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An Improved Isogeometric Boundary Element Method
Approach in Two Dimensional Elastostatics

Vincenzo Mallardo1 and Eugenio Ruocco2

Abstract: The NURBS based isogeometric analysis offers a novel integration
between the CAD and the numerical structural analysis codes due to its superior ca-
pacity to describe accurately any complex geometry. Since it was proposed in 2005,
the approach has attracted rapidly growing research interests and wide applications
in the Finite Element context. Only recently, in 2012, it was successfully tested
together with the Boundary Element Method. The combination of the isogeomet-
ric approach and the Boundary Element Method is efficient since both the NURBS
geometrical representation and the Boundary Element Method deal with quantities
entirely on the boundary of the problem. Actually, there are still some difficulties in
imposing generic boundary conditions, mainly due to the fact that the NURBS ba-
sis functions are not interpolatory functions. In this work it is shown that the direct
imposition of the inhomogeneous generic boundary conditions to the NURBS con-
trol points may lead to significant errors. Consequently an improved formulation is
proposed that relates the boundary conditions to the governing unknown variables
by developing a transformation strategy. Several elasticity problems evince that
higher solution accuracy can be achieved by the present formulation.

Keywords: NURBS, Isogeometric analysis, Mixed boundary conditions, Trans-
formation method, Boundary Element Method, IGABEM.

1 Introduction

From the structural point of view, design in engineering and architecture usually
passes through two main steps: 1) the generation of the geometry, 2) the analysis
of the structure. As a matter of fact these two steps do not progress as indepen-
dent phases. The first step encompasses the definition of the main geometry of the
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element under analysis (i.e. a building, a bridge, an airplane, a ship, etc.) along
with all the architectural and technological details that are necessary to present it
in its final configuration, i.e. the configuration that is the closest possible to what
will appear when built. Such a design step should proceed simultaneously to the
structural analysis in order to configure a final solution that correctly interfaces the
structure with the geometry. Therefore a repetitive structural analysis is required
both to adapt the structure to the continuous modifications in the architecture that
are necessary to achieve the "best" design and to refine the model for accuracy
improvements.

There are two main hurdles in combining the geometrical design with the structural
design. First of all the "structural geometry" is different from the "architectural"
geometry; the former only contains the skeleton, i.e. columns, beams, bearing
plates and shells, etc., and it does not give prominence to structurally unnecessary
features, i.e. components that do not have relevant bearing properties. Secondly,
the tools used to design the geometry are different from the ones that are used to
model and mesh the structure.

In the common engineering approach the geometry of the problem is modeled in
the Computer Aided Design (CAD) context, whereas the mechanical behavior is
obtained by reproducing a new model in a Computer Aided Engineering Software
(CAE). As underlined by Hughes, Cottrell, and Bazilev (2005), the different geo-
metric representation between the CAD system and the computational mechanics
context is probably related to the fact that they had the origin in different time, i.e.
CAD about twenty years later. The construction of the structural geometry (i.e. the
mesh) is costly and time consuming. In fact the main drawback of the Finite Ele-
ment Method (FEM) is the lack of an exact geometry representation for complex
engineering shapes, usually defined by polynomial curves and conic sections. The
accuracy of the approximation depends on the size of the used mesh and each re-
finement iteration requires interaction with the geometry. This may result in a very
expensive process for complex geometries. Moreover, the geometric approxima-
tion inherent in the mesh can lead to accuracy problems. It is clear that any attempt
to change the mesh generation and refinement with something more CAD-like is
very welcome.

In CAD software the geometry is governed by the use of B-Spline and Non Uni-
form Rational B-Splines (NURBS, see Piegl and Tiller (1997)) curves, where con-
trol points, knot vectors and weights are the main ingredients. On the other hand
in CAE the geometry is linked to the governing variables by the polynomial shape
functions. Hughes, Cottrell, and Bazilev (2005) represents the first attempt to de-
scribe the Finite Element (FE) model as given by a CAD system, i.e. in terms of
standard CAD representations like B-spline or NURBS. The geometry is exactly
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represented and preserved since the coarsest refinement level and mesh refinement
turn out to be highly simplified by standard knot-insertion and/or degree-raising
procedures, eliminating the need to communicate with the CAD system after the
mesh construction. Being the solution space for the governing variables repre-
sented in terms of the same functions which represent the geometry justifies the tag
of IsoGeometric Analysis (IGA).

