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A (Constrained) Microstretch Approach in Living Tissue
Modeling: a Numerical Investigation Using the Local Point

Interpolation – Boundary Element Method

Jean-Philippe Jehl1 and Richard Kouitat Njiwa2

Abstract: Extended continuum mechanical approaches are now becoming in-
creasingly popular for modeling various types of microstructured materials such
as foams and porous solids. The potential advantages of the microcontinuum ap-
proach are currently being investigated in the field of biomechanical modeling.
In this field, conducting a numerical investigation of the material response is ev-
idently of paramount importance. This study sought to investigate the potential
of the (constrained) microstretch modeling method. The problem’s field equations
have been solved by applying a numerical approach combining the conventional
isotropic boundary elements method with local radial point interpolation. Our re-
sulting numerical examples demonstrated that the model is a good candidate for the
mechanical modeling of living tissues.

Keywords: Micromorphic, Constrained microstretch, Isotropic BEM, Meshfree
strong form.

1 Introduction

It is becoming increasingly clear that the microstructure of material must be taken
into account when establishing its corresponding constitutive equation. Mechani-
cal behavior modeling considers the microstructural information of a material either
implicitly or explicitly. Living tissue, such as heart tissue, is non homogeneous with
a complex micro-organization. In this context, it is not easy to apply multi-scale
modeling or classical mathematical homogenization approaches; phenomenolog-
ical approaches are still required. It is for this reason that we chose to continue
the work of Rosenberg and Cimrman (2003) and investigate the applicability of
microcontinuum approaches in this field.
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The theory behind using micromorphic media, as described by Eringen and Suhubi
(1964), is that it enables us to capture the impact of the microstructure on the overall
response of the material. For a full description: a material point of a micromorphic
medium possesses twelve degrees of freedom: the three traditional components of
displacement and nine components of a micro-deformation tensor. The material is
typically specialized depending on the salient microscopic motions.

When the material point of the medium can rotate and stretch, the medium is known
as a microstretch material. In the constrained microstretch medium, the material
point can only dilate or contract, and is known as a microdilatation medium, a defi-
nition already applied to model foam and some porous media [Ramézani, Steeb and
Jeong (2012)]. The literature on microstretch media is not extensive. It is, in fact,
difficult to understand and qualify the responses of this type of media using con-
ventional mechanical tests. We believe that numerical experiments are extremely
useful in this field. On account of this, we have opted to investigate the response
of a 3D (constrained) microstretch medium to loading. Our study presented herein
is essentially numerical and based on a specifically developed numerical tool. First
of all, we present the governing equations of a microstretch medium. Then, we de-
scribe the adopted numerical method, called the “local point interpolation – bound-
ary element method” (LPI-BEM). Finally, the numerical results are presented. Par-
ticular attention was paid to verify the model’s capacity to represent the mechanical
behavior of living tissue, such as heart tissue.

2 Governing Equations

In the theory of microstretch medium occupying the domain Ω with boundary Γ,
the material point x is attached to a triad of directors that can rotate and stretch.
The material point possesses seven degrees of freedom: the three components of the
traditional displacement vector, the three components of a microrotation vector, and
the scalar microdilatation. The field equations governing this type of medium when
under quasi-static evolution without external body loads are [Iesan and Pompei
(1995)]:

σ ji, j (x) = 0 (1)

m ji, j (x)+ εi jkσ jk (x) = 0 (2)

sk,k (x)− p(x) = 0 (3)

In these equations, σi j (x) represents the stress tensor, mi j (x) the couple stress ten-
sor, sk (x) the vector of internal hypertraction, and the scalar p(x) is the generalized
internal body load. The latter can be viewed as an internal pressure. Next we con-
sidered the case of a quasi-homogeneous and isotropic solid, for which producing
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the following corresponding constitutive relations are as follows:

σi j (x) = λεrrδi j +2(µ +κ)εi j−κui, j +κε jikϕk +η (x)ψδi j (4)

mi j = αωrrδi j +(β + γ)ωi j +(β − γ)(ϕi, j−ϕ j,i)/2 (5)

sk = aψ,k (6)

p(x) = η (x)εrr +bψ (7)

Where ψ is the micro-stretch function, ui the macroscopic displacement vector, and
ϕi the microscopic rotation vector.

