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Approximate Analytical Solution of Time-fractional order
Cauchy-Reaction Diffusion equation
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Abstract: The objective of this article is to carry out an approximate analytical
solution of the time fractional order Cauchy-reaction diffusion equation by using a
semi analytical method referred as the fractional-order reduced differential trans-
form method (FRDTM). The fractional derivative is illustrated in the Caputo sense.
The FRDTM is very efficient and effective powerful mathematical tool for solv-
ing wide range of real world physical problems by providing an exact or a closed
approximate solution of any differential equation arising in engineering and allied
sciences. Four test numerical examples are provided to validate and illustrate the
efficiency of FRDTM.
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1 Introduction

The fractional calculus theory has a great attention in engineering and allied sci-
ences [Hilfer (2000); Carpinteri, and Mainardi (1997); Miller, and Ross (1993);
Oldham, and Spanier (1974); Podlubny (1999)]. For instance, there are several
physical phenomena which can be explained successfully by developing the mod-
els using fractional calculus theory. Fractional differential equations have achieved
much more attention because of the fractional order systems converges to the in-
teger order equations. In the recent years, the fractional differentiation has a wide
range of application in the mathematical modeling of real world physical problems,
for instance: in earthquake modeling, measurement of viscoelastic material prop-
erties, the traffic flow model, fluid flow model with fractional derivatives etc.
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In this paper, we consider the one dimensional time-fractional Cauchy reaction-
diffusion equation (Kumar (2013)) given by

Dα
t u(x, t) = υ D2

xu(x, t)+ p(x, t)u(x, t) , x ∈ R, t > 0, 0 < α ≤ 1, (1)

subject to the initial condition (IC): u(x,0) = u0(x), where Dα
t u = ∂ α u

∂ tα , D2
xu =

∂ 2u
∂x2 , υ > 0 is the diffusion coefficient, u and p denote the concentration and the
reaction parameter, respectively.

The classical Cauchy-reaction diffusion equations (i. e., Eq. (1) with α = 1)
describe a wide variety of nonlinear systems in physics, chemistry, ecology, bi-
ology and engineering [(Britton (1998); Cantrell, and Cosner (2003); Grindrod
(1996); Smoller (1994)]. The approximate series solutions of classical Cauchy
reaction-diffusion equation were obtained by using several analytical approaches,
namely, Adomian decomposition method (ADM) by [Lesnic (2007)], and [Lesnic
(2005)], Variational Iteration Method (VIM) by [Dehghan, and Shakeri (2008)],
Homotopy Analysis Method (HAM) by [Bataineh, Noorani, and Hashim (2008)],
Homotopy Perturbation Method (HPM) by [Yildirim (2009)]. RDTM by [Sohail,
and Mohyud-Din (2012)]. [Wang, and He (2008)] applied VIM for a nonlinear
reaction-diffusion process.

There was no scheme available for analytical solutions for linear or nonlinear frac-
tional order differential equations, before the nineteenth century. Recently, the
fractional order multi-dimensional diffusion equation was solved using a Modified
Homotopy Perturbation Method (M-HPM) by [Kumar (2013)]. The major disad-
vantage of aforesaid approaches is that they require a very complicated and huge
calculation. To overcome from such type of the drawbacks, the fractional reduced
differential transform method (FRDTM) given by [Keskin, and Oturanc (2010)] has
been employed. The FRDTM is the most easily implemented analytical method
which provides the exact solution for both linear and nonlinear fractional differen-
tial equations, is very effective, reliable and efficient, and very powerful analytical
approach, refer [Gupta (2011); Srivastava, Awasthi, and Tamsir (2013); Srivastava,
Awasthi, and Kumar (2014); Srivastava, Kumar, Awasthi, and Singh (2014)]. In
this paper, our main aim is to present approximate analytical solutions of time-
fractional model of Cauchy-reaction diffusion equations of order α(0 < α ≤ 1) in
series form converges to the exact solution rapidly, using FRDTM. Some other ap-
plications of fractional derivatives can be seen in [Chen, Liu, Li, and Sun (2014);
Pang, Chen, and Sze (2014); Chen, Han, and Liu (2014); Li (2014)].