In Cho, Choi, and Roh (2008) the NURBS were constructed by the data extracted
from the CAD-generated IGES format file in the shell finite element framework.

A NURBS-based parametric mesh free method (NPMM) was also proposed three
years later in Shaw and Roy (2008): the FE-based domain discretization is com-
bined with the global smoothness polynomial reproducing shape functions con-
structed through NURBS. Shaw, Banerjee, and Roy (2008) extended the applica-
bility of NPMM in order to preserve the bijection between the physical domain
and the parametric domain that was not guaranteed everywhere in the previous pa-
per. Such a method has been successfully applied to several linear and nonlinear
solid mechanics problems. However, one of its problematic issue is a possible non-
conformality in the numerical integration owing to the dual use of knots as particles
(or nodes) whilst constructing the NURBS bases. A significant improvement of this
concept was addressed in Sunilkumar and Roy (2010).

A NURBS-enhanced FEM, both in two dimensional (2D) and in three dimensional
(3D) potential problems, was proposed in Sevilla, Fernández-Méndez, and Huerta
(2008), Sevilla, Fernández-Méndez, and Huerta (2011), respectively. The idea is
to describe the boundary of the computational domain (and not the entire domain)
by the NURBS but to approximate the solution by standard piecewise polynomials
in the physical space. The methodology is simpler and the main advantage is that
standard FE interpolation and numerical integration can be used, preserving the
computational efficiency of classical FE techniques.

The B-spline can also be used for different purposes. In Sageresan and Drathi
(2008), for instance, the normalized quartic B-spline was used to average the stress
tensor to avoid spurious crack path oscillations in a meshless approach to crack
propagation in concrete.

The Boundary Element Method (BEM) has demonstrated to be a valid alternative
to FEM in many areas of interest (see for instance Wrobel and Aliabadi (1996)),
with special emphasis to infinite problems and crack analysis. The main advantage
stands in the discretization, that is limited to the boundary but it needs to be ex-
tended to one or more internal areas if some nonlinearities occur (see for instance
Mallardo (2009) in damage analysis). Coupling with the Fast Multipole Method
has increased the performance of BEM and it has reduced the required CPU time
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(see for instance Mallardo and Aliabadi (2012) in acoustic). To combine the isoge-
ometric approach with the BEM can be very efficient. One reason stems from the
involvement of the boundary only in the CAD softwares. Another reason is related
to the fact that computed quantities on boundaries are the most important ones in
engineering applications, and this is where geometric errors are most harmful.

The very first attempt to couple BEM with the isogeometric analysis (IGABEM) is
presented in Simpson, Bordas, Trevelyan, and Rabczuk (2012). The NURBS are
adopted to represent both the geometry and the physical governing quantities in
2D elastostatics. Some numerical examples, i.e. the problem of a hole within an
infinite plate, the L-shaped wedge and the open spanner, are shown to demonstrate
the efficiency of the procedure. It must be underlined that the issue of the correct
imposition of the BCs is not pursued as inhomogeneous Neumann conditions are
always applied at straight lines. Implementation details (in Matlab) of the above
contribution are given in Simpson, Bordas, Lian, and Trevelyan (2013).

The procedure is extended to 2D Helmholtz problems in Peake, Trevelyan, and
Coates (2013). In the same paper the Authors proceed further by combining the
partition of unity method in BEM with the isogeometric approach, giving rise to
what they call eXtended Isogeometric BEM (XIBEM).

An interesting application of the Fast Multipole Method (FMM) to IGABEM is
given in Takahashi and Matsumoto (2012) for Laplace equation in 2D. Some ex-
amples are shown to demonstrate that the proposed procedure possesses the same
accuracy of the IGABEM but a better complexity (of order O(n)).

