-
ery of boundary temperature and heat flux and that of the temporal distribution of
heat sources/sinks. It is widely known that inverse problems are ill-posed so that
the matrices resulting from solving them are usually ill-conditioned, in contrast to
direct solution methods which produce well conditioned matrices. The degree of
ill-conditioning of the inverse problem depends on the spatial and temporal distri-
bution of the available measurements of temperature and as well as the boundary
and initial data.

The performances of two formulations of the Green element method (GEM) are ex-
amined for these two classes of IHCPs. The GEM is a numerical technique whose
theory is predicated on the singular integral theory of the boundary element method
(BEM) but whose implementation is done in an element-by-element fashion so that
the generated coefficient matrix is banded and amenable to efficient matrix solvers
[Taigbenu (1999)]. In the first GEM formulation, the differential equation is treated
as a Poisson equation to which the logarithmic fundamental solution of the Laplace
operator is used and the temporal part of the equation is approximated by finite
differencing in time [Taigbenu (1999; 2012)], while the second formulation uses
the time-dependent fundamental solution of the heat equation. For both formula-
tions, the internal normal fluxes are approximated by a second-order polynomial
relationship in terms of the temperature [Taigbenu (2012)], and the resulting over-
determined matrices are decomposed by the singular value decomposition (SVD)
method and solved by the least square method. The challenge posed by the ill-
conditioned nature of the matrices is resolved by the Tikhonov regularization tech-
nique. Five numerical examples, of which two address the first class of problems
and the other three the second class of IHCPs, are solved by the two GEM formu-
lations. The GEM with the logarithmic fundamental solution generally achieves
higher accuracy using about 3% of the computing time of the formulation with the
time-dependent fundamental solution.
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2 Governing Equation

The initial-boundary value problem that is addressed in this paper is governed by
the differential equation

K∇
2T = ρc

∂T
∂ t

+Q(t) (1)

where ∇2 is the 2-D Laplacian operator in the spatial variables x and y, t is the time
dimension, T is the temperature, K is the thermal conductivity, ρ is the density, c is
the specific heat capacity, and Q represents heat sources and sinks whose strengths
have only temporal variation but are not known. The initial data of the temperature
are specified everywhere in the domain Ω at time t0,

T (x,y, t0) = T0(x,y) (2a)

while Dirichlet, Neumann, and Cauchy-type conditions are specified on boundary
segments Γ1, Γ2 and Γ3. That is:

T (x,y, t) = T1 on Γ1 (2b)

−K∇T ·n = q2 on Γ2 (2c)

γ1T + γ2K∇T ·n = g3 on Γ3 (2d)

where n is the unit outward pointing normal on the boundary, and γ1 and γ2 are
known constants. The domain Ω with the boundary Γ = Γ1∪Γ2∪Γ3∪Γ4 is shown
in Fig. 1, and neither the temperature T nor heat flux q is specified on Γ4. For
both types of IHCPs, temperature measurements are available at P internal points
(xm,ym) in the domain and denoted as Tm = T (xm, ym,t). In practice these measure-
ments may have errors which can be described by the relationship

T̃m = Tm [1+σ ×RN(m)] (3)

where σ is the error magnitude and RN ∈ [−1,1] are random numbers.

3 Green element formulations

3.1 Formulation 1

This formulation of GEM, referred to as Formulation 1, uses the logarithmic fun-
damental solution in its integral equation. It had earlier been presented in Taigbenu
(2015) and for that reason it is only succinctly described in this paper. It treats
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Figure 1: Domain and problem statement representation

Eq. 1 as a Poisson equation to which Green’s theorem is applied, resulting in the
singular integral equation that arises in boundary element formulations

K

∫
Γ

T G∗ds−λTi

+
∫
Γ

Gqds+
∫ ∫

Ω

G
[

κ
∂T
∂ t

+Q
]

dA = 0 (4)

where κ = ρc, G=ln(r–ri) is the fundamental solution of the Laplace differential
operator, q = −K∇T ·n is the normal heat flux, the subscript i represents the col-
location point ri = (xi,yi) and λ is the nodal angle at ri. The implementation of the
integral Eq. 4 does not follow the classical approach in boundary element circles
but employs the limiting case of the domain decomposition technique of element
arrangement that is similar to finite elements [Popov (2007); Taigbenu (1999)]. The
unknown quantities T and q are interpolated over the elements, that is T ≈ φ jTj (φ j

are the spatial interpolation functions which, in this paper, are chosen to be linear).
Introducing the interpolation relationship into Eq. 4 gives the elemental equations