εi j = (ui, j +u j,i)/2

ωi j = (ϕi, j +ϕ j,i)/2.

λ and µ are the Lamé constants; α , β , γ, and κ the micropolar constants;η (x), a,
and b the microstretch elastic constants.

It should be noted that, in our selected model, only parameter η (x) could vary
within the medium.

With n j as the outward normal vector on the boundary, the tractions acting at a
regular point of the boundary are given by:

ti = σ jin j, mi = m jin j, s = s jn j (8)

The material parameters must fulfil the following constraints:

b(3λ +2µ +κ)−3η
2 ≥ 0, 2µ +κ ≥ 0, κ ≥ 0, a≥ 0,

b≥ 0, 3α +β + γ ≥ 0, β + γ ≥ 0, γ−β ≥ 0.

3 Solution Method

In the case of linear problems with a well-established analytical fundamental so-
lution, the boundary element method has already proven highly efficient. In our
study, no fundamental solution of the field equations existed; the boundary ele-
ment method (BEM) was found to lose its principal appeal, namely the reduction
of the problem dimension by one, due to traditional volume cells being needed in
the “field boundary element method”. In order to overcome this obstacle, a num-
ber of strategies have been proposed, such as the dual reciprocity method (DRM)
or radial integration method (RIM), which enable the conversion of volume inte-
grals into surface ones. In recent years, a large number of researchers have invested
in the development of so-called meshless or meshfree methods. Among the vari-
ous meshless approaches, the local point interpolation method is highly appealing
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on account of how simple it is to implement. This approach falls in accuracy in
the presence of Neumann boundary conditions, which are almost an inevitability
when solving solid mechanic problems. Liu et al. (2001) have suggested a way to
circumvent this difficulty by adopting the “weak-strong-form local point interpola-
tion” method. In a recent publication, Kouitat Njiwa (2011) proposed a novel strat-
egy that combines the best elements of both the conventional BEM and local point
interpolation methods. This LPI-BEM approach has proved efficient in the con-
text of anisotropic elasticity [Kouitat Njiwa (2011)], piezoelectric solids [Thurieau,
Kouitat Njiwa and Taghite (2012)], and nonlocal elasticity [Schwartz, Niane and
Kouitat Njiwa (2012)]. We adopted this method in our study, detailing below the
principal steps followed in the context of a microstretch medium. It should also
be mentioned that a solution procedure using the finite element method was also
presented by Kirchner and Steinmann (2007).

Our calculations were based on the assumption that the kinematical primary vari-
ables are the sum of a complementary part and a particular term. Namely: ui =
uH

i +uP
i , ϕi = ϕH

i +ϕP
i , and ψ = ψH +ψP.

The complementary fields satisfied the following homogeneous equations:

Ḡu

[
∆uH

i +
1

1−2ν̃u
uH

j, ji

]
= 0, Ḡϕ

[
∆ϕ

H
i +

1
1−2ν̃ϕ

ϕ
H
j, ji

]
= 0, aψ

H
,kk = 0. (9)

The new parameters in equations (9) were defined as:

Ḡu = µ +κ, ν̃u =
λ

2(λ +µ +κ)
, Ḡw =

1
2
(γ +β ) , ν̃w =

α

β + γ +2α
.

Equations (9) were solved by the conventional boundary element method, thus pro-
ducing the following systems of equations:

[Hu]
{

uH}= [Gu]
{

tH} ,[Hϕ

]{
ϕ

H}= [Gϕ

]{
mH} ,[Hψ

]{
ψ

H}= [Gψ

]{
sH} .

(10)

The particular fields solved:

Ḡu

[
∆uP

i +
1

1−2ν̃u
uP

j, ji

]
−κu j, ji +κεi jkϕk, j +(ηψ),i = 0 (11)

Ḡϕ

[
∆ϕ

P
i +

1
1−2ν̃ϕ

ϕ
P
j, ji

]
+(β − γ)

(ϕ j,i j−ϕi, j j)

2
−κϕi−κεi jkuk, j = 0 (12)

aψ
P
,kk−bψ−ηur,r = 0 (13)

