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Analysis of 3D Anisotropic Solids Using Fundamental
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Abstract: The efficient evaluation of the fundamental solution for 3D general
anisotropic elasticity is a subject of great interest in the BEM community due to its
mathematical complexity. Recently, Tan, Shiah, and Wang (2013) have represented
the algebraically explicit form of it developed by Ting and Lee (Ting and Lee,
1997; Lee, 2003) by a computational efficient double Fourier series. The Fourier
coefficients are numerically evaluated only once for a specific material and are
independent of the number of field points in the BEM analysis. This work deals
with the application of hierarchical matrices and low rank approximations, applying
the Adaptive Cross Approximation (ACA) to treat 3D general anisotropic solids in
BEM using this Green’s function based on Fourier series. The use of hierarchical
format is aimed at reducing the storage requirements of the system matrices and the
computational effort in the BEM analysis of large systems. Numerical examples are
presented to show the successful implementation of using ACA and the formulation
based on Fourier series for BEM analysis of 3D anisotropic solids.

Keywords: Adaptive Cross Approximation, Boundary Element Method, Hierar-
chical Matrices, Anisotropic Fundamental Solution, Fourier Series.

1 Introduction

The evaluation of the fundamental solution and its derivatives is a necessary step
in the direct BEM formulation. The efficient and accurate computation of these
quantities is a concern for the case of 3D general anisotropic solids because of
their mathematical complexity. Also, for very large numerical problems, the fully
populated and non-symmetric system matrices impose relatively high memory re-
quirements and high solution times. This work deals with these two issues, the fun-
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damental anisotropic solution and the speed-up of the BEM process. Fundamental
solutions for 2D and 3D isotropic elastostatics can be represented in relatively sim-
ple explicit forms. That is not the case for general anisotropic solids, particularly
in 3D. Ting and Lee [Ting and Lee (1997); Lee (2003)] have derived exact, ex-
plicit expressions for the fundamental solution and its derivatives. However, the
presence of high-order tensors and highly complex mathematical expressions for
the derivatives, although straightforward to implement, may be less than ideal for
very efficient computations. These solutions were first implemented into a BEM
code by Tan, Shiah, and Lin (2009). More recently, these authors have expressed
this Green’s function and its derivatives by a double Fourier Series [Tan, Shiah, and
Wang (2013); Shiah, Tan, and Wang (2012)], demonstrating the much superior ef-
ficiency for their computations, and the relative simplicity of their implementation.

Many research studies have, in recent years, also focused on improving the solu-
tion process in BEM [Rokhlin (1985); Bebendorf (2000); Bebendorf and Rjasanow
(2003); Wang, Yao, and Lei (2006); Wang, Zhu, and Zhang (2012)]. Bebendorf and
Rjasanow (2003), for example, suggested the use of purely algebraic algorithms to
generate the approximation of suitable blocks of the collocation matrix from only
a few entries of the original blocks. This technique is referred to as the Adaptive
Cross Approximation (ACA). The ACA uses matrix hierarchization to reduce the
storage requirement and the computational effort in the BEM analysis. Several
works have applied the ACA to accelerate the BEM process. Brancati, Aliabadi,
and Benedetti (2009) applied the ACA with a GMRES solver to acoustic prob-
lems and called the method Rapid Acoustic Boundary Element Method (RABEM).
Brancati, Aliabadi, and Milazzo (2011) modified and improved the ACA to account
for sound absorbent materials. Their new approach is shown to be 50% faster in
CPU time than the conventional ACA. More recently, Yoshikawa, Matsumura, and
Nishimura (2013) have also applied the ACA to the time domain boundary inte-
gral equation method (TD-BIEM) using the Lubich convolution quadrature method
(CQM) while Wang and Yao (2013) applied the ACA to 3D dynamic analysis of
a HTR-PM (High Temperature Reactor - Pebble Module). In this paper, the ap-
plication of hierarchical matrices and ACA for treating 3D anisotropic solids using
BEM with the fundamental solution based on double Fourier series is illustrated. In
what follows, the anisotropic fundamental solution and its derivatives are first re-
viewed. The use of hierarchical matrices and ACA is then briefly discussed before
numerical examples are presented.
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2 3D fundamental solution for displacements and its derivatives in anisotropic
elasticity

The 3D fundamental solution for a generally anisotropic material can be expressed
in terms of the Barnett-Lothe tensor H [x], see, e.g., Ting and Lee (1997). The
Barnett-Lothe tensor could also be expressed in spherical coordinates as follows,

