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On the Formulation of Three-Dimensional Inverse
Catenary for Embedded Mooring Line Modeling

M.A.L. Martins1 and E.N. Lages1

Abstract: Embedded anchors have been widely used in offshore operations,
and they are known to be effective and economical solutions to anchoring prob-
lems. Aiming at contributing to the definition and understanding of the embedded
mooring line behavior, this paper expands the formulation adopted at DNV Rec-
ommended Practices, for two-dimensional modeling of the interaction between the
seabed and the anchor line, to three-dimensional analysis. The formulation here
presented, within an elegant differential geometry approach, can now model even
out of plane lines. A reference problem is then defined and solved using the ob-
tained governing equations. Corresponding equations are implemented and solved
numerically in MATLAB® environment. Numerical results are also presented and
discussed.
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1 Introduction

Finding and accessing offshore sources of oil and gas depends on the overall avail-
ability of the marine system. In such scenario, one fundamental and limiting aspect
is the mooring system, which is crucial to maintain the floating unit position within
limits. For such purpose, thrusters and mooring lines are used to withstand envi-
ronmental loads due to wave, wind, and current. There are several types of moor-
ing systems, and the applicability of each one depends on different aspects [Skop
(1988); Colliat (2002); Chakrabarti (2005)].

A mooring line connects an anchor on the seafloor to a floating structure, and this
system relies on the strength of the anchors, soil conditions, geometry and weight
of the anchor, and size of anchor line. Those are some of the aspects that influence
several parameters, such as penetration depth and anchor capacity.
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Embedded anchors are commonly used for the mooring of deepwater platforms
as they are able to perfectly maintain the offset of floating facilities within design
tolerances. As it penetrates the seabed, it uses soil resistance to hold the anchor
in place, so that drilling and production operations can be carried out at a stable
platform.

Embedded lines will cut through the seabed to some extent. The embedded part of
the line generally forms an inverse catenary profile between the mudline and the
pad-eye of the anchor. DNV Recommended Practices [Det Norske Veritas (2000,
2002)] describe the two-dimensional equations for modeling the interaction be-
tween the seabed and the embedded line in soil.

However, when the mooring system is in service, due to the influence of external
loads, the mooring cable may produce a series of motions in a three-dimensional
space. Thus, it is also important to analyze the out of plane behavior of the struc-
ture, to properly provide accurate analysis in order to predict its responses. The
ability to properly understand and describe inverse catenary properties of the em-
bedded line is fundamental to improve the mooring system performance.

Chi (2010) emphasizes the importance of considering the out of plane compo-
nent by reporting that during the hurricanes Ivan, Katrina, and Rita in 2005, there
were about seventeen offshore mobile drilling units drifting due to the failure of
the mooring system. Partial failure of mooring systems for floating structure will
subject drag anchor to loads having an appreciable component outside of the in-
tended plane of loading. Therefore, under this circumstance, the anchor may travel
out of the installation plane direction. Aubeny and Chi (2010) show that, if the
self-weight of the anchor chain is neglected, the anchor chain configuration will
lie always within a plane, although for general conditions of out-of-plane loading,
the anchor chain will lie in an oblique plane defined by the direction of the anchor
chain at the pad-eye and the mudline.

Aubeny, Gilbert, Randall, Zimmerman, McCarthy, Chen, Drake, Yeh, Chi, and
Beemer (2011) conducted experimental investigations in order to increase under-
standing of embedment anchor behavior. They came into the conclusion that if
the anchor line forms into a reverse catenary the anchor line and anchor trajectory
will lie in an oblique plane. In such scenario, the tendency for the anchor to travel
in a tilted plane will tend to reduce the ultimate embedment depth, and therefore
ultimate capacity, of the anchor. Countering this effect is an observed increase in
the anchor bearing factor, which will both cause the anchor to dive deeper and mo-
bilize greater pullout capacity. Therefore, the ultimate pullout capacity under out-
of-plane loading conditions could conceivably be greater than that under in-plane
loading.
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Thus, aiming at contributing to the definition and understanding of the embedded
cable behavior, this paper expands the two-dimensional formulation presented by
Vivatrat, Valent, and Ponterio (1982) and adopted at DNV Recommended Practices
[Det Norske Veritas (2000, 2002)] to a three-dimensional analysis. The proposed
formulation incorporates an elegant differential geometry approach, and can now
model even out of plane lines.

2 Background

Theoretical and experimental studies about two-dimensional inverse catenary mod-
eling of embedded mooring lines were carried out in previous studies [Reese (1973);
Gault and Cox (1974); Vivatrat, Valent, and Ponterio (1982); Degenkamp and Dutta
(1989); Liu (2012)]. The prediction of the resultant anchor line load involves nu-
merical integration of the governing differential equations, together with iteration
of one of the unknown boundary conditions in order to match the known boundary
conditions.