The rest of the paper is organized as follows: in Section 2, basic preliminaries and
notations on fractional calculus theory are revisited that are used for further study.
Section 3 presents the basic of FRDTM are what we use to find the exact solution
of the time-fractional Cauchy-reaction diffusion equation. In Section 4, exact solu-
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tions of four test problems time-fractional Cauchy reaction-diffusion problems are
presented and compared with the exact solutions available in the literature. Section
5 is the conclusion of the article.

2 Fractional Calculus Theory

In this section, the basic definitions and notations are revisited that will be used
for further ongoing study. In fractional integrals and derivatives, several definitions
are proposed but the first major contribution to give a proper and most meaningful
definition goes to Liouville [Millar and Ross (1993)].

Definition 2.1 A real valued function f (x) ∈ R, x>0 is said to be in the space
Cµ , µ ∈ R if there exists a real number q (>µ) such that f (x)=xqg(x), where
g(x) ∈ C[0,∞), and is said to be in the space Cm

µ if f (m) ∈Cµ , m ∈ N.

Definition 2.2 For any given function f ∈ R, the Riemann-Liouville fractional in-
tegeral operator [Grindrod (1996)] of order α ≥ 0, is defined by Jα f (x)= 1

Γ(α)

x∫
0
(x-t)α−1 f (t)dt, α > 0,x > 0,

J0 f (x)= f (x) .
(2)

In his work, [Caputo, and Mainardi (1971)] proposed a modified fractional differ-
entiation operator Dα on the theory of visco-elasticity by overcoming the discrep-
ancy of Riemann-Liouville derivative [Millar, and Ross (1993)] while modeling
the real world problems using the fractional differential equations. They further,
demonstrated that their proposed Caputo fractional derivative allow the utilization
of initial and boundary conditions involving integer order derivatives, a straightfor-
ward physical interpretations.

Definition 2.3 The fractional derivative of f (x)∈R, in the Caputo sense [Grindrod
(1996)] is defined as

Dα f (x)=Jm−αDm f (x) =
1

Γ(m−α)

x∫
0

(x-t)m−α−1 f (m) (t)dt, (3)

for m−1 < α ≤ m, m ∈ N,x > 0, f ∈Cm
−1.

The basic properties of the Caputo fractional derivative can be given by the follow-
ing

Lemma 2.1 If m−1 < α ≤ m, m ∈ N and f ∈Cm
µ , µ ≥ -1, then we have DαJα f (x)= f (x) , x>0,

JαDα f (x)= f (x)−
m
∑

k=0
f (k) (0+) xk

k! , x>0, (4)
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In the present work, the Caputo fractional derivative is considered because it allows
the traditional initial and boundary conditions to be included in the formulation of
the physical problems. For further important characteristics of fractional deriva-
tives, one can refer [Hilfer (2000); Carpinteri, and Mainardi (1997); Miller, and
Ross (1993); Oldham, and Spanier (1974); Podlubny (1999)].

3 Fractional Reduced Differential Transform Method (FRDTM)

In this section, the basic properties of the fractional reduced differential transform
method are described. Let w(x, t) be a function of two variables, which can be rep-
resented as a product of two single-variable functions, that is w(x, t) = F (x)G(t).
Using the properties of the one-dimensional differential transform (RDT) method,
w(x, t) can be written as

w(x, t) =
∞

∑
i=0

F (i)xi
∞

∑
j=0

G( j)t j =
∞

∑
i=0

∞

∑
j=0

W (i, j)xit j, (5)

where W (i, j) = F (i)G( j) is referred to as the spectrum of w(x, t).

Let RD and R−1
D denotes operators for fractional reduced differential transform

(FRDT) and inverse FRDT, respectively. The basic definition and properties of
the FRDTM is described below.