The tractions at a regular point on the boundary were written as:
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ti = tH
i + tP

i +δ ti with tA
i =

(
λε

A
rrδi j +2(µ +κ)ε

A
i j
)

n j (A = H or P)

and δ ti =
(
−κui, j +κε jikϕk +ηψδi j

)
n j

(14)

mi = mH
i +mP

i +δmi with tA
i =

(
αω

A
rrδi j +(β + γ)ω

A
i j
)

n j (A = H or P)

and δmi = (β − γ)(ϕ j,i−ϕi, j)n j/2
(15)

s = sH + sP with sA = aψ
A
, jn j (A = H or P) (16)

Following this, we then considered the solution of equations (11-13), using a local
radial point collocation method. In this method [Liu and Gu (2001)], a field ω (x)
was approximated as:

ω (x) =
N

∑
i=1

Ri (r)ai +
M

∑
j=1

p j (x)b j

with the following constraints:
N
∑

i=1
p j (x)ai = 0 , j = 1−M and i = 1−N.

Here Ri (r) is the selected radial basis functions, N the number of nodes in the
neighborhood (support domain) of point x, and M the number of monomial terms
in the selected polynomial basis Pj (x).

Coefficients ai and b j could be determined by enforcing the approximation to be
satisfied at the N centers. Following some algebraic manipulations, coefficients ai

and b j could be expressed in terms of the field nodal values, and the interpolation
could be written in the following compact form:

ω
h (x) = [ϕ (x)]

{
ω/L
}

(17)

When adopting interpolation (17) for all kinematical fields, at a given collocation
center, the following were obtained:

[B(∇)]T [Cu] [B(∇)] [ϕ̃]
{

uP
/L

}
+κ [ϕ̃1]

{
u/L
}

+κ [ϕ̃2]
{

ϕ/L
}
+{∇} [ϕ̃3] [η ]

{
ψ/L
}
= {0}

[B(∇)]T
[
Cϕ

]
[B(∇)] [ϕ̃]

{
ϕ

P
/L

}
+κ [ϕ̂0]

{
ϕ/L
}

+(β − γ) [ϕ̂1]
{

ϕ/L
}
+κ [ϕ̂3]

{
u/L
}
= {0}

a{∇}T {∇}
{

^

Φ

}T {
ψ

P
/L

}
−b
{

^

Φ1

}T {
ψ/L
}
−{∇}T [ϕ̃] [η ]

{
u/L
}
= 0

In the above, {∇}= (∂/∂x,∂/∂y,∂/∂ z)T , {z}= (z1,z2,z3)
T ,
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[B(z)] =

 z1 0 0
0 z2 0
0 0 z3

z2 z3 0
z1 0 z3
0 z1 z2

T

Matrix B was given in terms of vector z = (z1,z2,z3)
T and matrix C was the Voigt

representation of the elasticity tensor.

On collection of the above equations for all the internal collocation centers, tak-
ing the assumption that the particular integrals are identically zero at all boundary
points, the following forms of systems of equations were obtained:{

uP}= [Au]{u}+[Bu]{ϕ}+[Cu]{ψ} (18)

{
ϕ

P}= [Aϕ

]
{ϕ}+

[
Bϕ

]
{u} (19){

ψ
P}= [Aψ

]
{ψ}+

[
Bψ

]
{u} (20)

Following a similar strategy, the tractions at the boundary points could be written
in the following forms:

{t}=
{

tH}+[AKuu]{u}+
[
AKuφ

]
{ϕ}+

[
AKuψ

]
{ψ}

{m}=
{

mH}+ [AKϕu
]
{u}+

[
AKϕϕ

]
{ϕ}

and {s}=
{

sH
}
+
[
AKψu

]
{u}+

[
AKψψ

]
{ψ}

After conducting some algebraic manipulations, the final coupled systems of equa-
tions were of the following forms:

[H̄u]{u}+
[
Huϕ

]
{ϕ}+

[
Huψ

]
{ψ}= [Gu]{t} (21)

[
H̄ϕ

]
{ϕ}+

[
Hϕu

]
{u}=

[
Gϕ

]
{m} (22)[

H̄ψ

]
{ψ}+

[
Hψu

]
{u}=

[
Gψ

]
{s} (23)

Particularly worthy of mention, the final equations contained similar boundary pri-
mary variables and internal kinematic unknowns to those of a traditional BEM.
Boundary conditions could be taken into account as in standard practice and the re-
sulting system of equations was solved by a standard direct solver. It must be men-
tioned that equations 9 could be solved using radial functions with local boundary
integral equation. This new and simple numerical scheme was recently introduced
in reference [ Sellountos, Polyzos and Atluri (2012)].