U(r,θ ,φ) =
1

4πr
H(θ ,φ) (1)

where r represents the radial distance between the source and the field points. As
this expression depends only on the spherical angles (θ ,φ), it can be expressed in
terms of the Stroh’s eigenvalues as

H(θ ,φ) =
1
|T|

4

∑
n=0

qnΓ̂
(n) (2)

The explicit expressions for |T|, Γ̂(n) and qn can be found in Ting and Lee (1997);
Tan, Shiah, and Wang (2013). Due to its periodic nature, H(θ ,φ) can be expressed
as double Fourier series around θ and φ , as follows,

Huv (θ ,φ) =
∞

∑
m=−∞

∞

∑
n=−∞

λ
(m,n)
uv ei(mθ+nφ), (u,v = 1,2,3),

λ
(m,n)
uv =

1
4π2

∫
π

−π

∫
π

−π

Huv (θ ,φ)e−i(mθ+nφ)dθdφ ,
(3)

where i is
√
−1. λ

(m,n)
uv can be numerically integrated by Gaussian quadrature.

Thus, the fundamental solution for displacements can also be written as

Uuv (r,θ ,φ) =
1

4πr

α

∑
m=−α

α

∑
n=−α

λ
(m,n)
uv ei(mθ+nφ), (4)

where α is an integer number, large enough to yield the desired accuracy.

Lee (2009) showed that very high order tensors in the derivatives of the Green’s
function can be avoided if the partial differentiations are first carried out in the
spherical coordinate system and then the chain rule is employed. This was de-
scribed and explicitly obtained in Shiah, Tan, and Lee (2010). The displacement
derivatives can be written in spherical coordinates as

Ui j,l =
∂Ui j

∂ r
∂ r
∂xl

+
∂Ui j

∂θ

∂θ

∂xl
+

∂Ui j

∂φ

∂φ

∂xl
. (5)
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Carrying out the indicated differentiations in Eq. (5), the partial derivatives of Ui j

can be expressed in closed form in terms of the Stroh’s eigenvalues (Shiah, Tan, and
Lee, 2010; Tan, Shiah, and Wang, 2013). With the partial differentiations carried
out on the Fourier series, substituting all previous expressions into Eq. (5) yields

Ui j,l =
1

4πr2



α

∑
m=−α

α

∑
n=−α

λ
(m,n)
i j ei(mθ+nφ)

[
−cosθ (sinφ − incosφ)
−imsinθ

/
sinφ

]
for l = 1

α

∑
m=−α

α

∑
n=−α

λ
(m,n)
i j ei(mθ+nφ)

[
−sinθ (sinφ − incosφ)

+imcosθ
/

sinφ

]
for l = 2

α

∑
m=−α

α

∑
n=−α

λ
(m,n)
i j ei(mθ+nφ) [−(cosφ + insinφ)] for l = 3

(6)

where the coefficients λ
(m,n)
uv are evaluated only once for a given material. Similarly,

2nd order derivatives can be obtained by applying the chain rule. All explicit forms
are available in Shiah, Tan, and Lee (2010); Tan, Shiah, and Wang (2013).

3 Hierarchical Matrices and ACA.

The objective of applying hierarchical matrices and ACA is to reduce the storage
requirements as well as to speed up the time required to complete all matrix oper-
ations. In this scheme the matrix is represented as a collection of blocks, some of
which admit a particular approximated representation that can be obtained by com-
puting only few entries from the original blocks. These special blocks are called
low rank blocks. The existence of low rank approximants is based on the asymp-
totic smoothness of the kernel functions, i.e., on the fact that kernels Ui j and Ti j are
singular only when the source and field points are coincident, when x = y (Beben-
dorf, 2000; Bebendorf and Rjasanow, 2003; Grasedyck, 2005). This is a sufficient
condition for the existence of low rank approximants. A low rank block M of size
m x n has the following representation

Mk =
k

∑
i=1

ai ·bi
T = A ·BT (7)

where A is a matrix of size m x k and B is a matrix of size n x k. For admissible
blocks, k is low and the representation shown in Eq.(7) requires the storage of
(m+n)k real numbers instead of the m x n original block, speeding up the matrix-
vector product of the corresponding block. For a detailed analysis refer to Borm,
Grasedick, and Hackbusch (2003); Grasedyck and Hackbusch (2003).
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A hierarchical approximation of large dense matrices arising from some generating
function having diagonal singularity consists of three basic steps (Kurz, Rain, and
Rjasanow, 2007): (i) construction of clusters; (ii) finding of possible admissible
blocks; and (iii) low rank approximation of admissible blocks. The construction
of clusters was implemented based on the algorithm shown in Kurz, Rain, and
Rjasanow (2007). First, the mass and centre of each cluster are stored, and the
covariance matrix C of the cluster is obtained, as follows,