Definition 3.1 If w(x, t) is analytic and continuously differentiable with respect to
space variable x and time variable t in the domain of interest, then the t-dimensional
spectrum function

Wk (x) =
1

Γ(kα +1)

[
Dk

t (w(x, t))
]

t=t0
(6)

is referred to as the FRDT function of w(x, t), where α is a parameter which de-
scribes the order of time-fractional derivative. Throughout the paper, w(x, t) (low-
ercase) is used for the original function and Wk (x) (uppercase) stands for the frac-
tional reduced transformed function.

The inverse FRDT of Wk (x) is defined by

w(x, t) =
∞

∑
k=0

Wk (x)(t− t0)
kα . (7)

From Eq. (6) and (7), it can be found that

w(x, t) =
∞

∑
k=0

1
Γ(kα +1)

[
Dk

t (w(x, t))
]

t=t0
(t− t0)

kα . (8)
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In particular, for t = 0, Eq. (8) reduces to

w(x, t) =
∞

∑
k=0

1
Γ(kα +1)

[
Dk

t (w(x, t))
]

t=0
tkα . (9)

From the above discussion, it is found that the FRDTM is a special case of the
power series expansion of a function.

Lemma 3.1 Let u(x, t) = R−1
D [Uk (x)], v(x, t) = R−1

D [Vk (x)] and the convolution ⊗
denotes the fractional reduced differential transform version of the multiplication,
then the fundamental operations of the FRDT are illustrated in Table I, where Γ is

the well known Gama function defined by Γ(z) :=
∞∫
0

e−ttz−1dt,z ∈ C, is the con-

tinuous extension to the factorial function [Srivastava, Awasthi, and Tamsir (2013)].

Table 1: Basic properties of the FRDTM.

Original Function

w(x, t)

Fractional Reduced Differential Transformed Function

RD {w(x, t)}=Wk (x)

u(x, t)v(x, t) Uk (x)⊗Vk (x) =
k
∑

r=0
Ur (x)Vk−r (x)

αu(x, t)±βv(x, t) αUk (x)±βVk (x)

xmtnu(x, t)
xmUk−n (x) , ∀k ≥ n;

0, else,

eλ t λ k

k!

sin(wt +α) wk

k! sin
(

πk
2! +α

)
cos(wt +α) wk

k! cos
(

πk
2! +α

)
Dl

xu(x, t) Dl
xUk (x)

DNα
t (u(x, t)) Γ(1+(k+N)α)

Γ(1+kα) Uk+N (x)

Definition 3.1 The Mittag-Leffler function Eα(z) with α > 0 is defined by the fol-
lowing series representation, is valid in the whole complex plane [Mainardi (1994)]

Eα (z) :=
∞

∑
k=0

zk

Γ(1+ kα)

Which is an advanced form of exp(z). In particular, exp(z) = lim
α→1

Eα (z) .
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4 Numerical experiments

This section describes FRDTM explained in Section 3 by giving four numerical ex-
amples to validate the reliability and efficiency of FRDTM for the time fractional-
order Cauchy-reaction diffusion equation. The approximate analytical solutions of
the four numerical examples are obtained by considering first twenty terms in the
series and 40 grid points.

Example 4.1: Consider the time fractional-order Cauchy-reaction diffusion equa-
tion (1) with υ = 1, p(x, t) =−1 as given in (Kumar (2013))

Dα
t u(x, t) = D2

xu(x, t)−u(x, t) , x ∈ [0,1] , t > 0, 0 < α ≤ 1, (10)

with the initial condition

u(x,0) = e±x + x. (11)

The following recurrence relation is obtained by implementing FRDTM in Eq. (10)

Γ(kα +α +1)
Γ(kα +1)

Uk+1 (x) = D2
xUk (x)−Uk (x) . (12)

Next, applying FRDTM in the initial condition (11), we obtain

U0 (x) = e±x + x. (13)

Using Eq. (13) into Eq. (12), we get the values of Uk (x) successively as follows

U1 (x) =
−x

Γ(1+α)
, U2 (x) =

x
Γ(1+2α)

,

U3 (x) =
−x

Γ(1+3α)
,...,Uk (x) =

(−1)k x
Γ(1+ kα)