Vivatrat, Valent, and Ponterio (1982) assume a two-dimensional chain configura-
tion. They developed the analytical model by assuming the embedded chain length
as a summation of short line segments and expressing the equilibrium conditions of
each segment. Such model follows the same principles as previous work done by
Reese (1973) and Gault and Cox (1974) but makes no assumption about the shape
of the embedded chain section. DNV Recommended Practices [Det Norske Veritas
(2000, 2002)] used such formulation developed by Vivatrat, Valent, and Ponterio
(1982) for planar line configuration.

Degenkamp and Dutta (1989) also present an analytical model of embedded chain
under soil resistance, similar to the one presented by Vivatrat, Valent, and Ponterio
(1982). They used a soil model to accurately predict the soil resistances to the chain
inside soil and estimate critical design parameters, such as effective widths of the
chain, based on laboratory tests.

In order to avoid the numerical solution by an incremental integration technique, as
proposed by Degenkamp and Dutta (1989), Neubecker and Randolph (1995, 1996)
suggested a simplified approach for the expressions of both the load development
and chain profile. They developed an expression for the anchor chain tension and
angle at the anchor pad-eye assuming the chain angle at the seabed is zero. The
authors also considered that the self-weight of the chain has negligible effect on
the chain profile and tension distribution when used in hard soils. However, in soft
soils the chain weight may be significant with respect to the soil strength. In such
case, to properly account for the self-weight of the chain, one has to assume that
the chain is weightless and has to reduce the profile of normal resistance per unit
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length by an amount equal to the chain weight per unit length.

Bang, Han, and Taylor (2001) describe the analytical solution for a portion of the
mooring line on the seabed. The results of the field tests conducted in cohesive
seafloor soils, and the resulting comparisons between the measured and calculated
values are presented in detail.

To extend the inverse catenary equations to three-dimensional space, line tensions
need to be described in three-dimensional vectors. Nie, Zimmerman, and Aubeny
(2011) present an analysis of drag embedment anchor under out-of-plane loading.
This analysis develops a set of three-dimensional inverse catenary equations based
on the existing two-dimensional equations using two reference angles (θ and φ ) in
spherical coordinates, one (θ ) is measured from horizontal plane to the vector and
is equivalent to the angle in 2D case, and the other (φ ) is the angle of the projection
on the horizontal plane.

Wang, Guo, and Yuan (2010) present a 3-D iterative procedure to solve the equilib-
rium equations of a set of deformed segments of the discretization of the embedded
line according to new dip-down point tension defined after a pretensioning config-
uration. The geometric position of the deformed nodes is updated until the internal
force of the upper segment is equal the prescribed external tension.

Liu, Liu, Zhao, and Wang (2013) propose an approach that enable the one to ob-
tain not only the anchor behaviors such as the trajectory, penetration direction and
ultimate embedment depth, but also the properties of the installation line for both
the embedded and horizontal segments. In such study, the authors have derived
the relationship between the tension and geometry of the embedded line, and the
interactional equation between the anchor and embedded line based on the me-
chanical model for the embedded line. They introduced the concept of the initial
embedment depth of the installation line (IEDL), and the reverse catenary equa-
tion and the equation for calculating the length of the embedded line were obtained
for soils with a linear strength. The reverse catenary equation is then introduced
into the kinematic model for drag anchors, which combines the drag anchor, the
installation line and the movement of the anchor handling vessel (AHV) being an
interactional system.

In a subsequent study, Liu, Liu, Zhao, and Wang (2014) used measured data to
compare the predictions from reverse catenary equations applicable to sand previ-
ously developed by Liu, Liu, Zhao, and Wang (2013). The authors used specially
developed measurement techniques (based on tilt transducers and photography) to
investigate the reverse catenary profile of the embedded line, the effective length
of the installation line, the relation between the vertical position and the drag angle
at the shackle of the anchor, and the equivalent length of the installation line in a
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model flume. By comparing with transient reverse catenary shapes of the embed-
ded line during anchor penetration, the efficiency of the reverse catenary equations
developed by Liu, Liu, Zhao, and Wang (2013) are well examined in sand through
model flume tests.

Besides, Zhao and Liu (2013) present a large deformation finite element analysis
using the Coupled Eulerian-Lagrangian (CEL) technique to investigate the tension
and profile of embedded anchor line. In such study, parametric analysis are per-
formed to evaluate the effects of the shear strength of clay, depth of attachment
point, diameter of embedded anchor line, self weight of soil, self weight of anchor
line, and frictional coefficient between the embedded anchor line and soil. By com-
paring with theoretical and numerical integration solutions, the authors demonstrate
that the CEL technique is effective for simulating the anchor line-soil interactional
problems.

This paper presents the three-dimensional analytical formulation for modeling the
interaction between the seafloor and the embedded line. Such formulation allows
the consideration of the soil tangential resistance, the effective weight of the line in
soil, and the general case of line entering the soil at a specific angle. So, we consider
that the seafloor reacts on the line with forces that are distributed along the length
at the longitudinal and transverse directions, which are defined with respect to the
directions of the Frenet trihedron [e.g., Lal and Arora (1989)]. With the obtained
governing differential equations, it is defined a reference problem, where relevant
equations are implemented and solved numerically in MATLAB® environment.

