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Using Eulerlets to Give a Boundary Integral Formulation
in Euler Flow and Discussion on Applications

Edmund Chadwick1 and Apostolis Kapoulas

Abstract: Boundary element models in inviscid (Euler) flow dynamics for a
manoeuvring body are difficult to formulate even for the steady case; Although
the potential satisfies the Laplace equation, it has a jump discontinuity in two-
dimensional flow relating to the point vortex solution (from the 2π jump in the
polar angle), and a singular discontinuity region in three-dimensional flow relating
to the trailing vortex wake. So, instead models are usually constructed bottom up
from distributions of these fundamental solutions giving point vortex thin body
methods in two-dimensional flow, and panel methods and vortex lattice methods in
three-dimensional flow amongst others. Instead, the idea here is to present initially
a boundary integral formulation in Euler flow that can then produce a true top down
boundary element formulation. This is done for the steady two-dimensional case
by matching the Euler flow to a far-field Oseen flow to determine the appropriate
description for the Green’s function Eulerlets. It is then shown how this reduces
to the standard point vortex representations. Finally, two applications are outlined
that can be used to test this approach, that of steady flow past a semi-infinite flat
plate and steady flow past circular cylinder.

Keywords: Boundary Integral, Euler flow, Green’s functions, Eulerlets, matched
asymptotics.

1 Introduction

The classical methods for manoeuvring problems in inviscid flow theory (aero-
planes, ships, submarines, rockets) start by building up a solution for the velocity
from a linear superposition of simple fundamental solutions, a bottom-up approach.
For example, in slender body theory these are point sources [Thwaites, (1960)], in
thin body (wing and aerofoil) theory these are point vortices in two-dimensional
flow [Batchelor (1967)] and horseshoe vortices trailing into the wake forming a vor-
tex lattice in three-dimensional flow [Lighthill (1986)]. They are positioned over
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the body or on an inner camber line, and in the case of panel methods the velocity-
discontinuous surface is continued into the wake [Katz and Plotkin (2001)]. Two
important theoretical questions arise from these classical descriptions: why the par-
ticular choice of simple fundamental solution over other equally viable candidates,
and why should a particular distribution of these presented in the description be
used rather than any other equally possible descriptions? For example, in two-
dimensional thin aerofoil theory, why should the point vortex fundamental solution
be chosen over, say, the dipole whose potential is also single valued rather than
multivalued, and why should an integral distribution of these over the camber line
then describe the flow appropriately? It is clear that these are assumptions, see for
example Batchelor (1967), so this is a theoretical problem needing to be addressed.

To do this, we provide a top-down approach by first giving a boundary integral
description to the Euler equations in terms of Green’s functions which we call Eu-
lerlets. This is achieved by matching the far-field Oseen flow description to a near-
field Euler flow description on a common matching boundary for large Reynolds
number. As a first step, the small velocity perturbation Euler equations are con-
sidered. We present an argument for this procedure by drawing upon the similarity
with the matching between far-field Oseen flow and near-field Stokes flow for small
Reynolds number, see for example, Proudman and Pearson (1957), and Kaplun and
Lagerstrom (1967). This fluid formulation can then be developed into a boundary
element or meshless method, see for example Sellier (2013) and Langthjem and
Nakano (2013). Once this is achieved, the resulting boundary integral formulation
can then be approximated appropriately and discretized into a numerical scheme as
required. Here, in particular we approximate the steady two-dimensional bound-
ary integral description for small velocity perturbation Euler flow appropriately to
obtain thin aerofoil theory and thin body theory. For future work, the small per-
turbation Euler flow will be further matched to an inner Euler flow creating three
matching regions.

2 Matching procedure

We start with the far-field approximation to the flow given by the Oseen equations
[Oseen (1927)] as

ρU
∂ui

∂x1
=− ∂ p

∂xi
+µ

∂ 2ui

∂x j∂x j
, (1)

where xi defines the Cartesian co-ordinate system using Einstein suffix notation, ui

is the velocity and p is the pressure. Oseen flow assumes a uniform flow field U in
the x1 direction. The fluid density is given by ρ , and viscosity given by µ .
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By considering a dimensionless analysis, we then show how this gives a Stokes
flow approximation in the near-field for low Reynolds number flow. This gives
the standard description for low Reynolds number flow which matches a near-field
Stokes flow to a far-field Oseen flow. Using the same arguments, we then go on to
show how, again starting with the far-field Oseen flow approximation, we obtain the
(small velocity perturbation) Euler flow approximation in the near-field for large
Reynolds number flow. This gives our proposed description for large Reynolds
number flow which matches a near-field Euler flow to a far-field Oseen flow.