Both in BEM coupled with IGA and in FEM coupled with IGA, special attention
must be paid to the imposition of the boundary conditions. The unknowns are pa-
rameters that have no physical meaning whereas the boundary conditions are to be
applied in terms of either displacement or traction to boundary points. The issue
is not raised if either the curve is interpolatory or constant boundary conditions are
applied on the element. Inhomogeneous boundary conditions are usually directly
imposed to the control points Hughes, Cottrell, and Bazilev (2005), Simpson, Bor-
das, Trevelyan, and Rabczuk (2012), i.e. the function describing the boundary
conditions is evaluated at the spatial locations of the control points and then the
resultant values are assigned to the corresponding control variables. In case that
the boundary control points do not lay on the desired boundary such an approach
implies a poor approximation of the boundary conditions which reflects on the ac-
curacy of the solution.

In the FE context there are two main papers proposing strategies that overcome
the problem. One procedure involving quasi-interpolant projectors is proposed in
Costantini, Manni, Pelosi, and Sampoli (2010) in the context of generalized B-
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spline based isogeometric analysis; no numerical examples are given in elasticity.
A different procedure is proposed in Wang and Xuan (2010) by employing a trans-
formation method to relate the control variables to the collocated nodal values at the
essential boundary. The task is carried out by previously partitioning the NURBS
control points into boundary and interior groups. Several elasticity analyses evince
that much higher solution accuracy and better convergence rates can be achieved
by the proposed improved formulation.

In the present paper an improved IGABEM approach is proposed to correctly apply
the boundary conditions to the boundary points. Such an enhancement has never
been considered so far to the best knowledge of the Authors. A technique is im-
plemented to correctly deal with any boundary condition, regardless of the position
of the control points with respect to the boundary line and regardless of the type
(displacement or traction) and value imposed on the boundary.

The paper is organized as follows. The next section presents the NURBS and some
of their properties of special interest in computational mechanics. The third section
is devoted to provide the main features of the conventional BEM and of the IGA-
BEM approach. The fourth section is aimed at detailing the procedure proposed
to correctly apply any boundary condition. The final section presents a numerical
example to demonstrate the efficiency of the proposed procedure.

2 B-spline and NURBS

It is known that the most common methods of representing curves and surfaces in
geometric modeling are implicit equations and parametric functions. In parametric
form, each of the coordinates of a point on a 2D curve is represented separately as
an explicit function of an independent parameter:

C(ζ ) = (x1(ζ ),x2(ζ )) a≤ ζ ≤ b (1)

Although the interval [a,b] is arbitrary it is here normalized to [0,1].

The definition of the NURBS passes through the definition of the B-spline (see
chapters 2-4 of Piegl and Tiller (1997) for further details). In fact the NURBS are
given by the following relation:

Ri,p(ζ ) =
Ni,p(ζ )wi

∑
n
j=1 N j,p(ζ )w j

(2)

where w j are weights, Ni,p(ζ ) is the ith B-spline of degree p and n is the number of
control points, i.e. some points (to be discussed further) that fulfill the same task of
the mesh nodes in the conventional BEM.
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In order to define the B-splines it is necessary to introduce the knot vector U =
(0, · · · ,ζi−1,ζi,ζi+1, · · · ,1), i.e. a nondecreasing sequence of n+ p+1 real numbers
(normalised in [0,1]) where ζi are called knots. In the present contribution uniform
knot vectors are considered, i.e. all interior knots are equally spaced. It must be
underlined that the knot span, i.e. the half-open interval [ζi,ζi+1), can have zero
length as the knots must not be necessarily distinct.

There is a number of ways to define the B-spline basis functions; the recurrence
formula is here adopted as the most useful for computer implementation. The ith

B-spline of 0-degree (order 1) can be hence defined as:

Ni,0(ζ ) =


1 if ζi ≤ ζ < ζi+1

0 otherwise
(3)

The ith B-spline of p-degree (order p+1) is defined as (p > 0):

Ni,p(ζ ) =
ζ −ζi

ζi+p−ζi
Ni,p−1(ζ )+

ζi+p+1−ζ

ζi+p+1−ζi+1
Ni+1,p−1(ζ ) (4)

Eq. 3-Eq. 4 may yield the quotient 0
0 ; by definition such a quotient is set to zero.