3 3-D inverse catenary

The three-dimensional static problem of an embedded anchor is considered, ac-
cording to the scheme shown in Fig. 1. A coordinate system is defined with origin
at the dip-down point, where the anchor line starts to embed, and with the z-axis
normal to the seabed.

According to Fig. 1, the embedded line anchor in its static equilibrium configura-
tion is defined by a total length L and projections Hx and Hy along the Cartesian
x and y directions, respectively. Thus, the deepest end of the embedded line is
connected to a perfectly fixed anchor on the seafloor at a depth P.

It is assumed that the line reacts internally with only axial forces, ignoring possible
contributions of shear force, bending moment, and twisting moment. At the dip-
down point acts a tension T0, which orientation relative to the Cartesian system will
be defined later. The seafloor reacts on the line with distributed forces along the
length at the longitudinal and transverse directions, which are defined with respect
to the directions of the Frenet trihedron [e.g., Lal and Arora (1989)]. The Frenet
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Figure 1: Diagram of three-dimensional line segment in soil.

trihedron establishes a local reference system to the geometry of the parametric
curve, which is representative of the embedded line section.

Initially, we consider a parametric curve representing the embedded line as a func-
tion of the arc length s, measured from the dip-down point at the seabed. Isolating
a small segment of length ∆s of that embedded line, one can build up the free body
diagram shown in Fig. 2, where t̂, n̂ and b̂ represent, respectively, the orthonormal
vectors of the Frenet trihedron in tangent, principal normal and binormal directions
at the midpoint of the analyzed segment.

With respect to the forces in this diagram (Fig. 2), w is the weight of the embedded
line per unit deformed length, which acts in the negative direction of the Cartesian
z-axis, qt is the soil reaction per unit length of the line along the tangent direction,
acting in the dip direction of the line in the seabed, and qn and qb are the transverse
components of the soil reaction per unit length of the line along the principal normal
and binormal directions, respectively, acting in opposite directions to those.

Frenet-Serret formula [e.g., Lal and Arora (1989)] is used here to write the deriva-
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Figure 2: Free body diagram of a representative embedded line segment.

tive of the unit tangent vector at the midpoint of the segment, as follows:

d t̂
ds

= κn̂ (1)

where κ represents the circular curvature.

To use the same reference directions of all forces involved in this free body diagram
(Fig. 2), one can rewrite the Cartesian unit vector k̂ in relation to the unit vectors
of the Frenet trihedron, as follows:

k̂ = (k̂· t̂)t̂+(k̂· n̂)n̂+(k̂· b̂)b̂ (2)

where · represents the dot product between the unit vectors. That leads to

k̂ = tzt̂+nzn̂+bzb̂ (3)

where tz, nz and bz are z-component of the unit vectors of the Frenet trihedron.

The balance of forces is imposed in accordance with the Maple [MAPLESOFT
(2014)] code, as illustrated in Fig. 3.

According to the script shown in Fig. 3, we obtain the following equilibrium equa-
tions associated with the directions of the Frenet trihedron:

dT
ds

= wtz −qt (4)

κ =
wnz +qn

T
(5)
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> 𝑟𝑒𝑠𝑡𝑎𝑟𝑡 

Internal forces (axial only) 

> 𝑻𝒊 ∶= −𝑇 ∙ 𝐭 + 𝑑𝑇𝑑𝑠 ∙ 𝐭 + 𝑇 ∙ 𝒅𝒕𝒅𝒔 ∙
∆𝑠

2
: 

> 𝑻𝒇: = 𝑇 ∙ 𝐭 + 𝑑𝑇𝑑𝑠 ∙ 𝐭 + 𝑇 ∙ 𝒅𝒕𝒅𝒔 ∙
∆𝑠

2
: 

External forces: self weight (negative z-direction) and longitudinal friction 

(opposite to the dip direction of the line), normal and binormal (contrary 

to the directions of the unit vectors of the Frenet trihedron associated with 

these directions) 

> 𝑬𝑭 ∶= −𝑤 ∙ ∆𝑠 ∙ 𝐤 + 𝑞𝑡 ∙ ∆𝑠 ∙ 𝐭 − 𝑞𝑛 ∙ ∆𝑠 ∙ 𝐧 − 𝑞𝑏 ∙ ∆𝑠 ∙ 𝐛: 

Frenet-Serret formula 

> 𝒅𝒕𝒅𝒔 ≔ 𝜅 ∙ 𝐧: 

Cartesian unit vector in the z-direction as a function of the unit vectors of 

the Frenet trihedron 

> 𝐤 ∶= 𝑡𝑧 ∙ 𝐭 + 𝑛𝑧 ∙ 𝐧 + 𝑏𝑧 ∙ 𝐛: 

Balance of forces 

> 𝒆𝒒𝑭 ∶= 𝑻𝒊 + 𝑻𝒇 + 𝑬𝑭: 

> 𝒆𝒒𝑭 ∶= 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦
𝒆𝒒𝑭

∆𝑠
: 