Standard description for low Reynold number

The matching for low Reynolds number flow is well established [Proudman and
Pearson (1957), and Kaplun and Lagerstrom (1957)] and can be viewed as a match-
ing between a near-field Stokes flow and a far-field Oseen flow. Considering the
dimensionless variables x∗j = x j/l , u∗i = ui/U and the dimensionless Stokes pres-
sure p∗ = p/(µU/l), eq (1) becomes

Re
∂u∗i
∂x∗1

=−∂ p∗

∂x∗i
+

∂ 2u∗i
∂x∗j∂x∗j

, (2)

where l is the length dimension of the problem, U is a typical velocity and Re =
ρUl/µ is the Reynolds number. Neglecting the inertia term on the left hand side of
eq (2) gives the Stokes flow equations. However, considering the far-field length L,
then the inertia term can only be neglected if Re L

l is small, otherwise the far-field
Oseen equations given by eq (1) must be used instead of the near-field Stokes flow
equations, see Fig. 1.

Proposed description for large Reynold number

We propose a matching for large Reynolds number flow viewed as a matching
between a near-field Euler flow and a far-field Oseen flow. Now considering the
dimensionless aerodynamic pressure p∗ = p/

(
ρU2

)
, eq (1) becomes

∂u∗i
∂x∗1

=−∂ p∗

∂x∗i
+

1
Re

∂ 2u∗i
∂x∗j∂x∗j

. (3)

For large Re, neglecting the viscous term on the far right hand side of eq (2) yields
the (small velocity perturbation) frictionless ideal Euler equations. However, con-
sidering the far-field length L, the far-field Oseen wake is described by terms of the
type e−k(R−x1) in three-dimensions and of the type ekx1K0 (kr) in two-dimensions,
where k = ρU/2µ , R is the three-dimensional radius and r is the two-dimensional
radius, see for example Chadwick (1998). Therefore diffusion of these wake terms
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Figure 1: Matching regions for low Reynolds number flow.

is negligible if kl2/L is large, which means 1
Re

L
l is small. So in the near-field Euler

flow approximation no wake diffusion is assumed, see Fig. 2.

3 Eulerlets

To find the Eulerlets that describe the near-field, again we follow a similar method
as used by Chadwick (2013) to obtain near-field Stokelets by considering far-field
Oseenlets. This method approximated the Oseenlets in the limit as Re L

l → 0, and
from this obtained the Stokeslets. Similarly, we will obtain the (small velocity
perturbation) Eulerlets from the Oseenlets but this time consider the limit as Re l

L→
∞ or equivalently 1

Re
L
l → 0 instead.

The steady two-dimensional Oseenlets are [Oseen (1927), Chadwick (1998)]

u(1)i =
1

2πρU

[
∂

∂xi

(
lnr+ ekx1K0 (kr)

)
−2kekx1K0 (kr)δi1

]
, p(1) =− 1

2π

∂

∂x1
lnr,

u(2)i =
1

2πρU
εi j3

∂

∂x j

(
lnr+ ekx1K0 (kr)

)
, p(2) =− 1

2π

∂

∂x2
lnr, (4)
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Figure 2: Matching regions for large Reynolds number flow.

where the Green’s functions for Oseen flow with uppercase suffix (1) denotes the
unit drag Oseenlet and with suffix (2) denotes the unit lift Oseenlet. The symbol
δi j is Kronecker delta where δi j = 1 when i = j and is zero otherwise. The symbol
εi jk is 1 when i, j,k are in ascending wrapped order, -1 in descending wrapped
order, and zero otherwise. Let us now investigate these Oseenlets in the limit as
Re l

L →∞. We have ekx1K0 (kr)→
√

π

2kr e−kx2
2/2x1 . In order for the boundary integral

formulation to be consistent, the boundary integrals evaluated from the Oseenlets
must give the same values as the boundary integral evaluations from the Eulerlets.
This means that the evaluations from integral wake cross-sections must match on
the common boundary. Let us investigate these integral wake cross-sections by

considering
∞

∫
−∞

ekx1K0 (kr)dx2. Letting =
√

k
2x1

x2 , and noting that r ≈ x1, then

∞

∫
−∞

ekx1K0 (kr)dx2 =
∞

∫
−∞

√
π

k
e−η2

dη =
π

k
. (5)