Ri jTj +Li jq j +Wi j
dTj

dt
+FiQ = 0 (5)
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where

Ri j = K

∫
Γe

ϕ jG∗i ds−δ i jλ

 , Li j =
∫
Γe

ϕ jGids,

Wi j = κ

∫ ∫
Ωe

Giϕ j dA, Fi =
∫ ∫

Ωe

Gi dA

(6)

where Ωe and Γe are the domain and boundary of an element e. The approach
presented in Taigbenu (2012) is used to approximate the normal flux q at inter-
element boundaries in terms of T which is expressed as a quadratic polynomial
of the spatial variables. With this approximation, T and q are computed on the
boundary of the computational domain and T within the domain. The temporal
derivative term is approximated by a finite difference expression: dT/dt ≈ [T (2)–
T (1)]/∆t evaluated at t = t1+β∆t, where 0≤β≤1, is the difference weighting factor,
and ∆t is the time step between the current time t2 and the previous one t1. With
this difference approximation, Eq. 5 becomes(

βRi j +
Wi j

∆t

)
T 2

j +βLi jq2
j +βFiQ2 =

(
ωRi j +

Wi j

∆t

)
T 1

j +ωLi jq1
j +ωFiQ1 (7)

where ω=β–1 and the superscripts represent the times at which the quantities are
evaluated. The initial and boundary data and available internal temperature mea-
surements are incorporated into Eq. 7 to give the matrix equation

Ap = b (8)

Where

A =

 βRi j +Wi j/∆t
βBi j

βFi

 and p =


T 2

j
q2

j
Q2

 (9)

The vector p is an N×1 vector of unknowns at t2 (T and/or q at external nodes,
T at internal nodes and the heat source strength, Q). The right side b of Eq. 8
comprises the initial data and the specified boundary and observed data at interior
points. The matrix A is an M×N matrix, where M is the number of nodes in the
computational domain (which equals the number of discrete equations generated
by the GEM formulation) and M ≥ N.
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3.2 Formulation 2

The integral representation of Formulation 2 arises from applying Green’s theorem
to Eq. 1, and integrating in time between t0 and any time tto give the singular
integral equation which is the same as that obtained in BEM [Brebbia et al. (1984)]

2λTi +
t∫

t0

∫
Γ

[DT (r,τ)G∗(r,ri, t,τ)+G(r,ri, t,τ)q(r,τ)/κ]dsdτ−

∫∫
Ω

G(r,ri, t,0)T (r,0)dA+ 1
κ

t∫
t0

Q(τ)
∫∫
Ω

G(r,ri, t,τ)dAdτ = 0
(10)

where

G(r,ri, t,τ) =
H(t− τ)

D(t− τ)
exp−

[
(r− ri)

4D(t− τ)

]
(11)

is the fundamental solution of D∇2G+∂G/∂ t =−δ (r−ri)δ (t−τ), D = K/κ , and
G∗ is the normal derivative of G. The boundary and domain integrals in Eq. 10 are
implemented in the Green element sense over elements as in Formulation 1. The
unknown quantities are linearly interpolated in time and space so that Eq. 10 for
each element Ωe yields

Em
i j T

m
j +Cm

i jq
m
j +Ui jT 1

j +V m
i Qm = 0 (12)

where

Em
i j = D

t2∫
t1

νm(τ)
∫
Γe

ϕ j(r)G∗(r,ri, t,τ)dsdτ +2δ i jλ ;

Cm
i j =

1
κ

t2∫
t1

νm(τ)
∫
Γe

ϕ j(r)G(r,ri, t,τ)dsdτ;

Ui j =
∫∫
Ωe

ϕ j(r)G(r,ri,∆t,0)dA; V m
i = 1

κ

t2∫
t1

νm ∫∫
Ωe

G(r,ri, t,τ)dAdτ

(13)