Equilibrium equations 

> 𝑐𝑜𝑒𝑓𝑓(𝒆𝒒𝑭, 𝐭) 

𝑑𝑇𝑑𝑠 − 𝑤 𝑡𝑧 + 𝑞𝑡 

> 𝑐𝑜𝑒𝑓𝑓(𝒆𝒒𝑭, 𝐧) 

𝑇𝜅 − 𝑤 𝑛𝑧 − 𝑞𝑛 

> 𝑐𝑜𝑒𝑓𝑓(𝒆𝒒𝑭, 𝐛) 

−𝑤 𝑏𝑧 − 𝑞𝑏 

Figure 3: Maple code for determining the equilibrium equations.

qb =−wbz (6)

Note that the particularization of such formulation for two-dimensional case lies in
that presented by Vivatrat, Valent, and Ponterio (1982). In this case, considering a
curve in the xz-plane, Eqs. (4), (5), and (6) can be particularized. Assuming θ as
the line inclination with x-axis, tz turns to be −sinθ in Eq. (4), κ is dθ

ds and nz turns
to be −cosθ in Eq. (5), and bz is zero in Eq. (6), indicating that no soil reaction is
mobilized in the binormal direction.

As w is the weight of the embedded line per unit deformed length, it is related to
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w0, the weight per unit undeformed length, as

w =
w0

1+ T
EA0

(7)

where EA0 is the axial rigidity of the line cross section, considering linear elastic
behavior in strain engineering. As the correction factor of the weight of the embed-
ded line per unit undeformed length (w0) to the weight of the embedded line per
unit deformed length (w) is approximately equal to 1 for typical values of tension
and axial rigidity, w can be assumed equal to w0, as considered by Vivatrat, Valent,
and Ponterio (1982).

In addition to these equations, to assist in the explicit representation of the line
geometry corresponding to the static equilibrium configuration, the spatial variation
of the position vector r for any point along the curve is described by the following
differential equation:

dr
ds

= t̂ (8)

as the curve is being parameterized by the arc length [e.g., Lal and Arora (1989)]. In
order to complete the line geometry description, other Frenet-Serret formula [e.g.,
Lal and Arora (1989)] is used here to write the binormal vector, as follows:

db̂
ds

=−τn̂ (9)

where τ represents the torsion. The principal normal unit vector n̂ can be deter-
mined at any point in the anchor line curve by applying the orthonormality condi-
tion with the two other unit vectors t̂ and b̂ of the Frenet trihedron.

About the soil reaction, several models for the interaction forces between the seabed
and the embedded line, present in Eqs. (4), (5), and (6), can be tested and calibrated
from experiments. However, extending the expressions presented in DNV Recom-
mended Practices [Det Norske Veritas (2000, 2002)], these forces directly involved
with tension T , as well as its spatial variation dT

ds , are assumed in the following
formats:

qt = αsuAS (10)

qB = NcsuAB (11)

qn =
√

q2
B −q2

b (12)
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where qB is the resultant soil force at transverse direction, α is the adhesion factor,
su is the undrained shear strength, Nc is the bearing capacity factor, AS is the ef-
fective surface area and AB is the effective bearing area, both per unit length of the
line.

Reference values for these parameters are suggested in DNV Recommended Prac-
tices [Det Norske Veritas (2000, 2002)] and presented in Tab. 1, depending on line
type and line effective diameter (d). Such values were defined based on the back-
fitting analysis reported by Eklund and Strøm (1998), and are recommended for
the embedded part of the anchor line in clay. For the undrained shear strength, the
DNV Recommended Practices [Det Norske Veritas (2000, 2002)] suggest the use
of direct simple shear strength suD.

Table 1: Reference values for adhesion factor (α), bearing capacity factor (Nc),
effective surface area (AS) and effective bearing area (AB) for wire and chain.

Line type α Nc AS AB

Chain 0.4 to 0.6 9 to 14 11.3 d 2.5 d
Wire 0.2 to 0.4 9 to 14 πd d

According to this perfectly rigid-plastic model, variations in the magnitudes of
these distributed forces can be incorporated due to spatial variations of its parame-
ters, especially along the depth.

4 Reference problem

As a reference problem, we assume that the tension (T0) and the orientation of the
Frenet trihedron at the upper end of the embedded line are known, as well as the
penetration depth (P) and all information regarding the soil resistance. Thus, it
is possible to obtain the parametric curve (r), its total length (L) and horizontal
projections (Hx and Hy) of the embedded line after proper analysis of the governing
equations.

Taking the depth of anchorage P as a problem input (which is more natural to pre-
scribe, instead of its total length L), it is convenient to write the governing differ-
ential equations as a function of a new independent variable p, measured vertically
downward from the seabed. Thus, there is a relationship between the infinitesimal
terms ds and d p, as follows:

ds =− 1
tz

d p (13)
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where tz is the z-component of the unit tangent vector.