Noting that derivatives are given by ∂

∂x1
=− η

2x1

∂

∂η
and ∂

∂x2
=
√

k
2x1

∂

∂η
, then in the

limit integral cross-sections of the derivatives of the integrand given in eq (5) will be
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zero. This means that, of the wake terms in eq (4), only the wake cross section from
the term 2kekx1K0 (kr)δi1 in the drag Oseenlet gives a non-zero contribution, and
so in the limit all the other wake terms disappear. In this limit, the wake collapses
onto the wake half line x1 > 0,x2 = 0. So in the limit eq (5) becomes

∞

∫
−∞

ekx1K0 (kr)dx2 =
π

k

∞

∫
−∞

H (x1)δ (x2)dx2 =
π

k
, (6)

where δ (x2) is the Dirac delta function such that δ (x2) = 0 for x2 6= 0, and the

integration across x2 = 0 gives, for example,
∞

∫
−∞

δ (x2)dx2 = 1; and H (x1) is the

Heaviside function H (x1) = 0 for x1 < 0, H (x1) = 1 for x1 > 0 , and at x1 = 0
we have ∂

∂x1
H (x1) = δ (x1). The Oseenlets given by eq (4) therefore reduce to the

Eulerlets

u(1)i =
1

2πρU

[
∂

∂xi
(lnr)−2πH (x1)δ (x2)δi1

]
, p(1) =− 1

2π

∂

∂x1
lnr,

u(2)i =
1

2πρU
εi j3

∂

∂x j
(lnr) , p(2) =− 1

2π

∂

∂x2
lnr, (7)

in the limit. So the drag Eulerlet is a potential source outflow with an equal inflow
along the wake half line, see Fig. 3, and the lift Eulerlet is a clockwise point vortex,
see Fig. 4. We note that Batchelor (1967) presents a sketch similar to Fig. 3 to
represent the inflow due to the drag of a body. However, he does not associate it
with the drag Eulerlet, or attempt to describe it mathematically. Also, we note that
in thin aerofoil theory [Batchelor (1967), Katz and Plotkin (2001)] a distribution of
point vortices along the camber line are assumed, producing lift.

Figure 3: Drag Eulerlet.
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Figure 4: Lift Eulerlet.

It remains to ask whether these satisfy the (small velocity perturbation Euler equa-
tions) for the Eulerlets given by

ρU
∂u(m)

i
∂x1

=−∂ p(m)

∂xi
− f (m)

i (8)

where f (m)
i = δ (x1)δ (x2)δim , the function δ (.) being the Dirac delta function

and the symbol δi j being Kronecker

delta. For the drag Eulerlet, ρU ∂u(1)i
∂x1

= 1
2π

∂

∂x1

(
∂

∂xi
lnr−2πH (x1)δ (x2)δi1

)
=

1
2π

∂

∂x1

(
∂

∂xi
lnr)−δ (x1)δ (x2)δi1

)
= − ∂ p(1)

∂xi
− f (1)i , and so satisfies eq (8). For the

lift Eulerlet, ρU ∂u(2)i
∂x1

= 1
2π

∂

∂x1

(
εi j3

∂

∂x j
lnr
)

. For i = 1, this gives 1
2π

∂

∂x1

(
∂

∂x2
lnr
)
=

− ∂ p(2)
∂x1

, and for i = 2 this gives − 1
2π

∂ 2

∂x2
1

lnr = 1
2π

∂ 2

∂x2
2

lnr−δ (x1)δ (x2) = − ∂ p(2)
∂x2
−

f (2)2 , and so also satisfies eq (8).