The Ni,p are piecewise polynomials defined on the entire boundary line, i.e. the line
going from ζ = 0 to ζ = 1, but each is different from zero only in a part of it.

It is clear that Ni,0 is the well-known step function, zero everywhere except on
the half open interval ζ ∈ [ζi,ζi+1), and that the computation of the function Ni,p

requires the specification of the degree p and of the knot vector U . The above
B-splines benefit from some properties that reveal to be very useful in the context
under analysis:

• Ni,p(ζ ) = 0 if ζ is outside the interval [ζi,ζi+p+1).

• Therefore, in any given knot span [ζ j,ζ j+1) at most p+1, i.e. N j−p,p · · ·N j,p,
of the Ni,p are non zero.

• For an arbitrary knot span [ζi,ζi+1), ∑
i
j=i−p N j,p(ζ ) = 1 for all ζ ∈ [ζi,ζi+1).

The last property implies that each B-spline does not necessarily assume the unit
value in one knot and zero elsewhere, as it occurs with the classical polynomial
shape functions.

The derivative of B-spline is necessary to compute the stress in any internal point.
Such derivatives are given by:

N′i,p(ζ ) =
p

ζi+p−ζi
Ni,p−1(ζ )−

p
ζi+p+1−ζi+1

Ni+1,p−1(ζ ) (5)
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All the derivatives of Ni,p(ζ ) exist in the interior of a knot span. An important
property is that:

• At a knot, Ni,p(ζ ) is p− l times continuously differentiable if the knot has
multiplicity l.

Hence increasing knot multiplicity decreases continuity. In other words, the knot
vector may contain repeated values depending on the type of continuity that is in-
tended to be assigned to the geometry representation obtained by the B-splines. For
instance, a double repeated knot for degree p = 2 implies a corner of the boundary
(i.e. C0 continuity). Infact:

• In the knots with multiplicity p, Ni,p is C0, its value in that knot is 1 and its
control point is coincident with the knot.

A generic curve representing the boundary of an elastic domain subjected to generic
static loads can be represented by the aid of the NURBS, that is:

x(ζ ) =
n

∑
k=1

Rk,p(ζ )P k© (6)

where P k© is the kth control point. The curve is closed if first and last control points
are coincident.

Knot

Control point

Control polygon

Quadratic NURBS

ζ=0
ζ=1/9

ζ=2/9ζ=1/3

ζ=4/9

ζ=5/9

ζ=2/3 ζ=7/9

ζ=8/9
ζ=1

P1

P2 P3

P4

P5

P6

P7

P8

P9

P10

P11P12

Figure 1: Example of boundary represented by NURBS: geometry.
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An example of boundary representation by quadratic (p = 2) NURBS is given in
Fig. 1, where the control points are depicted by red circles and the knots by blue
squares. The normalized knot vector is given by:

U = (0,0,0,
1
9
,
1
9
,
2
9
,
1
3
,
4
9
,
5
9
,
2
3
,
7
9
,
8
9
,
8
9
,1,1,1) (7)

The corresponding shape functions NURBS are drawn in Fig. 2 where the curves
from left to right are N1,2, · · · ,N13,2 (13 is the number of the control points with the
first counted twice as it is coincident with the last one).

Figure 2: NURBS associated to the example in Fig. 1.

From the figure it is evident that the third NURBS assumes the unit value in the
knot as that knot, ζi =

1
9 , is repeated twice.