Then, the boundary value problem [e.g., Kreyszig (2011)] to be solved is the system
of first order differential equations given by

dT
d p

=−w+
qt

tz
(14)

ds
d p

=− 1
tz

(15)

dr
d p

=− 1
tz

t̂ (16)

d t̂
d p

=−κ

tz
n̂ (17)

db̂
d p

=
τ

tz
n̂ (18)

where the circular curvature κ is calculated using Eq. (5), the torsion τ is prescribed
as a non-negative function of the current depth p, and the unit vector n̂ is determined
by applying the orthonormality condition with t̂ and b̂. In order to have a practical
meaning of the curvature and torsion, considering an helix with ratio R and step S,

these geometric indicators are equal to R
R2+( S

2π
)2 and

S
2π

R2+( S
2π
)2 , respectively.

In this case, the embedded segment of the mooring line can take any shape, in-
cluding out of plane line. We highlight that Nie, Zimmerman, and Aubeny (2011)
also present a three-dimensional approach for the analysis of embedded mooring
line. However, they develop the formulation based on projection angles in spherical
coordinates, limiting the analysis to lines in vertical plane.

Equations (14) to (18) are subject to the following boundary conditions, taking the
independent variable p equal to zero, i.e., at the dip-down point on the seabed:

T (0) = T0 (19)

s(0) = 0 (20)

r(0) = 0 (21)

t̂(0) = t̂0 (22)

b̂(0) = b̂0 (23)

Such reference problem is implemented in MATLAB® [MATHWORKS (2014)], in
which the mathematical function ode45 [Shampine and Reichelt (1997)] is used to
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numerically integrate the system of first order differential equations. This function
ode45 is an explicit Runge-Kutta code based on the Dormand-Prince (4,5) pair
[Dormand and Prince (1980)].

Figure 4 shows the implemented code of the auxiliary function that describes this
problem, which is called by the numerical integration function ode45. This general
code supports any soil reaction model that is described by parameter soil.

function dfdp=invcat3dode(p,f,~,EA0,w0,soil,ftau) 

% ------------------------------------------------------------------- 

% Auxiliary function for the integration of the governing SODE of the 

% 3D problem of inverse catenary. 

% ------------------------------------------------------------------- 

% Parameters: 

% p    (I) – Depth of current cross section. 

% f    (I) - Integrated functions values (tension, arc length, position 

%            vector, unit tangent vector, and binormal vector). 

% EA0  (I) – Axial rigidity of the cross section. 

% w0   (I) - Weight per unit length of the unstrained embedded line. 

% soil (I) - Structure comprising the name and parameters of the 

%            function of the soil reaction in tangent and transverse 

%            directions. 

% ftau (I) – Torsion function name. 

% dfdp (O) – Derivatives of the integrated functions. 

% ------------------------------------------------------------------- 

 

% Tension at current section 

T=f(1,1); 

 

% Weight per unit length of the strained embedded line 

w=w0/(1+T/EA0); 

  

% Unit tangent, binormal, and principal normal vector 

t=f(6:8,1); 

b=f(9:11,1); 

n=cross(b,t); 

 

% Distributed soil forces  calculus at binormal, tangent, transverse, 

% and principal normal directions, as a function of the current depth 

qb=-w*b(3); 

[qt,qT]=feval(soil.fn,p,soil.par); 

qn=sqrt(qT^2-qb^2); 

 

% Circular curvature and torsion 

k=(w*n(3)+qn)/T; 

tau=feval(ftau,p); 

  

% Derivatives of the integrated variables (tension, arc length, 

% position vector, unit tangent vector, and binormal vector) 

dfdp(1,1)=-w+qt/t(3); 

dfdp(2,1)=-1/t(3); 

dfdp(3:5,1)=-t/t(3); 

dfdp(6:8,1)=-k*n/t(3); 

dfdp(9:11,1)=tau*n/t(3); 

 

Figure 4: MATLAB® code for the integration of the governing system of ordinary
differential equations.
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5 Numerical example

As an illustrative example of the implemented application, we consider a mooring
line presented by Wang, Guo, and Yuan (2010). In such example, the interaction
between an anchor chain and the seabed is considered, with penetration depth (P)
equal to 20.0m. The effective weight of unstrained chain in soil per unit length (w0)
is 2.52kN/m, and the nominal chain diameter (d) is 0.127m, with axial rigidity
of the line cross section (EA0) equal to 1199.7MN. The effective bearing area
(AB) is 2.5 d (Tab. 1), but the effective surface area (AS) is considered equal to
8.0 d. The adhesion factor of the chain in soil (α) is assumed as 1.0, in order to
reproduce the same soil reaction force in tangent direction described by Wang, Guo,
and Yuan (2010). The soil provides an undrained shear strength (su) of 6kPa in a
depth of 3.0m from which it grows at a rate of 1.26kPa/m. Finally, according to
Degenkamp and Dutta (1989), the bearing-capacity factor (Nc) increases from 5.14
to 7.6 from the seabed surface to a depth of 6 times the nominal chain diameter,
from which it remains constant in value.