,...
(14)

Applying inverse FRDTM of Uk (x), we obtain

u(x, t) =
∞

∑
k=0

Uk (x) tkα =U0 (x)+
∞

∑
k=1

Uk (x) tkα =e±x + x
(

∞

∑
k=0

(
(−1)k

Γ(1+kα)

)
tkα

)
=e±x + x

(
∞

∑
k=0

(−tα )k

Γ(1+kα)

)
=e±x +xEα (−tα) .

where Eα (−tα) is the well known as Mittag-leffler function. Thus, it is demon-
strated that the exact solutions for the Cauchy-reaction diffusion equation (10) sub-
ject to the initial condition e−x + x have a complete agreement with that of using
M-HPM [Kumar (2013)]. In particular, for α → 1 in Eq. (10), we obtain

u(x, t) = e±x + x
∞

∑
k=0

(t)k

Γ(1+ k)
= e±x + xe−t , (15)
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Eq. (15) is the exact solution for the classical Cauchy-reaction diffusion equation
(10) with α = 1.

Fig. 1 depicts the comparison between the exact solutions and the approximate
analytical solution at t = 1. Fig. 2 depicts the concentration profiles of u in three
dimension (3D) and its contour form (b) at different time levels t ≤ 1 with the diffu-
sion coefficient υ = 1. Fig. 3 depicts the concentration profiles uin two dimension
(2D) at t ≤ 1 with the differential values of the fractional coefficients α ≤ 1 and
υ = 1

 
Figure 1: Comparison of the approximate concentration in Example 4.1 with the
exact concentrations.

  

 Figure 2: Concentration profiles of u in 3D (a) and contour form (b) of Example
4.1 at different time levels t ≤ 1 with the diffusion coefficient υ = 1.
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Figure 3: Concentration profiles of u in Example 4.1 in 2D at t = 1 for different
values of α .

Example 4.2: Consider the time fractional-order Cauchy-reaction diffusion equa-
tion (1) with υ = 1, p(x, t) =−(1+4x2), as given in (Kumar (2013))

Dα
t u(x, t) = D2

xu(x, t)− (1+4x2)u(x, t) , x ∈ [0,1] , t > 0, 0 < α ≤ 1, (16)

subject to the initial condition

u(x,0) = ex2
. (17)

The following recurrence relation is obtained by implementing FRDTM in Eq. (16)

Γ(kα +α +1)
Γ(kα +1)

Uk+1 (x) = D2
xUk (x)−

(
1+4x2)Uk (x) . (18)

Applying the FRDTM on the initial condition (17), we have

U0 (x) = ex2
. (19)

Using Eq. (19) into Eq. (18), one can get the values of Uk (x) successively

U1 (x) =
ex2

Γ(1+α)
, U2 (x) =

ex2

Γ(1+2α)
,

U3 (x) =
ex2

Γ(1+3α)
, ...,Uk (x) =

ex2

Γ(1+ kα)
, ...

(20)
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Applying inverse FRDTM on Uk (x), we obtain

u(x, t) =
∞

∑
k=0

Uk (x) tkα =U0 (x)+U1 (x) tα +U2 (x) t2α +U3 (x) t3α + ...

= ex2
(

1+
tα

Γ(1+α)
+

t2α

Γ(1+2α)
+ ...+

tkα

Γ(1+ kα)
+ ...

)
= ex2

[
∞

∑
k=0

tkα

Γ(1+ kα)

]
=ex2

Eα (tα ).

(21)

The exact solution (21) have a complete agreement with the exact solution obtained
using M-HPM [6]. In particular, for α → 1 in Eq. (16), we have u(x, t) = ex2+t .
Thus, the exact solutions for the Cauchy-reaction diffusion equation (16) with α =
1 have complete agreement with the exact solution obtained in [Kumar (2013)]
using M-HPM.