3 BEM and the IGABEM

The governing integral equation in linear elasticity is given by:

ci j(ξ )u j(ξ )+
∫

Γ

T ∗i j(ξ ,x)u j(x)dΓ(x) =
∫

Γ

U∗i j(ξ ,x)t j(x)dΓ(x) (8)

where ci j(ξ ) is the well-known free term computed in ξ , T ∗i j(ξ ,x), U∗i j(ξ ,x) are
the classical Kelvin fundamental solution, i.e. displacements and tractions in x,
respectively, in the i direction for a unit load acting along the j direction in a point
ξ of the infinite elastic plane, ξ and x represent the source point and the integration
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point respectively. The expressions of the fundamental solutions T ∗i j and U∗i j can
be found in Wrobel and Aliabadi (1996) in terms of the radius r, i.e. the distance
between the source point and the integration point.

The boundary is then discretized in EL elements characterised by p+1 shape func-
tions Mn(ζ ) and jacobian Jl(ζ ), being ζ the local dimensionless variable. By col-
locating the discretized integral equation in p x EL collocation nodes and after
including well-posed boundary conditions, it is possible to obtain a final squared
system of equations that can be generally written as:

Ax = b (9)

where x collects the unknowns. Such a system of equations can be solved by any
direct or iterative procedure in order to provide the vector of unknowns x.

After solving the matrix Eq. 9 and computing the unknown vector x, it is possible
to determine the stress in any interior point by the following integral equation:

σi j(X) =
∫

Γ

U∗i jk(X,x)tk(x)dΓ(x)−
∫

Γ

T ∗i jk(X,x)uk(x)dΓ(x) (10)

The fundamental solutions T ∗i jk(ξ ,x) and U∗i jk(ξ ,x) are related to the fundamental
solutions T ∗i j and U∗i j by differentiation and application of the Hooke’s law. Their
expression is provided, among others, in Wrobel and Aliabadi (1996).

The expression of the discretized integral equations, the strategy to compute the
singular integrals and the imposition of the boundary conditions are different be-
tween the conventional BEM and the IGABEM. In the subsequent subsections such
differences will be highlighted.

3.1 Conventional BEM

In the conventional BEM, geometry and physical variables are described by poly-
nomial shape functions. In 2D such functions are the same that are adopted in the
FE context with reference to one dimensional problems. In principle any variabil-
ity is allowed. Constant (actually superparametric as with linear geometry), are for
instance often adopted in acoustics. Linear and quadratic isoparametric elements
are common choices in elasticity:

Linear shape functions Quadratic shape functions
M1(ζ ) =

1
2(1−ζ ) M1(ζ ) =

1
2 ζ (ζ −1)

M2(ζ ) =
1
2(1+ζ ) M2(ζ ) = (1−ζ )(1+ζ )

M3(ζ ) =
1
2 ζ (ζ +1)

(11)
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The polynomial shape functions are expressed in terms of the local variable ζ ∈
[−1,1], hence allowing a straight application of the common quadrature schemes,
and they assume the unit value in one node and zero in the others.

In conventional BEM, therefore, the geometry is described by the following rela-
tions :

x(ζ ) =
p+1

∑
k=1

Mk(ζ )x k© (12)

and the physical space as follows:

u(ζ ) =
p+1

∑
k=1

Mk(ζ )u k© (13a)

t(ζ ) =
p+1

∑
k=1

Mk(ζ )t k© (13b)

where p is the order of the shape function (p = 1 for linear elements and p = 2
for quadratic elements, for instance), x k© are the coordinates of the kth node of
the element, u k© and t k© displacement and traction in the kth node of the element.
The discretization of the boundary performed with the above element leads to the
following boundary integral equation:

ci j(ξξξ )u j(ξξξ )+
EL

∑
l=1

p+1

∑
k=1

u k©
j

∫ +1

−1
T ∗i j(ξξξ ,x(ζ ))Mk(ζ )Jl(ζ )dζ

=
EL

∑
l=1

p+1

∑
k=1

t k©
j

∫ +1

−1
U∗i j(ξξξ ,x(ζ ))Mk(ζ )Jl(ζ )dζ

(14)

where Jl(ζ ) is the Jacobian of the transformation (Eq. 12). The above equation can
be collocated in each node (p x EL totally) to obtain:

Hu = Gt (15)

where u and t collect the displacement and the traction vectors in each collocation
node.