A (Constrained) Microstretch Approach 351

4 Numerical examples

In our work, we applied the multi-quadrics radial basis functions as follows: Ri (r)=(
r2

i + c2
)q, where ri = ‖x− xi‖ and c and q were known as shape parameters. Shape

parameter c was taken proportionally to minimum distance d0, defined as the max-
imum value among the minimum distances in the x, y, and z directions between
collocation points.

Firstly, we had to validate the proposed tool on a cubic specimen. The boundary of
the cube was subdivided into 24 nine-node quadrilateral elements. The boundary
nodes were supplemented by 27 internal collocation centers.

The first material parameters used in the simulation have been presented in Table
1.

Table 1: Material parameters of the microstretch medium

λ µ η κ α β γ a b
18000 -14680 -0.037 38370 -12000 12000 36000 1.83 0.037

As expected, for the pure tension case, the micro-rotation equaled zero within the
specimen, while the microstretch function was uniform. For example, at the top
surface of the specimen, the axial displacement and microstretch function were,
respectively,: uz = 0.396410210−6 and ψ = 0.158732910−5. Figure 1 presents the
displacement vector field and its component in the loading direction. Where η was
decreased to -0.37 (a variation by factor 10), the macroscopic displacement was
slightly modified, while the microstrectch function increased by factor 10. These
results remained practically unchanged when the multiquadrics shape parameters
varied in range [−2;2] for q and range

[
10−4;10−1

]
for c.

The numerical approach proposed in our paper proved effective in the context of
tension loading due to the numerical solutions being analytical in nature. The next
step of the analysis consisted of submitting the cubic specimen to shearing. The
microstretch function was expected to be zero throughout the specimen while the
microrotation was activated. Our numerical results aligned with this requirement.
These results were unaffected when the multi-quadrics shape parameters were var-
ied. Our numerical approach also proved effective for this type of loading.

A careful selection of material parameters enabled an adequate simulation of aux-
etic material response. Auxetics are materials that have a negative Poisson’s ratio.
These materials expand under tensile loading. When the parameters outlined in
Table 2 were adopted, auxetic behavior was observed (Fig.2).
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a) b) 

Figure 1: Cubic specimen a) Displacement vector under pure tension b) Displace-
ment component in the loading direction.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

Figure 2: Cubic specimen a) Displacement vector under pure tension b) Displace-
ment in the loading direction.

Table 2: Material parameters of a microstretch medium (auxetic response)

λ µ η κ α β γ a b
18000 -14680 -19000 38370 -12000 12000 36000 1.83 18000
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At the (0.5, 0.5, 0.5) coordinate point, the axial and lateral displacements and mi-
crostretch function were, respectively: uz = 0.95612610−6, ux = 0.401210−6, and
ψ = 0.371210−5 (Figure 2).

Next, we considered the left ventricle as modeled as a tubular specimen (see Figure
3). [Johnston (2003)]. Due to the loading of the specimen, the simulation could be
restricted to a situation of a constrained microstretch medium, or microdilatation
medium. In addition, with respect to myocardial infarction, we believed that the
most salient microscopic feature was the material point’s ability “breath”.

The tubular specimen had an exterior radius of 0.75mm, a thickness of 0.5mm, and
was 1.25mm long. This specimen was loaded by 10−2GPa pressure on its outer
boundary. The material parameters adopted were: µ = 0.85 GPa, λ = 3.4 GPa, a =
26 kN, b = 26 GPa, and η = -10.15 GPa. The results presented were obtained with
the boundary of the specimen subdivided into 288 nine-node boundary elements,
supplemented by 432 internal collocation centers.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Geometry and loading of the tubular specimen.

Figure 4 displays the deformation of a cross section of the cylinder. It should be
noted that, under this loading state and with regards to displacement field, all cross
sections of the cylinder are identical.