It is important to notice that the example presented in this section does not meet the
condition that the ratio between the normal and tangential resistances is constant
over the depth, as assumed in the analytical formulations presented by Neubecker
and Randolph (1995) and Liu, Liu, Zhao, and Wang (2013).

Figure 5 shows the implemented code of the auxiliary function that describes the
reaction forces of this soil, which is called during the integration of the governing
system of ordinary differential equations.

To help at the definition of the unit vectors t̂0 and b̂0 present in boundary conditions
given by Eqs. (22), and (23), respectively, three auxiliary angles α0, β0, and γ0 are
considered in the sequence shown in Fig. 6, from left to right.

According to Fig. 6, at first the Frenet trihedron is oriented according to the Carte-
sian directions. Then, with angle α0, the trihedron is initially rotated around the
Cartesian z-axis. Later, with angle β0, the trihedron is rotated around the current
principal normal unit vector. Finally, with angle γ0, the trihedron is rotated around
the current tangent unit vector.

Regarding the computational effort demanded to solve the proposed formulation, it
takes less than 5 hundredths of a second to run each of the following cases. Such
cases were run in a machine with the following characteristics: Windows 7 64-bits,
MATLAB® R2011a, Intel® Core™ i7-2620M CPU @ 2.70 GHz 2.70 GHz, and
8GB RAM.
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function [qt,qT]=cmes_ex_soil(p,par) 

% ----------------------------------------------------------------------- 

% Soil reaction function. 

% ----------------------------------------------------------------------- 

% Parameters: 

%   p   (I) - Current depth (m). 

%   par (I) - Structure with nominal chain diameter (m). 

%   qt  (O) - Soil reaction in tangent direction (kN/m). 

%   qT  (O) - Soil reaction in transverse direction (kN/m). 

% ----------------------------------------------------------------------- 

  

% Nominal chain diameter (m) 

d=par.d; 

  

% Effective surface and bearing areas per unit length of the line (m^2/m) 

As=8*d; 

Ab=2.5*d; 

  

% Adhesion factor 

alpha=1.0; 

  

% Bearing capacity factor 

if p>6*d 

    Nc=7.6; 

else 

    Nc=5.14+(7.6-5.14)/(6*d)*p; 

end 

  

% Undrained shear strength of the soil (kPa) 

if p<=3 

    su=6; 

else 

    su=6+1.26*(p-3); 

end 

  

% Soil reaction in tangent and transverse directions (kN/m) 

qt=alpha*su*As; 

qT=Nc*su*Ab; 

Figure 5: MATLAB® code for soil reaction forces.
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Figure 6: Auxiliary angles for the definition of Frenet trihedron at the top of the
line.
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5.1 Vertical plane line

Initially, to validate the three-dimensional formulation presented in this work, we
consider two pretension processes presented by Wang, Guo, and Yuan (2010), with
vertical plane lines.

In the first pretension process, a tension on the upper end of the embedded line
gradually increases from 2000kN to 4000kN, and keeps inclination of 45◦ with
Cartesian x-axis. Figure 7 shows the implemented MATLAB® code of the function
used to run this simulation. Table 2 summarizes the main numerical results obtained
in this first pretension process.

Table 2: Summary of the results for the tension level variation of the first
pretension process.

Tension Line Horizontal Anchor Anchor
level length projection tension inclination
(kN) (m) (m) (kN)

2000 24.9 14.5 1583 71.86◦

2400 25.3 15.3 1975 67.37◦

2800 25.6 15.8 2369 64.20◦

3200 25.9 16.3 2764 61.83◦

3600 26.1 16.7 3160 59.99◦

4000 26.3 16.9 3557 58.52◦

According to the obtained results (Tab. 2), as one increases the tension level, the line
requires a greater length (L) and, consequently, larger horizontal projection (Hx). In
addition, the tension at the anchor increases, while anchor inclination reduces. All
numerical results summarized in Tab. 2 are in perfectly agreement with the results
presented by Wang, Guo, and Yuan (2010).

In the second pretension process, a tension on the upper end of the embedded line
keeps 2000kN, and the inclination gradually decreases from 45.00◦ to 33.75◦ with
respect to the Cartesian x-axis. Table 3 summarizes the main numerical results
obtained in this second pretension process.

According to the obtained results (Tab. 3), as one decreases the top angle incli-
nation, the line requires a greater length (L) and, consequently, larger horizontal
projection (Hx). In addition, the tension at the anchor decreases, while anchor in-
clination reduces. Once again, all numerical results summarized in Tab. 3 are in
perfectly agreement with the results presented by Wang, Guo, and Yuan (2010) for
this second pretension process.
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function cmes_ex_pp1 

% ------------------------------------------------------------------------- 

% CMES example: pretension process with increasing of tension. 