Two singular integrals arise when the integration is carried out on the element con-
taining the collocation node. The integral involving Ui j is weakly singular and it
does not present special issue for implementation; it can be computed by using
a special quadrature formula for the logarithmic part of the fundamental solution.
The integral involving Ti j is strongly singular and it deserves special attention; in
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conventional BEM it is usually computed by applying the rigid body condition that
allows the evaluation of the diagonal term as sum of the off-diagonal entries.

The system of equations Eq. 15 can be arranged by correctly applying the boundary
conditions, i.e. by imposing two scalar conditions (in 2D) in each boundary node
in terms of either the displacement component or the traction component. Such
boundary conditions can be directly applied to the unknowns (either ui or ti) and
provide the final square system of equations Eq. 9 with x collecting the unknown
traction/displacement components.

3.2 IGABEM

The geometry of the boundary can be represented by the relation given in Eq. 6 in
terms of the control points and of the knot vector. This is the first difference with the
conventional BEM: the NURBS allows a more powerful geometrical representation
and a simpler link with the CAD softwares. One feature is that the geometry is
described in terms of geometrical nodes, the control points, that do not necessarily
lie on the boundary.

It is obvious that the NURBS of degree 0 and 1 are coincident with the polynomial
shape functions.

The NURBS can also be used for the describing the governing physical variables,
i.e. displacement and traction vectors:

u(ζ ) =
n

∑
k=1

Rk,p(ζ )d k© (16a)

t(ζ ) =
n

∑
k=1

Rk,p(ζ )q k© (16b)

where the sum is computationally carried out for each point ζ on the non-zero
p+ 1 terms out of the n terms, with n being the total number of control points.
On the basis of the discretization carried out by Eq. 6 and Eq. 16, the discretized
integral equation can be written as:

ci j(ξξξ )
p+1

∑
k=1

Rk,p(ξξξ )d
k©

j +
NE

∑
e=1

p+1

∑
k=1

d k©
j

[∫
Γe

T ∗i j(ξξξ ,x(ζ ))Rk,p(ζ )Jl(ζ )dζ

]
=

NE

∑
e=1

p+1

∑
k=1

q k©
j

[∫
Γe

U∗i j(ξξξ ,x(ζ ))Rk,p(ζ )Jl(ζ )dζ

] (17)

It must be pointed out that the sum on k should be carried out on n terms but
one of the properties listed in the previous Section ensures that in each boundary
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element at most p+ 1 NURBS are non zero. The element Γe must be intended as
the part of curve going from ζr to ζr+1 of the knot vector, provided that ζr is the
eth knot without counting the multiplicity and ζr 6= ζr+1. Jl(ζ ) is the Jacobian of
the map given by Eq. 6. The unknowns d k© and q k© do not represent, as it occurs
in conventional BEM, the values of displacement and traction, respectively, in the
node, but they are variables that have neither physical meaning nor relation with
u and t. Only one observation can be taken: after d is computed, the deformed
geometry can be drawn by using new control points that are shifted from the initial
position of the quantity d.

Different strategies are available to set the position of the collocation points ζ . The
one adopted in the present paper is given by the Greville abscissae, i.e:

ζ i =
ζi+1 + · · ·+ζi+p

p
(18)

where ζi is the ith knot.

Fig. 3 provides an example of subdivision of elements and location of collocation
points as given by Eq. 18.

Element's extreme

Collocation point

Quadratic NURBS

ζ=0
ζ=1/9

ζ=2/9ζ=1/3

ζ=4/9

ζ=5/9

ζ=2/3 ζ=7/9

ζ=8/9
ζ=1

ζ=1/18

ζ=1/6ζ=5/18ζ=7/18

ζ=1/2

ζ=11/18 ζ=13/18
ζ=5/6

ζ=0

Figure 3: Example of boundary represented by NURBS: element’s extremes and
collocation nodes

In analogous way can be obtained the discretized expression providing the stress in
any interior point.
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Collocating Eq. 17 in each collocation point provides the following system of equa-
tions:

Hd = Gq (19)