These results should correlate with the left ventricular ejection fraction (LVEF),
namely the ratio between the volume ejected by the left ventricle (end-systolic vol-
ume) and the initial volume (end-diastolic volume). This measurement holds clin-
ical significance as it demonstrates the heart’s capacity to adequately pump blood,
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Figure 4: Radial displacement in a cross section of the cylinder with microdilata-
tion.

and therefore oxygen, around the body. Certain studies ([Nardinocchi et al. (2012);
Cohn et al. (1993); Juillière et al. (1997); Hallstrom et al. (1995)]) have used LVEF
values as indicators for heart failure prognosis. P. Curtis et al. (2003) stated in their
work that as the LVEF rose from 15 to 45%, mortality rates fell linearly. Once
the 45% marker was surpassed, the mortality rate appeared no longer affected. The
ejection fraction calculated for the cases presented in Figure 1 was 84.7%. This cri-
terion provided a solid foundation for evaluating this model’s capacity to analyze
the mechanical behavior of the left ventricle. Henceforth in this study, the material
with the above parameters is called the safe specimen.

Our next step was to consider a sample covering a small zone containing varying η

parameter values. This zone was intended as a representation of a post-infarction
necrotic area. We first positioned it near the outer boundary of the tube. Figure 5
displays a representation of the deformation in the middle of the sample, demon-
strating that it was no longer uniform. In accordance with our expectations, the
results indicated a significant regression in the LVEF, of approximately 48%, when
parameter η of the necrotic zone was far removed from that of the healthy organ.
This was due to a slight narrowing of the cylinder’s interior and slight shortening
of the tube itself. We also succeeded in reducing the axial deformation, as was
achieved by Cho et al. in their clinical study [Cho (2009)] comprising heart failure
patients with accompanied fall in LVEF. This constitutes yet further confirmation
of this model’s great potential for modeling cardiac tissue behavior.
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The necrotic zone was then positioned in proximity to the inner boundary of the
tube, at which point we were particularly focused on the contractility of the neigh-
boring points to this zone (Fig. 6). In contrast to our findings in the previous cases,
a large zone on the opposite side of the necrotic area here revealed a significant
reduction in contractility. This result is in line with observations made by Reimer
et al. in their series of experiments [Reimer (1977)], describing a phenomenon of
tissue necrosis spreading from the endocardium to the epicardium or, in layman’s
terms, from the interior to the exterior of the heart.

    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Axial deformation in a cross section of the cylinder, η = -10.15 GPa in
the “safe” zone (0) and η = -2 GPa in the affected zone (1).

 

 
 

a) b) 

Figure 6: Loss of dilatation: affected zone initially in the proximity of the outer
boundary a) or the inner boundary b).
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5 Conclusion

This primarily numerical work illustrated the great potential of the “local point
interpolation – boundary element” method for addressing problems relating to the
microstretch modeling of living tissue. The LPI-BEM has already proven effective
and accurate for anisotropic, nonlocal, and piezoelectric elasticity. The method
couples conventional isotropic BEM with local radial point interpolation applied
to strong-form differential equations. The solution procedure required only minor
modifications to the existing BEM code.

Our results presented here testify to this approach’s capacity to deal with localized
non homogeneity, such as that found in a necrotic area. Considering myocardial in-
farction, we observed a reduction in axial deformations following the introduction
of an infarct zone, as well as the development of an infarction spreading from the
endocardium to the epicardium. An affected zone positioned in proximity to the
exterior of the heart was found to exact less reductive effect on the muscle’s capac-
ity to contract than that of a zone positioned close to the inner wall. Following on
from this study, another study is scheduled to continue with our investigations, tak-
ing into account the conical geometry of the left ventricle in addition to including
the anisotropy of the physical parameters into the model.

References

Cho, G.-Y.; Marwick, T. H.; Kim, H.-S.; Kim, M.-K.; Hong, K.-S.; Oh, D.-
J. (2009): Global 2-Dimensional Strain as a New Prognosticator in Patients With
Heart Failure. Journal of the American College of Cardiology, vol. 54, issue 7, pp.
618–624.

Cohn, J. N.; Johnson, G. R.; Shabetai, R.; Loeb, H.; Tristani, F.; Rector, T.;
Smith, R.; Fletcher, R. (1993): Ejection fraction, peak exercise oxygen consump-
tion, cardiothoracic ratio, ventricular arrhythmias, and plasma norepinephrine as
determinants of prognosis in heart failure. The V-HeFT VA Cooperative Studies
Group. Circulation, vol. 87, no. 6, pp. VI5–16.