4 Green’s integral representation.

Near-field

We follow the same Green’s integral derivation as given by Chadwick (2013),
which is itself equivalent to the procedure outlined by Oseen (1927). Consider the
(small velocity perturbation) Euler equations that hold in the near-field and given
by

ρU
∂ui

∂y1
=− ∂ p

∂yi
− fi (9)
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where fi represents an external force applied on the fluid, so in a fluid region away
from a boundary and free from external body force fields, this is zero, and we have
used a new Cartesian co-ordinate system yi which in the Green’s integral represen-
tation will represent points integrated over in the Green’s integral expression. So
this is different from the original Cartesian co-ordinate system xi which represents
a point in the fluid. For brevity, let us also define a third Cartesian co-ordinate
zi = xi− yi which links the two. So, if an integral distribution of Green’s functions
are positioned over the space parameterized by yi , then the vector distance from
the point in the fluid xi to the Green’s function origin at yi is given by zi. Following
the Green’s integral derivation, then let us consider

∫
∑

[(
∂ p(yyy)

∂yi
+ρU

∂ui (yyy)
∂y1

+fi (yyy)
)

u(m)
i (zzz)−

(
∂ p(m) (zzz)

∂ zi
+ρU

∂u(m)
i (zzz)
∂ z1

+f (m)
i (zzz)

)
ui(yyy)

]
d ∑

which is identically zero from eq (8) and eq (9). Noting that ∂

∂ zi
=− ∂

∂yi
this gives

∫
∑

[(
∂ p(yyy)

∂yi
+ρU

∂ui(yyy)
∂y1

+fi(yyy)
)

u(m)
i (zzz)−

(
−∂ p(m)(zzz)

∂yi
−ρU

∂u(m)
i (zzz)

∂y1
+f (m)

i (zzz)

)
ui(yyy)

]
d ∑=0

and after rearrangement to prepare for application of the divergence theorem we
get

∫
∑

[
∂

∂yi

(
p(yyy)u(m)

i (zzz)
)
+ ∂

∂yi

(
p(m) (zzz)ui (yyy)

)
+ρU ∂

∂y1

(
ui (yyy)u(m)

i (zzz)
)

+ fi (yyy)u(m)
i (zzz)− f (m)

i (zzz)ui (yyy)
]
d ∑ = 0

Assuming that ∑ represents a contiguous space bounded by a surface (curve in two-
dimensions) ∂ ∑ which has defined an outward pointing normal n∑

i to the space ∑

, then applying the divergence theorem we get

∫
∂ ∑

[p(yyy)u(m)
i (zzz)ni∑+p(m) (zzz)ui (yyy)ni∑+ρUui (yyy)ui(m)(zzz)ni∑]d∂ ∑=ui (xxx)δim

where we have assumed that fi = 0 in the fluid region ∑. Consider the fluid region
∑ bounded by the curve C that encloses the body or fluid disturbance in the near-
field, and the curve Cmatch that is in the matching region between the Oseen and
Euler flow fields, see Fig. 5.

Far-field

The boundary integral over Cmatch matches to first order an Oseen flow boundary
integral. This integral can then be taken as far away as desired in the far-field
Oseen flow region, and for this formulation it is shown that this integral is zero by
Fishwick and Chadwick (2006).
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Figure 5: The near-field boundary integral.

5 Boundary integral formulation in Euler flow

Giving the representation in terms of the outward pointing normal ni to C, where on
C we have that ni =−nΣ

i , and the integration over Cmatch is taken to be zero, gives
a boundary integral formulation in Euler flow

um =−∫
C

(
p(yyy)u(m)

i (zzz)ni + p(m) (zzz)ui (yyy)ni +ρUui (yyy)u(m)
i (zzz)n1

)
dl. (10)

Noting that u(m)
i = u(i)m and letting φ (1) = 1

2πρU lnr, φ (2) =− 1
2πρU θ , where θ is the

polar angle, then eq (10) becomes

um =−∫
C

(
p(yyy)u(i)m (zzz)ni−ρUφ

(1) (zzz) ,m ui (yyy)ni +ρUui (yyy)u(i)m (zzz)n1

)
dl ,

where we have used the notation φ (1) (zzz) ,m= ∂φ (i)(z)
∂ zm

. So we can express the veloc-
ity as a potential velocity part plus a wake velocity part um = φ ,m+wm, noting that
the potential is then described in terms of an integral distribution of point vortices
for which the polar angle is 2π discontinuous for a revolution around each vortex
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point. This potential is given by