The index m ∈ [1,2] represents the time levels of the previous and current times
t1 and t2, ν and ϕ are respectively the interpolating functions in time and space.
The expression given by Eq. 12 represents one time-marching scheme that can
be employed in implementing this formulation. With this time-marching scheme,
the boundary and domain integrations are evaluated at each time step. The other
scheme requires that the time integration always restarts at the initial time t0 [Breb-
bia et al. (1984)]. Both time marching schemes are coded in the computer program
of this formulation. The discrete element equations represented by Eq. 12 are ag-
gregated for all the elements that are employed in discretizing the computational
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domain, resulting in a matrix equation that is similar to Eq. 8 with the coefficient
matrix, A, and unknown vector, p, defined as

A =

 E2
i j

C2
i j

V 2
i

 and p =


T 2

j
q2

j
Q2

 (14)

4 Least square and Tikhonov regularization

Eq (8) is over-determined and its solution is amenable to the least square method,
while the matrix A is usually ill-conditioned and it is regularized by the Tikhonov
regularization method. The decomposition of A is facilitated by the singular value
decomposition (SVD) method [Golub and Van Loan (1996)].

A = UDVt =
N

∑
i=1

ψiuivtr
i (15)

where U and V are, respectively, M×M and N×Northogonal matrices and D is an
M×N diagonal matrix with N non-negative diagonal elements ψ1, ψ2, ..., ψN . The
least square solution of Eq. 8 minimises the Euclidian norm ‖Ap−b‖2, resulting
in the solution for the unknowns p

p = B−1s =
N

∑
i=1

utr
i b
ψi

vi (16)

Where B=AtrA, s=Atrb, and ui and vi are the ith column of the matrices U and
V, respectively. The small singular values ψ icause instability of the solution for p,
and this is overcome by using the Tikhonov regularization method which minimizes
‖Ap−b‖2+α2‖Ip‖2 in calculating the solution for p [Hansen (1994)]

p(α) =
N

∑
i=1

ψi

α2 +ψ2
i

utr
i bvi (17)

where α is the regulation parameter whose choice is carefully made so that it is
not too small to retain the instability of the numerical solution or too large to have
smooth unrealistic results.

5 Numerical Examples

Five numerical examples of transient IHCPs are solved by the two GEM formu-
lations. The first two address the recovery of T and q, while the remaining three
address the recovery of the heat source strength Q. The first two examples had been
solved by Lesnic et al. (1996), while the others had been addressed by Yan et al.
(2008) using the method of fundamental solutions (MFS).
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5.1 Example 1

This is a transient example in one spatial dimension. It is solved by the GEM for-
mulations in a 2-D rectangular domain with insulated boundaries at the top and
bottom. With the test function T (x,t)=2t + x2 that satisfies the governing Eq. 1
in x ∈ [0,1], K=1, c=1 and Q=0 and the temperature distribution T (x,0)=x2 is pre-
scribed at the initial time t=0. Along the boundary x=1, the temperature and flux are
specified, that is T (1,t)+ q(1,t)=2t+3. The boundary along x=0 is a Γ4 boundary
where neither T nor q is specified, and three locations with available temperature
measurements are examined: (i) xm=1, (ii) xm=0.5 and (iii) xm=0.25. The GEM
simulations of this example used only four rectangular elements and a time step,
∆t=0.025, while the values of the regularization parameter for both formulations
for the five examples are presented in Table 1. The numerical results from the two
GEM formulations are presented in Fig. 2a in terms of the relative error, calculated
by Eq. 18 for T (x,t), and as well as in Fig. 2b for q(x=0,t) along the Γ4 boundary
for the three cases. The solutions of Formulation 1 have consistently lower rela-
tive error than those of Formulation 2, indicating that Formulation 1 gives better
prediction of the temperature and heat flux.