% ------------------------------------------------------------------------- 

  

% Auxiliary angles for the definition of the unit vectors t0 and b0 (rad) 

alpha0=0*pi/180; 

beta0=135*pi/180; 

gamma0=90*pi/180; 

  

% Tension at the dip-down point (kN) 

T0=2000:400:4000; 

  

% Penetration depth (m) 

P=20; 

 

% Axial rigidity of the cross section (kN) 

EA0=1199700; 

  

% Weight per unit length of the unstrained embedded line (kN/m) 

w0=2.52; 

 

% Nominal chain diameter (m) 

d=0.127; 

  

% Soil structure comprising the name and parameters of the function 

% of the soil reaction in tangent and transverse directions 

soil.fn='cmes_ex_soil'; 

soil.par.d=d; 

  

% Unit vectors t0 and b0 

t0=[cos(beta0)*cos(alpha0) cos(beta0)*sin(alpha0) -sin(beta0)];   

b0=[sin(beta0)*cos(alpha0) sin(beta0)*sin(alpha0) cos(beta0)]; 

b0=b0+cross(t0,b0)*sin(gamma0)+cross(t0,cross(t0,b0))*(1-cos(gamma0));     

  

% Analyses and results 

disp(' -------------------------------------'); 

disp(' |  T0  |  L   |  Hx  |  Ta  | Anga  |'); 

disp(' | (kN) | (m)  | (m)  | (kN) |  (o)  |'); 

disp(' -------------------------------------'); 

  

for i=1:length(T0), 

        

    % Integration of the governing SODE 

    [~,f]=ode45('invcat3dode',[0 P],[T0(i) 0 0 0 0 t0 b0], … 

                [],EA0,w0,soil,@(p)0); 

         

    % Summary 

    disp([' | ' num2str(T0(i)) ... 

          ' | ' num2str(f(end,2),'%.1f') ... 

          ' | ' num2str(-min(f(:,3)),'%.1f') ... 

          ' | ' num2str(f(end,1),'%.0f') ... 

          ' | ' num2str(acos(-f(end,6))*180/pi,'%.2f') ' |']); 

end 

 

disp(' -------------------------------------'); 

Figure 7: MATLAB® code for the first pretension process.
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Table 3: Summary of the results for the inclination variation of the second
pretension process.

Inclination Line Horizontal Anchor Anchor
length projection tension inclination

(m) (m) (kN)

45.00◦ 24.9 14.5 1583 71.86◦

42.75◦ 25.6 15.6 1574 70.24◦

40.50◦ 26.4 16.8 1565 68.69◦

38.25◦ 27.2 18.0 1555 67.21◦

36.00◦ 28.1 19.4 1544 65.80◦

33.75◦ 29.1 20.7 1532 64.47◦

5.2 Inclined plane line

In a next step, it is assumed as reference problem the case of a horizontal tension
of 2000kN at the upper end of the embedded line. It is intended to analyze the
influence of working with embedded lines corresponding to planar curves contained
in planes with inclinations to the Cartesian xz-plane. The angles α0 and β0 are set
to be 0◦ and 180◦, respectively, and γ0 varies, assuming values of 21◦, 34.56◦, 60◦,
and 90◦. The later value to γ0 corresponds to a vertical plane line.

Respectively, Figs. 8 and 9 show the three-dimensional static configurations of the
embedded line and the tension variation along the arc length of the line for the four
analyzed cases.

In Fig. 8 the Cartesian coordinates are measured from the anchor, and auxiliary
plane shades are used to better visualize these four plane lines. When the inclination
angle γ0 is equal to 34.56◦, the tangent to the mooring line is perpendicular to the
Cartesian x-axis at the pad-eye. When the inclination angle γ0 is smaller than this
value, as 21◦, the geometry of the line describes a reverse curve in xy-plane and
xz-plane, i.e., a non-monotonic curve in Cartesian x-axis.

Figure 9 shows that the resulting tension relief is equivalent for the four analyzed
cases during the first 40m of the arc length from the dip-down point.

Table 4 summarizes the main numerical results obtained in this analysis. According
to the obtained results (Tab. 4), as one increases the inclination of the plane which
contains the embedded line curve, with respect to the Cartesian z-axis, the line
requires a greater length (L) and, consequently, larger horizontal projections (Hx

and Hy). In addition, from the upper end of the embedded line to the anchor, there
is a tension relief at the anchor corresponding to 59.3%, 56.8%, 47.4%, and 26.7%
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Figure 8: Three-dimensional static configurations for the variation of the plane
inclination.
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Figure 9: Tension variation along the length of the three-dimensional embedded
line for the variation of the plane inclination.
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of the force applied at the dip-down point.

Table 4: Numerical results for the variation of the plane inclination.

Inclination Line Horizontal Horizontal Anchor
γ0 length projection projection tension

(m) Hx (m) Hy (m) (kN)

21.00◦ 123.9 89.6 52.1 533
34.56◦ 94.9 80.6 29.0 948
60.00◦ 78.3 71.6 11.5 1135
90.00◦ 73.7 68.4 0.0 1186

5.3 Out of plane line

Now, the case of a horizontal tension of 2000kN at the upper end of the embedded
line is assumed again, but now, it is intended to analyze the influence of working
with embedded lines corresponding to out of plane lines. The angles α0, β0, and γ0
are set to be 0◦, 180◦, and 90◦, respectively, and torsion (τ) is constant along the
mooring line, assuming values of 0.000, 0.006, 0.012, and 0.018. Note that torsion
(τ) equal to 0.000 corresponds to a vertical plane line.