The non-singular integrals involved in Eq. 17 can be computed by Gaussian quadra-
ture after a variable transformation ζ → η that allows

∫
Γe

to be transformed into∫ +1
−1 . If Vi j represents either U∗i j or T ∗i j , we have:

∫
Γe

Vi j(ξξξ ,x(ζ ))Rk,p(ζ )Jl(ζ )dζ =
∫ +1

−1
Vi j(ξξξ (η),x(ζ (η)))Rk,p(ζ (η))Jl(ζ (η))Jη

l dη

(20)

where the Jacobian Jη

l is constant and it can be easily computed (see for instance
Appendix C in Simpson, Bordas, Trevelyan, and Rabczuk (2012)).

The integral involved in U∗i j for ζ i ∈ Γe is weakly singular and it can be carried
out by performing the transformation technique proposed by Telles (1987). On the
other hand, in the same situation, the T ∗i j integral is strongly singular: the well-
known rigid body condition cannot be applied as the NURBS are not guaranteed
to assume the unit value in each collocation node (see also par. 4.4.1 in Simpson,
Bordas, Trevelyan, and Rabczuk (2012) for a more detailed explanation). For this
reason the direct computation is necessary. The singularity-subtraction technique
proposed by Guiggiani and Casalini (1987) is here adopted.

4 Imposition of the boundary conditions in IGABEM

It is not straightforward to apply the boundary conditions to the matrix system
represented by Eq. 19. The unknowns are parameters that have no physical meaning
whereas the boundary conditions are to be applied directly to the collocation nodes
in terms of either displacement or traction. To apply inhomogeneous boundary
conditions may introduce an error that reduces the overall accuracy. In the present
section a new procedure is provided to overcome such a issue.

Let us consider general mixed well-posed boundary conditions. For the sake of
simplicity we suppose that the discrete boundary conditions are imposed to the
collocation points. The proposed procedure is general and it can be easily adapted
in case different locations are set. On the basis of the Eq. 16 it is possible to state
the boundary conditions as follows:

w = Bv =
[

Bd Bq
]( d

q

)
(21)
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The vector w collects the 2n values, displacement or traction component, imposed
on the n boundary collocation nodes, i.e.:

w = [u1or2(ζ1) or t1or2(ζ1), · · · · · · ,u2or1(ζn) or t2or1(ζn)]
T (22)

with T meaning transpose. Let us remind that n is the number of control points, and
that it is coincident with the total number of the involved NURBS shape functions
as well as with the total number of collocation points.

The matrix B is a (2n x 4n) matrix that can be decomposed into two squared subma-
trices, Bd and Bq, of equal size (2n x 2n). For general mixed boundary conditions,
the non-zero rows of the submatrix Bd have exactly the same entries of the non-zero
rows of the submatrix Bq, the only difference being the different location of the row.
This implies that only the entries of one of them need to be computed. In the par-
ticular cases of Dirichlet and Neumann boundary conditions, we have Bq = 0 and
Bd = 0, respectively. If the ith row of Bd has non-zero entries, its (i, j)th element is
the value of R j,p computed in the collocation node ζI where I = i/2+ r(i/2) and
r(i/2) is the remainder of the integer division i/2.

The columns of the matrix B can be arranged in order to have all the unknowns in
x and all the variables involved by the boundary conditions in y, i.e.:

w =
[

Bx By
]( x

y

)
(23)

If for instance the boundary conditions in the collocation node ζ3 are u1 = u1 and
t2 = t2, then q1,d2 are included in x whereas d1,q2 are shifted in y.