C =
n

∑
k=1

gk (xk−X)(xk−X)T (8)

where n is the number of elements of the cluster, gk is the element area and X is the
centre of the cluster. Then, The eigenvector v1 corresponding to the largest eigen-
value of C shows the direction of the largest extension of the cluster. The separation
plane goes through the centre X of the cluster and is orthogonal to v1. This algo-
rithm is applied recursively to the sons until they contain less than or equal to some
prescribed number nmin of elements. Next, cluster pairs which are geometrically
well separated are identified and regarded as admissible cluster pairs. An appropri-
ate admissibility criterion is the following simple geometrical condition. A pair of
clusters (Clx,Cly) is admissible if

min(diam(Clx),diam(Cly))≤ ηdist(Clx,Cly), (9)

where η is called the admissibility parameter. This parameter influences the num-
ber of admissible blocks and the convergence speed of the ACA (Borm, Grasedick,
and Hackbusch, 2003). Once the clusters are defined and all admissible blocks are
detected, the ACA is applied to approximate by low rank these blocks. Results ob-
tained after the low rank approximation of the admissible blocks by ACA, can be
further recompressed, taking advantage of the reduced singular value decomposi-
tion (SVD) (Grasedyck, 2005), thereby decreasing the storage requirements. This
also serves as a good pre-conditioner for iterative numerical solvers. Some works
related to this topic may be found in Benedetti, Milazzo, and Aliabadi (2009);
Hackbusch, Khoromskij, and Kriemann (2004).

4 Numerical results.

Three numerical examples are presented to demonstrate the proper implementation
of the 3D anisotropic formulation of the Green’s function based on Fourier series
and the application of the ACA to the BEM analysis. In the first example, a rela-
tively short beam with a square cross-section under pressure load is analyzed. Nor-
malized displacements and direct stresses are compared with the analytical simple
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beam theory solution and with the isotropic formulation. The stiffness coefficients
were set to match an isotropic material to allow the proper comparison, but the
analysis was carried out through the algorithm based on the anisotropic formula-
tion. In the second example, a cube with a cylindrical hole subjected to external
pressure is analyzed. The displacement in the x1 direction is compared with results
using the finite element method (FEM). In the third example, an internally pres-
surized cylinder with a generally anisotropic material is analyzed. The normalized
displacement is compared with the results using FEM as reported by Tan, Shiah,
and Wang (2013). In the latter two examples, the application of the ACA is tested,
and solution times are compared, with the conventional anisotropic BEM formu-
lation. All the computations were performed on a simple PC laptop with a Intel
i7-3610QM processor and 8192MB of RAM.

4.1 Example A

The proper implementation of the algorithm for the anisotropic formulation based
on Fourier series is first tested. A short beam of length 2L and square cross-section
of side H, where L = 5H, is subjected to a uniformly distributed pressure load on
its top surface, as shown in Fig. 1(b). Both ends of the beam are constrained in
the three coordinate directions. Advantage is taken of symmetry and only half the
beam was modeled in the BEM analysis, as shown in Fig. 1(a).

(a) (b)
Figure 1: (a) BEM mesh (Symmetry); (b) Equivalent beam model.

A total of 88 quadratic quadrilateral elements and 266 nodes are used to model the
problem. For the Fourier series representation, α = 16 and 64 Gauss integration
points were used. Normalized transverse displacements along the x3-direction are
computed and compared with the isotropic BEM formulation and simple beam
theory, as shown in Fig. 2. The normalized direct stress is also compared for
cross-sections corresponding to x3 = 2H,3H,4H,5H, as can be seen in Fig. 3.
Even with the coarse BEM mesh, good agreement of the results is observed, with a
maximum normalized displacement error of 6.3% at x3 = L.
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Figure 2: Normalized transverse displacements.
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Figure 3: Normalized direct stresses at x1 = 2H,3H,4H,5H.
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4.2 Example B

The physical problem in this second example is a cube with a cylindrical hole. The
main objective here is to verify the ACA scheme. The radius of the hole is r = 0.3H,
where H is the length of its sides, which are subjected to external pressure P, as
shown in Fig. 4(a). The bottom and top surfaces are totally constrained in the
three coordinate directions. The material considered is an alpha-quartz with the
following stiffness matrix,

C =



87.6 6.07 13.3 17.3 0 0
6.07 87.6 13.3 −17.3 0 0
13.3 13.3 106.8 0 0 0
17.3 −17.3 0 57.2 0 0

0 0 0 0 57.2 17.3
0 0 0 0 17.3 40.765

GPa (10)

Four different meshes (192, 384, 704 and 1040 quadratic quadrilateral elements)
were analyzed. Figure 4(b) shows the coarsest mesh, while Fig. 4(c) shows the
most refined one employed.

x3 H

(cross - section)
(top view)

x1

x2

θ
P

x1,2

H

r

(a) (b) (c)
Figure 4: (a) geometry of example B; (b) BEM coarsest mesh; (c) BEM most
refined mesh.