Respectively, Figs. 10 and 11 show the three-dimensional static configurations of
the embedded line and the tension variation along the arc length of the line for the
four analyzed cases.

In Fig. 10 the Cartesian coordinates are measured from the anchor, and auxiliary
shades are used to better visualize these plane and out of plane lines.

Figure 11 shows that tension relief is equivalent during the first 50m of the arc
length from the dip-down point.

Table 5 summarizes the main numerical results obtained in this analysis. According
to the obtained results (Tab. 5), as one increases the torsion of the embedded line
curve, the line requires a greater length (L) and, consequently, larger horizontal
projections (Hx and Hy). In addition, from the upper end of the embedded line to
the anchor, there is a tension relief at the anchor corresponding to 59.3%, 58.7%,
56.0% and 44.5% of the force applied at the dip-down point.

Finally, we will analyze the influence of torsion variation along the mooring line.
We assume a reference value of torsion equal to 0.018, but considering constant
torsion, quadratic reduction to zero, and linear reduction to zero of the torsion with
the depth from the dip-down point to the pad-eye.
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Figure 10: Three-dimensional static configurations for mooring lines with
constant torsion.
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Figure 11: Tension variation along the length of the three-dimensional embedded
lines with constant torsion.
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Table 5: Numerical results for mooring lines with constant torsion.

Torsion Line Horizontal Horizontal Anchor
τ length projection projection tension

(m) Hx (m) Hy (m) (kN)

0.000 73.7 68.4 0.0 1186
0.006 74.5 68.9 4.5 1173
0.012 77.5 70.7 10.1 1120
0.018 88.4 74.6 23.0 890

Respectively, Figs. 12 and 13 show the three-dimensional static configurations of
the embedded line and the tension variation along the arc length of the line for the
three analyzed cases.

In Fig. 12 the Cartesian coordinates are measured from the anchor, and auxiliary
shades are used to better visualize these out of plane lines.

Figure 13 shows that tension relief is almost equivalent along the arc length of the
mooring lines from the dip-down point.

Figure 12: Three-dimensional static configurations for mooring lines with
constant and variable torsion.
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Figure 13: Tension variation along the length of the three-dimensional embedded
lines with constant and variable torsion.

Table 6 summarizes the main numerical results obtained in this analysis. According
to the obtained results (Tab. 6), as more twisted is the embedded line curve, the line
requires a greater length (L) and, consequently, larger horizontal projections (Hx

and Hy). In addition, from the upper end of the embedded line to the anchor, there
is a tension relief at the anchor corresponding to 44.5%, 49.6%, and 52.8% of the
force applied at the dip-down point.

Table 6: Numerical results for mooring lines with constant and variable torsion.

Torsion Line Horizontal Horizontal Anchor
τ length projection projection tension

(m) Hx (m) Hy (m) (kN)

Constant 88.4 74.6 23.0 890
Quadratic 84.3 73.8 18.8 991

Linear 81.2 72.7 15.3 1056
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6 Concluding remarks

The two-dimensional formulation of the interaction between the embedded line
and the soil, presented by Vivatrat, Valent, and Ponterio (1982) and adopted at
DNV Recommended Practices [Det Norske Veritas (2000, 2002)], was extended
and verified for three-dimensional static analysis.

Within an elegant differential geometry approach, we can now model vertical plane,
inclined plane, and even out of plane lines. This can be done by controlling the
boundary conditions of the unit vectors t̂0 and b̂0 at the dip-down point, as well as
torsion τ along the embedded line.

Our proposed formulation considers the weight of the embedded line per unit de-
formed length (w) physically consistent with the weight of the embedded line per
unit undeformed length (w0) of the line, even though those values are very close
when considering typical situations of the axial tension and rigidity, as in Vivatrat,
Valent, and Ponterio (1982). This correction factor does not result in any significant
computational overhead to the process of integration of the governing equations,
and we kept this factor in our computer code (Fig. 4).

This soil-line interaction model considers the reaction of the seabed on the embed-
ded line assuming its maximum resistance, which may vary with the depth of the
analyzed point. Thus, that characterizes a load capacity problem, i.e., for a tension
prescribed at the dip-down point, the line geometry seeks for its static equilibrium
requiring the soil maximum resistance.

In the case of a tension relief at the dip-down point, as occurs in a dynamic time
domain analysis [e.g., Silveira, Lages, and Ferreira (2012)], this model needs to
be modified because it does not consider the unloading phase of the soil behavior.
Thus, a tension relief at the dip-down point, determines a new geometry of the line,
keeping the soil reaction at its resistance limit, which is not physically consistent.

This article presents results which were obtained following the reproducible re-
search guidelines [e.g., Vandewalle, Kovacevic, and Vetterli (2009)]. All the rele-
vant information is available at http://loi.lccv.ufal.br/art-invcat3d.
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