ε =
1
M

√√√√√√√
M
∑

i=1
(T cal

i −T exact
i )2

M
∑

i=1
(T exact

i )2
(18)

5.2 Example 2

This is a transient IHCP with a more stiff test function that is prescribed in x∈ [0,1],
and it is expressed as [Lesnic et al. (1996); Carslaw and Jaeger (1959)]

T (x, t) =


u(x, t), t ∈ [0,0.5)
u(x, t)−2u(x, t−0.5), t ∈ [0.5,1)
u(x, t)−2u(x, t−0.5)+2u(x, t−1), t ∈ [1,1.5)
u(x, t)−2u(x, t−0.5)+2u(x, t−1)−2u(x, t−1.5), t ∈ [1.5,2]

(19)

where

u(x, t) =
3(1− x)2−1

6
+ t−2

∞

∑
n=1

(−1)n

n2π2 cos[nπ(1− x)]e−n2π2t (20)

Along the boundary x=1, T and q are specified with T (1,t) obtained from Eq. 19
and q(1,t)=0. Measurements of T are available at xm=0.25, while the boundary
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 Figure 2: GEM simulation results of Example 1: (a) relative error of T (x,t) and (b)
q(x=0,t).
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Table 1: Values of the regularization parameter, α , used in the simulations of the
five examples.

Examples and cases
α

Formulation 1 Formulation 2
1 (i)
1 (ii)
1 (iii)

2.2×10−4

3×10−3

7.1×10−4

3×10−3

10−2

1.5×10−2

2 3.2×10−4 5×10−2

3: σ = 0%
3: σ = 1%
3: σ = 3%
3: σ = 5%

2.2×10−4

3.2×10−4

3.2×10−4

3.2×10−4

10−4

10−4

10−4

10−4

4: σ = 0%
4: σ = 1%
4: σ = 3%
4: σ = 5%

2.2×10−4

3.2×10−4

3.2×10−4

3.2×10−4

10−6

10−6

10−6

10−6

5: σ = 0%
5: σ = 1%
5: σ = 3%
5: σ = 5%

2.2×10−4

3.2×10−4

3.2×10−4

3.2×10−4

8×10−3

8×10−3

8×10−3

8×10−3

along x=0 is a Γ4 boundary where neither T nor q is known. Using only 4 rectan-
gular elements, the GEM simulations are carried in a 2-D domain with a uniform
time step ∆t=0.025. The temporal variation of the relative error ε for the spatial
temperature distribution, and the flux at x=0 for the two GEM formulations are
respectively presented in Figs. 3 and 4. As with the first example, the relative er-
ror of the solution for the temperature from Formulation 1 is lower than that from
Formulation 2, and Formulation 1 gives better prediction of the flux at x=0.

5.3 Example 3

In this example, the recovery of the strength of the heat source is sought. The exact
solution to Eq. 1 in 1-D spatial domain x ∈ [0,1] that is used as the test function is

T (x, t) =
x4

4
+3tx2 + sin(x)e−t (21)

It gives an expression for the heat source, Q(t) = –6t. Dirichlet boundary conditions
are specified along x=0 and x=1, while temperature measurements are available
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Figure 3: Error plots of T (x,t) with time from the two GEM formulations for Ex-
ample 2.

Figure 4: GEM simulations of the variation of the flux at x=0 with time for Example
2.
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at xm=0.5 for all times. The GEM simulations are implemented in a rectangular
domain that is discretized with 10 linear rectangular elements. A uniform time step
of 0.025, and the temperature data at x=0, 0.5 and 1 are perturbed randomly with
noise levels of σ=1, 3 and 5%. The values of the regularization parameters used
in both formulations are found in Table 1. The numerical results from both GEM
formulations for the heat source are presented in Fig. 5 for various noise levels. The
results from both formulations when there is no noise in the data are left out of Fig.
5 because they correctly reproduced the exact solution. The plots of the relative
error, ε , from both formulations are presented in Fig. 6. Formulation 2 produced
more accurate and stable solutions than Formulation 1 for the various noise levels.

Figure 5: GEM simulations for the heat source Q(t) of Example 3.