φ =−∫
C

(
p(yyy)φ

(i) (zzz)ni−ρUφ
(1) (zzz) ,m ui (yyy)ni +ρUui (yyy)φ

(i) (zzz)n1

)
dl (11)

and the wake velocity by wm = −∫
C

(
p(yyy)w(1)

m (zzz)n1 +ρUu1 (yyy)w(1)
m (zzz)n1

)
dl,

where w(1)
m =− 1

ρU H (x1)δ (x2)δm1. So w2 = 0 and

w1 =−∫
C

ρUw1 (yyy)w(1)
1 (zzz)n1dl = ∫

C
w1 (yyy)H (x1)δ (x2)n1dl . (12)

6 Thin aerofoil and thin body theory

We can now show how this formulation reduces to standard theories. For thin
aerofoil theory, let us invoke the Kutta condition, and so assume a wake line that
emerges at the trailing edge, see Fig. 6.

Figure 6: Kutta condition for thin aerofoil theory.

Then the boundary condition is satisfied by the potential only, and so eq (11) be-
comes

φ=−∫
C

(
pϕ

(1)n1+pϕ
(2)n2−ρUϕ

(1)u1n1−ρUϕ
(1)u2n2+ρUu1φ

(1)n1+ρUu2φ
(2)n1

)
dl.

(13)

However, we have that p = −ρUϕ,1 and over the boundary, ui = φ ,i. So eq (13)
becomes after some cancellation

φ = ρU ∫
C
(φ ,1 n1 +φ ,2 n2)φ

(1)+(φ ,1 n2−φ ,2 n1)φ
(2)dl

=
1

2π
∫
C
{(∇φ .nnn) lnr+(∇φ ×nnn)3 (−θ)}dl

(14)

where nnn = (nnn1,nnn2). The term sss = ∇∇∇φφφ . nnn represents the outflow strength of the dis-
tribution of sources, and the term γγγ = ∇∇∇φφφ ×nnn represents the clockwise circulation
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strength of the distribution of clockwise point vortices. So we can split the potential
in eq (14) into φφφ = φφφ

D +φφφ
Lsuch that

φ
D =

1
2π
∫
C

s(l) lnrdl

represents a distribution of point sources. Over an internal line axis, this gives the
thin body (or two –dimensional slender body) theory. This also means

φ
L =

1
2π
∫
C

γ (l)(−θ)dl

which represents a distribution of point vortices. Over an internal axis, this gives
thin aerofoil theory.

7 Applications

Two applications are outlined that can be used to test this approach, that of steady
flow past a semi-infinite flat plate and steady flow past a circular cylinder.

7.1 Steady flow past a semi-infinite flat plate

This problem is given by the Blasius equation and similarity solution, and gener-
alized by the Faulkner-Skan equations for flow past a semi-infinite wedge. Let us
consider modeling this problem in a different way, by considering three regions
in Stokes flow, Oseen flow and Euler flow, and match using the boundary integral
formulation given above, see Figure 7. This will provide a test for the formulation,
and also open the possibility of modeling more general shapes using a boundary
element solver where the similarilty solution cannot be used.

Figure 7: Steady flow past a semi-finite flate plate.

7.2 Steady flow past a circular cylinder

Other problems that can use Eulerlets are those with bluff bodies, for example
circular cylinders. In this problem, the far-field profile will be a given, and from
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this a drag Eulerlet distribution formulated. This problem is particularly interesting
because this Eulerlet representation predicts drag, which is not possible for standard
Euler models because of D’Alembert’s paradox. However, the additional terms in
the new Eulerlet formulation provide a drag inflow, which is balanced by a potential
outflow giving drag. Hence, a particular test for the formulation is the closeness to
the drag value for flow past a circular cylinder with a given far-field profile, see
Figure 8.

Figure 8: Steady flow past a circular cylinder.

8 Summary

We have obtained a boundary integral formulation in steady two-dimensional Euler
flow from a matching between near-field Euler flow and far-field Oseen flow. We
have further demonstrated that this formulation reduces to thin body and thin aero-
foil theory. In the matching, a wake inflow term must be retained and is present in
the description of the drag Eulerlet. The other term in the drag Eulerlet is the po-
tential outflow term, and the lift Eulerlet is represented by a clockwise point vortex.
We outline two test problems for the method, that of steady flow past a flat plate
and uniform flow past a circular cylinder. The next step is to develop a code using
Boundary Element Eulerlets, and investigate the accuracy in relation to these two
problems. If the tests prove successful, then the code can be developed to tackle
more complex shapes.
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