The ACA error tolerance is set to εc = 10−4. Moreover, a SVD recompression
is involved to create a pre-conditioner matrix for the iterative solver, the general-
ized minimum residual method (GMRES). The recompression tolerance is set to
εc = 10−2. The maximum number of elements per cluster was set to 40 and the
admissibility parameter (η) to 0.8. More details of the choice of these parameters
are available in Rodríguez, Sollero, and Albuquerque (2012); Rodríguez, Galvis,
Sollero, and Albuquerque (2013); Benedetti, Milazzo, and Aliabadi (2009). For the
most refined case (1040 elements) there were 95 clusters and 2304 blocks created,
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from which 872 were admissible pairs. Results from the BEM anisotropic formula-
tion using the ACA (for the most refined mesh) are compared with the FEM results
obtained by the commercial software Abaqus. The displacement in the x1 direction
on the internal cylindrical surface at x3 = 0.5H is compared along the circumfer-
ential position θ . The results are shown in Fig. 5. The computer cpu times are
also compared and are shown in Fig. 6. With the finest mesh, the ACA scheme be-
comes more efficient computationally in obtaining the same accurate results than
the conventional BEM.
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Figure 5: Comparison of the u1 displacement around the circumferential hole in
the mid-plane.

4.3 Example C

The physical problem in this third example is an internally pressurized cylinder
made of an alpha-quartz crystal, as treated in Tan, Shiah, and Wang (2013). The
main objective here is also to verify the ACA scheme when highly anisotropic
materials are tested. The problem considered is a cylinder with internal pressure,
P, with radius ratio R2/R1 = 2 and total length 2H = 8R1, as shown in Fig. 7(a).
The external circumferential surface is constrained in the radial direction, while its
two ends are fixed in the x3 direction. The principal material axes of the alpha-
quartz crystal are successively rotated about the global Cartesian x1, x2 and x3 axis
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by 30o, 45o and 60o clockwise, respectively. These successive rotations yield a
fully populated stiffness matrix, as follows,

C =



111.8 14.8 −5.2 −0.3 11.0 −14.0
14.8 101.8 −7.6 0.4 −0.6 18.9
−5.2 −7.6 129.7 4.4 1.6 0.6
−0.3 0.4 4.4 31.3 2.5 3.6
11.0 −0.6 1.6 2.5 37.9 1.3
−14.0 18.9 0.6 3.6 1.3 55.2

GPa (11)

Six different meshes (96, 216, 418, 680, 960 and 1232 quadratic quadrilateral ele-
ments) were analyzed. Figure 4(b) shows the coarsest mesh, while Fig. 7(c) shows
the most refined one employed.

The ACA error tolerance is set to εc = 10−4. The recompression tolerance is set
to εc = 10−2. The maximum number of elements per cluster was set to 60 and
the admissibility parameter (η) to 0.8. For the most refined case (1232 elements)
there were 55 clusters and 576 blocks created, from which 96 were admissible
pairs. Results from the BEM anisotropic formulation using the ACA (for the most
refined mesh) are compared with the FEM results obtained by the commercial soft-
ware ANSYS, carried out in Tan, Shiah, and Wang (2013). The normalized total
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Figure 7: (a) geometry of example C; (b) BEM most refined mesh; (c) BEM coars-
est mesh.
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displacement (uTC11/PR1) at r = 1.5R1 on both ends is compared along the cir-
cumferential position θ . The results are shown in Fig. 8. The cpu times are also
compared and are shown in Fig. 9. Again, with high number of elements, the ACA
scheme takes less cpu times than the conventional BEM.

5 Conclusions.

In this work, the use of hierarchical matrices and low-rank approximations applied
to the anisotropic 3D formulation based on Fourier series has been presented. Low
rank approximations were accomplished by the use of ACA. This method is suitable
for memory and time savings, especially in the case of large-scale problems. The
ACA works better beyond a certain number of elements in the mesh. After this
point the solution time reported by the ACA will be less than the conventional
BEM formulation.
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