The comparison between the exact solutions and the approximate solution at t = 1
is shown in Fig. 4 while Fig. 5 shows the concentration profiles of u in 3D, and its
contour form (b) at different time levels t ≤ 1 with the diffusion coefficient υ = 1.
Fig. 6 shows the concentration profiles u in 2D at t ≤ 1 with the differential values
of the fractional coefficients α ≤ 1 and υ = 1.

 
Figure 4: Comparison of the approximate concentration in Example 4.2 with the
exact concentrations.

Example 4.3: Consider the time fractional-order Cauchy-reaction diffusion equa-
tion (1) with υ = 1, p(x, t) = 2t, given [Kumar (2013)] as

Dα
t u(x, t) = D2

xu(x, t)+2tu(x, t) , x ∈ [0,1] , t > 0, 0 < α ≤ 1, (22)
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Figure 5: Concentration profiles of u in 3D (a) and contour form (b) of Example
4.2 at different time levels t ≤ 1 with the diffusion coefficient υ = 1.

 
Figure 6: Concentration profiles of u in Example 4.2 in 2D at t = 1 for different
values of α .

subject to the initial condition

u(x,0) = ex. (23)

The following recurrence relation is obtained by implementing FRDTM in Eq. (22)

Γ(1+(k+1)α)

Γ(1+ kα)
Uk+1 (x) = D2

xUk (x)+2 Uk−1 (x) . (24)

Next, on taking FRDTM of the initial condition (23), we obtain

U0 (x) = ex. (25)
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Using Eq. (25) into Eq. (24), we obtain

Uk (x) = akex, ∀k = 1,2,3,4, · · · (26)

where the coefficients a′ks are obtained by solving the following recurrence relation

Γ(1+(k+1)α)ak+1 = Γ(1+ kα)(ak +2ak−1) , k > 1, a0 = 1, a1 =
1

Γ(1+α)
.

(27)

Applying the inverse FRDTM on Uk (x), we obtain

u(x, t) =
∞

∑
k=0

Uk (x) tkα= ex
∞

∑
k=0

aktkα

= ex
[
1+ tα

Γ(1+α) +
(

1+2Γ(1+α)
Γ(1+2α)

)
t2α +

(
(1+2Γ(1+α))Γ(1+α)+2Γ(1+2α)

Γ(1+α)Γ(1+3α)

)
t3α + · · ·

]
.

(28)

In particular, for α = 1 in Eq. (22), the exact solution given in Eq. (28) becomes
u(x, t) = ex+t+t2

, which is in complete agreement to the exact solutions of the
given Cauchy-reaction diffusion Eq. (24) for α = 1 with those obtained by ADM
[Lesnic, D. (2005, 2007)], RDTM [Lesnic, D. (2005)], M-HPM [Kumar (2013)],
and RDTM [Sohail, M.; Mohyud-Din, S.T. (2012)].

Fig. 7 shows the comparison between the exact solutions and the approximate
analytical solution at t = 1. Fig. 8 depicts the concentration profiles of u in 3D,
and its contour form (b) at different time levels t ≤ 1 with the diffusion coefficient
υ = 1, whereas Fig. 9 depicts the concentration profiles u in 2D at t ≤ 1 with
α = 0.8 and υ = 1.

Example 4.4: Consider the time fractional-order Cauchy-reaction diffusion equa-
tion (1) with υ = 1, p(x, t) =−4x2 +2t−2, given as in [6]

Dα
t u(x, t) = D2

xu(x, t)−
(
4x2−2t +2

)
u(x, t) , x ∈ [0,1] , t > 0,0 < α ≤ 1, (29)

with the initial condition

u(x,0) = ex2
. (30)

The following recurrence relation is obtained by implementing FRDTM in Eq. (29)

Γ(1+(1+ k)α)

Γ(1+ kα)
Uk+1 (x) = D2

xUk (x) -2(1+2x2) Uk (x)+2 Uk−1 (x) , k=0,1,2,3,...

(31)
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 Figure 7: Comparison of the approximate concentration in Example 4.3 with the
exact concentrations.

 
  

 

Figure 8: Concentration profiles of u in 3D (a) and contour form (b) of Example
4.3 at different time levels t ≤ 1 with the diffusion coefficient υ = 1.