A matrix condensation is now possible, i.e.:

y =−B−1
y Bxx+B−1

y w =Cx+a (24)

The system of equations Eq. 19 previously introduced can be updated to obtain the
final system to be solved. In fact, by a simple rearrenging of the columns of H and
G we have:

Hd = Gq =⇒ Ax = Ly (25)

Finally, the vector y can be replaced by Eq. 24 to give:

(A−LC)x = La =⇒ Ax = b (26)

that is the final system of equations in which the boundary conditions have been
imposed correctly to the boundary points.
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5 Numerical results

The numerical integration within each non-singular element is carried out by twelve-
points Gauss quadrature rule. Sixteen Gaussian points are used in the vicinity of the
boundary in order to deal with near-singularity problems in the computations of the
internal stress. The boundary stress is computed by expressing the traction in a lo-
cal coordinate system and employing the relationship between strain displacements
on the tangent direction to the boundary with the aid of the shape functions Telles
and Brebbia (1979). In the legends accompanying the graphs the term "IGABEM"
is associated to the numerical results in which the boundary conditions are directly
applied to the control variables, whereas "IGABEM-impr" denotes the application
of the (improved) present approach.

All the error norms are normalized with respect to their corresponding norms com-
puted from the analytical solution, i.e.:

e =
‖u−uan‖L2

‖uan‖L2

(27)

A numerical example, for which an analytical solution is available, is presented
to demonstrate the efficiency of the proposed procedure: an hollow cylinder is
loaded internally and externally. The geometry parameters are: outer radius re =
1.0, inner radius ri = 0.2 (see Fig. 4). The mechanical parameters are: Young’s
modulus E = 100000 and Poisson’s coefficient ν = 0.3. The prescribed boundary
conditions are: external pressure pe = 2 and internal pressure pi = 1. In such a
case an analytical solution is available (see for instance Eqs. 24-25 in Mallardo and
Alessandri (2000)) and thus compared to the numerical one. Geometry and loads
of the example, along with the index space, parametric space, control net and the
physical mesh, are depicted in Fig. 4. Each of the two circles is initially generated
as four NURBS: it is worthy to underline that four NURBS are able to describe the
geometry of the circle exactly.

The results are listed in Tab. 1, where a comparison between analytical, IGABEM
and IGABEM-impr numerical values is carried out with reference to the points
A and B depicted in Fig. 4. The numerical results are obtained by meshing four
elements on the external circle and four elements on the internal one. The error in
the second and in the fourth column is computed as:

err =
|uan

r −unum
r |

|uan
r |

(28)

It is worthy to underline that a classical BEM approach would require minimum 12
quadratic elements for each circle in order to obtain the same accuracy.
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Figure 4: Description of the hollow cylinder example with related NURBS and
boundary discretization

Table 1: Comparison of the radial displacement.

|ur(A)| ·104 err(%) |ur(B)| ·104 err (%)
analytic 0.111583 - 0.048317 -

IGABEM 0.106702 4.38 0.042299 12.45
IGABEM-impr 0.111581 2.3·10−3 0.048318 3.2·10−3

Three different meshes are used in order to test the convergence performance. The
series of used meshes is depicted in Fig. 5.

The convergence comparison is depicted in Fig. 6 where the superior solution ac-
curacy with the desired rates of convergence is easily observed. In the figure h
measures the average length of the element

6 Conclusions

An improved IGABEM approach has been presented. In the common approach
the boundary conditions are directly applied to the control variables: the function
describing the boundary condition is evaluated at the spatial locations of the con-
trol points and then the resultant values are assigned to the corresponding control
variables. Such an approach may introduce an error that jeopardizes the final ac-
curacy. In this work an improved IGABEM approach has been presented with en-
hanced treatment of the boundary conditions. The procedure stems from a suitable
transformation relationship that allows a straightforward imposition of the bound-
ary conditions and, hence, a simple reassembling of the governing final system
of equations. The effectiveness of the method has been validated by one elastic-
ity problem. Numerical results have shown that the present approach produces a
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Figure 5: Three meshes adopted in the hollow cylinder example. The legend is the
same of Fig. 4.

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
Log10h

-15

-13

-11

-9

-7

-5

Lo
g 1

0e

IGABEM
IGABEM-impr

External circle

External circle

Internal circle

Internal circle

Figure 6: Comparison of the L2-error norm for the hollow cylinder example.
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higher accuracy and better convergence rates compared with the classical IGABEM
formulation involving direct enforcement of the boundary conditions to the control
variables. The higher the distance between the control points and the boundary, the
better the performance of the proposed approach.
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