Curtis, J. P.; Sokol, S. I.; Wang, Y.; Rathore, S. S.; Ko, D. T.; Jadbabaie, F.;
Portnay, E. L.; Marshalko, S. J.; Radford, M. J.; Krumholz, H. M. (2003): The
association of left ventricular ejection fraction, mortality, and cause of death in sta-
ble outpatients with heart failure. Journal of the American College of Cardiology,
vol. 42, issue 4, pp. 736–742.

Eringen, A. C.; Suhubi, E. S. (1964): Nonlinear theory of simple micro-elastic
solids – I. International Journal of Engineering Science, vol. 2, no 2, pp. 189–203.

Hallstrom, A.; Pratt, C. M.; Greene, H. L.; Huther, M.; Gottlieb, S.; DeMaria,



A (Constrained) Microstretch Approach 357

A.; Young, J. B. (1995): Relations between heart failure, ejection fraction, arrhyth-
mia suppression and mortality: analysis of the Cardiac Arrhythmia Suppression
Trial. J. Am. Coll. Cardiol., vol. 25, issue 6, pp. 1250–1257.

Iesan D.; Pompei, A. (1995): On the equilibrium theory of microstretch elastic
solids. International Journal of Engineering Science, vol. 33, no 3, pp. 399–410.

Johnston, P. R. (2003): A cylindrical model for studying subendocardial ischaemia
in the left ventricle. Mathematical Biosciences, vol. 186, issue 1, pp. 43–61.

Juillière, Y.; Barbier, G.; Feldmann, L.; Grentzinger, A.; Danchin, N.; Cher-
rier, F. (1997): Additional predictive value of both left and right ventricular ejection
fractions on long-term survival in idiopathic dilated cardiomyopathy. Eur. Heart
J., vol. 18, issue 2, pp. 276–280.

Kirchner, N.; Steinmann, P. (2007): Mechanics of extended continua: modeling
and simulation of elastic microstretch materials. Computational Mechanics, vol.
40, no 4, pp. 651–666.

Kouitat Njiwa, R. (2011): Isotropic-BEM coupled with a local point interpola-
tion method for the solution of 3D-anisotropic elasticity problems. Engineering
Analysis with Boundary Elements, vol. 35, no 4, pp. 611–615.

Liu, G. R.; Gu, Y. T. (2001): A local radial point interpolation method (LRPIM)
for free vibration analyses of 2-D solids. Journal of Sound and Vibration, vol. 246,
no 1, pp. 29–46.

Nardinocchi, P.; Puddu, P. E.; Teresi, L.; Varano, V. (2012): Advantages in
the torsional performances of a simplified cylindrical geometry due to transmural
differential contractile properties. European Journal of Mechanics - A/Solids, vol.
36, pp. 173–179.

Ramézani, H.; Steeb, H.; Jeong, J. (2012): Analytical and numerical studies on
Penalized Micro-Dilatation (PMD) theory: Macro-micro link concept. European
Journal of Mechanics - A/Solids, vol. 34, pp. 130–148.

Reimer, K. A.; Lowe, J. E.; Rasmussen, M. M.; Jennings, R. B. (1977): The
wavefront phenomenon of ischemic cell death. 1. Myocardial infarct size vs dura-
tion of coronary occlusion in dogs. Circulation, vol. 56, issue 5, pp. 786–794.

Rosenberg, J.; Cimrman, R. (2003): Microcontinuum approach in biomechanical
modeling. Mathematics and Computers in Simulation, vol. 61, pp. 249–260

Schwartz, M.; Niane, N. T.; Kouitat Njiwa, R. (2012): A simple solution method
to 3D integral nonlocal elasticity: Isotropic-BEM coupled with strong form local
radial point interpolation. Engineering Analysis with Boundary Elements, vol. 36,
no 4, pp. 606–612.

Sellountos, E. J.; Polyzos, D.; Atluri, S.N. (2012): A New and Simple Meshless



358 Copyright © 2014 Tech Science Press CMES, vol.102, no.5, pp.345-358, 2014

LBIE-RBF Numerical Scheme in linear Elasticity. Computer modeling in engi-
neering and Sciences, vol. 89, no. 6, pp. 513–551.

Thurieau, N.; Kouitat Njiwa, R.; Taghite, M. (2012): A simple solution proce-
dure to 3D-piezoelectric problems: Isotropic BEM coupled with a point collocation
method. Engineering Analysis with Boundary Elements, vol. 36, no 11, pp. 1513–
1521.