Next, applying FRDTM on the initial condition (30), we obtain

U0 (x) = ex2
. (32)

Using Eq. (32) into Eq. (31), one can obtain the values of Uk (x) successively as

U2k−1 (x) = 0 , and

U2k (x) = 2kex2 k
∏
i=1

(
Γ(1+(2i−1)α)

Γ(1+2iα)

)  ∀k = 1, 2, 3, · · · (33)

Where
k
∏
i=1

xi =x1x2x3...xk. Next, on applying the inverse FRDTM on Uk (x), we
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Figure 9: Concentration profiles of u in Example 4.3 in 2D at different time levels
t ≤ 1 for α = 0.8.

obtain

u(x, t) =
∞

∑
k=0

Uk (x) tkα =U0 (x)+
∞

∑
k=1

U2k−1 (x) t(2k−1)α +
∞

∑
k=1

U2k (x) t2kα

= ex2
[

1+
∞

∑
k=1

2k
(

k
∏
i=1

(
Γ(1+(2i−1)α)

Γ(1+2iα)

))
t2kα

]
.

(34)

In particular, for α = 1 in Eq. (29), the exact solutions (35) becomes

u(x, t) = ex2
[

1+
∞

∑
k=1

2k
(

k
∏
i=1

(
Γ(1+(2i−1))

Γ(1+2i)

))
t2k
]

= ex2
[

1+
∞

∑
k=1

2k
(

k
∏
i=1

(
(2i−1)!

2i!

))
t2k
]

= ex2
[

1+
∞

∑
k=1

(
k
∏
i=1

(1
i

))
t2k
]

=ex2
[

∞

∑
k=0

(t2)k

k!

]
=ex2+t2

.

(35)

The similar exact solution was obtained by [Kumar (2013)] using a modified HPM.
Further, it is found that the exact solutions of the given Cauchy-reaction diffusion
Eq. (24) for α = 1 have complete agreement to with that of obtained by using
[Lesnic, D. (2005, 2007)], RDTM [Lesnic, D. (2005)], M-HPM [Kumar (2013)],
and RDTM [Sohail, M.; Mohyud-Din, S.T. (2012)]. Fig. 10 gives the compari-
son between the exact solutions and the approximate analytical solution at t = 1.
Fig. 11 depicts the concentration profiles of u in 3D, and its contour form (b) at
different time levels t ≤ 1 with the diffusion coefficient υ = 1. Fig. 12 shows the
concentration profiles u in 2D at t ≤ 1 with the differential values of the fractional
coefficients α ≤ 1 and υ = 1.
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Figure 10: Comparison of the approximate concentration in Example 4.4 with the
exact concentrations.

  

 Figure 11: Concentration profiles of u in 3D (a) and contour form (b) of Example
4.2 at different time levels t ≤ 1 with the diffusion coefficient υ = 1.

5 Conclusions

In this study, the FRDTM has been implemented successfully to find out the an-
alytical solution of the time-fractional order Cauchy-reaction diffusion equation.
The obtained solutions by FRDTM is an infinite power series for appropriate ini-
tial condition, and provides the approximate solution without any transformation,
perturbation, discretization, or any other restrictive conditions. Four examples are
carried out to study the accurateness and effectiveness of the technique. The com-
puted solutions by the method are in excellent agreement with those obtained [Ku-
mar [2013)] using M-HPM. However, the performed computations depicts that the
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Figure 12: Concentration profiles of u in Example 4.4 in 2D at t = 0.1 for different
values of α .

implemented method is very easy to use to solve the problems as compared to M-
HPM. The advantage of this technique is that it needs small size of calculation
contrary to the modified homotopy perturbation method. Further, in particular, for
the associated classical Cauchy reaction-diffusion problems of the aforesaid exam-
ples (that is, for α = 1) the exact solutions have a complete agreement with the
solutions obtained by using M-HPM, ADM, VIM, HAM, HPM, RDTM available
in the literature.
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