5.4 Example 4

In this example, the test function that satisfies Eq. 1 in x ∈ [0,1] is

T (x, t) = x2 +2t + sin(2πt) (22)

The corresponding expression for the heat source is Q(t) = 2πcos(2πt). Along x=0
and x=1 the temperature is specified, and its measurements are available at xm=0.5
for all times. The GEM simulations use 10 linear rectangular elements, a uniform
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Figure 6: Error plots of T (x,t) with time from the two GEM formulations for Ex-
ample 3.

time step ∆t=0.025, and the temperature data at x=0, 0.5 and 1 are perturbed ran-
domly with noise levels of σ=1, 3 and 5%. The GEM and exact solutions for the
heat source are presented in Fig. 7 for various noise levels. Though not shown
in Fig. 7, the numerical results from the two GEM formulations reproduced the
exact solution when there is no noise in the data. The values of the regularization
parameter used in the two formulations are found in Table 1. The plots of the rel-
ative error, ε , from the two formulations are presented in Fig. 8. The results from
Formulation 2 are slightly more accurate than those of Formulation 1, but they are
oscillatory for both formulations at noise levels of 3% and 5%.

5.5 Example 5

In this example, also previously simulated by Yan et al. (2008) using the MFS,
the IHCP is governed by Eq. 1 in a 1-D homogeneous domain x ∈ [0,1]. Dirichlet
conditions with zero temperature are specified along x=0 and x=1. Initially the
temperature is zero everywhere in the domain, and the IHCP problem is to recover
the step-wise heat source distribution expressed as:

Q(t) =


−1, t ∈ (0,0.25)
1, t ∈ [0.25,0.5)
−1, t ∈ [0.5,0.75)
1, t ∈ [0.75,1]

(23)

In the absence of an analytic solution, the temperature distribution is generated by
solving the direct problem with GEM using fine spatial and temporal discretizations
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Figure 7: GEM simulations for the heat source Q(t) of Example 4.

Figure 8: Error plots of T (x,t) with time from the two GEM formulations for Ex-
ample 4.
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of 40 linear rectangular elements and time step ∆t=2.5×10−3. The generated direct
GEM solution is presented in Figure 9. The inverse modeling with GEM is carried
out in a 2-D rectangular domain using the specified boundary conditions: T (x=0,t)
= T (x=1,t) = 0, the initial condition: T (x,0) = 0, and the temperature data at xm=0.5
that were generated by the direct GEM.

 

Figure 9: Direct GEM solution of the temperature for Example 5.

Ten linear rectangular elements are used in the inverse GEM simulations with no-
heat flux boundaries imposed on the top and bottom boundaries. A uniform time
step ∆t=0.025 is used in both GEM formulations. Because of the homogeneous
boundary conditions, only the temperature data at x=0.5 are affected when they are
randomly perturbed with noise levels σ=1, 3 and 5%. The values of the regulariza-
tion parameter employed in the GEM simulations are found in Table 1. To eliminate
clutter of the results, only the solution of zero and 5% noise levels are presented.
The simulated results from the two formulations for the heat source strength are
presented in Fig. 10, while the plots of relative error, ε , for the temperature are
presented in Fig. 11. The GEM Formulation 1 solutions for the temporal variation
of the heat source and the temperature are superior to those of Formulation 2. The
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solutions from both formulations are superior to those obtained by Yan et al. (2008)
who used the method of fundamental solutions.

Figure 10: Heat source recovery of Example 5.

Figure 11: Error plots of T (x,t) with time from the two GEM formulations for
Example 5.
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6 Conclusion

Two Green element formulations, which are based on the singular integral theory
of BEM, have been used to solve transient IHCPs in 2-D homogeneous domains.
Both formulations produced over-determined and ill-condition systems of discrete
equations which are solved by the least square method with Tikhonov regulariza-
tion. With both formulations applied to five numerical examples, Formulation 1,
which uses the fundamental solution of the Laplace operator, generally gives more
accurate results than Formulation 2, which uses the fundamental solution of tran-
sient diffusion equation. Although this result may run contrary to the intuitive
reason that Formulation 2 should produce more accurate results than Formulation
1 since it uses the fundamental solution of the heat conduction equation, however
the numerical errors from manipulating its complicated fundamental solution com-
promise the quality of its results. This also influences the computing speed of
Formulation 2 which is about 30 times slower than Formulation 1.
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