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Space-time Discontinuous Galerkin Method Based on a
New Generalized Flux Vector Splitting Method for
Multi-dimensional Nonlinear Hyperbolic Systems
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Abstract: The space-time discontinuous Galerkin method for multi-dimensional
nonlinear hyperbolic systems is enhanced with a generalized technique for split-
ting a flux vector that is not limited to the homogeneity property of the flux. This
technique, based on the flux’s characteristic decomposition, extends the scope of
the method’s applicability to a wider range of problems, including elastodynamics.
The method is used for numerical solution of a number of representative problems
based on models of vibrating string and vibrating rod that involve the propagation
of a sharp front through the solution domain.
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1 Introduction

The Discontinuous Galerkin (DG) method stems from investigations of numeri-
cal solution of the linear neutron transport equation, first Reed and Hill (1973)
and subsequently by Lesaint and Raviart (1974). Since then the method has been
widely developed and analyzed, and used extensively in different fields ranging
from computational fluid dynamics and acoustics to electromagnetics and elastic-
ity. For an extensive overview of DG methods see Cockburn, Karniadakis, and
Shu (2000), Hesthaven and Warburton (2008), Di Pietro and Ern (2012), and Feng,
Karakashian, and Xing (2014), and the references therein.

DG methods involve discontinuous approximations over finite elements with
weakly enforced connectivity. Consequently, these methods can easily handle ir-
regular meshes, complex geometries and polynomial approximations of different
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degrees in different elements, making them suitable for hp-adaptivity. Moreover,
they are stable, locally conservative, high-order accurate and highly parallelizable.
The other advantage of these methods lies in their ability to accurately capture dis-
continuities, sharp gradients and shocks in the solution, making them attractive for
high frequency response of the system.

In this paper we focus on a particular family of DG methods, known as explicit
space-time DG, which treat time as an additional element dimension and assume
the unknown fields to be discontinuous in time. These methods have another exclu-
sive advantage in that they easily allow for unstructured meshes in the space-time
domain (i.e., different time steps may be used in different elements). This is be-
cause the time step is no longer governed by the smallest elements in the mesh via
a CFL condition, thus reducing computational cost. This approach was introduced
by Bar-Yoseph (1989), who expanded the basic idea of Lesaint and Raviart (1974)
to multi-dimensional nonlinear and quasi-linear hyperbolic systems of equations
with shock fronts. Flux vector splitting with an alternating sweep in the forward
and backward space directions was used. In this algorithm the discontinuities of the
split fluxes are weighted along all boundaries, resulting in a physically meaningful
upwinding effect.

Bar-Yoseph and Elata (1990) further developed this notion to provide an answer to
the efficiency problem by moving the nodes to Gauss points, thus cutting down the
number of operations needed. They were also able to reconstruct the exact solution
of some problems by using titled elements, thus offering an a posteriori error study.
Bar-Yoseph, Elata, and Israeli (1993) offered a qualitative and quantitative presen-
tation of the stability, dissipation and dispersion of this method. Later, Aharoni
and Bar-Yoseph (1992) developed a new approach for the integration of govern-
ing nonlinear ODE’s in time. Zrahia and Bar-Yoseph (1994a) further generalized
this using the time spectral element method, which is a high-order method with
high numerical efficiency and a high degree of accuracy that has been subsequently
successfully used [Ben-Tal, Bar-Yoseph, and Flashner (1995, 1996); Bar-Yoseph,
Fisher, and Gottlieb (1996a, b); Bar-Yoseph (1998); Weill, Shitzer, and Bar-Yoseph
(1993); Zrahia and Bar-Yoseph, (1994b); Bar-Yoseph, Moses, Zrahia, and Yarin
(1995); Naveh, Bar-Yoseph, and Halevi (1999)].

The flux vector splitting technique employed in Bar-Yoseph (1989) and Bar-Yoseph
and Elata (1990) was developed by Steger and Warming (1981). This technique
worked for systems in which the flux vectors are homogeneous functions of de-
gree one of variables, e.g., Euler equations. Yet not all hyperbolic systems satisfy
this property. Among those that do not are shallow water equations and equations
of elasticity, for example. In this study we enhance the method first proposed by
Bar-Yoseph (1989), Bar-Yoseph and Elata (1990), and Bar-Yoseph, Elata, and Is-
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raeli (1993) with a new generalized technique for splitting the flux vector that is
not limited to its specific properties. Specifically, the homogeneity property of
the flux vector is no longer required. This technique is based on the flux’s char-
acteristic decomposition, thus extending the scope of applicability of Bar-Yoseph
(1989), Bar-Yoseph and Elata (1990), and Bar-Yoseph, Elata, and Israeli (1993) to
a wider range of problems, and particularly to equations of elasticity. At this point
we should emphasize that this method has a particular advantage for problems in
solid mechanics that involve large deformations in soft materials because, due to its
Eulerian nature, this method uses a fixed mesh, and as opposed to its Lagrangian
counterpart, no element distortions will occur.

This paper is organized as follows. The mathematical formulation is described
in the second section. We present our computational model in the third section,
together with a new generalized technique for flux vector splitting. The computa-
tional results of various problems based on models of vibrating string and vibrating
rod are provided and discussed in the fourth section. The critical time required
for solution to reach a breakdown in nonlinear problems is estimated analytically,
based on the work of Lax (1964). Finally, the last section offers some conclusions.

2 Formulation

Let Ω ⊂ RN+1 be an open space-time region with piecewise smooth boundary Γ.
Let (x0, x1 , . . . , xN) be the set of Cartesian coordinates of point x in Ω: x0 denotes
the temporal coordinate t, and (x1,x2, . . . , xN) are the spatial co-ordinates, where N
is the number of space dimensions. Let eee = {eeei}, i = 0(1)N denote the canonical
basis vectors of RN+1 and let nnn = nieeei, i = 0(1)N be the inward unit vector normal
to Γ (summation convention on repeated indices operates unless specifically stated
otherwise). For simplicity, we assume that

Ω =
N+1

∏
i=0

]0,xi[ (Ω is a hyperbrick domain)

and Γ is an N-dimensional hypersurface, admitting the following decomposition:

Γ =
2N⋃
j=0

Γ j; Γi∩Γ j = Ø, i 6= j, i , j = 0(1)2N (1)

where

Γ j =

{ {
xxx ∈ Γ : nnn · eeei = 1, i, j = 0: j = 2i-1, i = 1(1)2N

}{
xxx ∈ Γ : nnn · eeei =−1, j = 2i, i = 1(1)2N

} (2)

and Ø is the empty set.
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We consider the following system of mfirst-order non-linear differential equations:

∂tuuu+∂ j fff j = ggg in Ω , j = 1(1)N (3)

where

∂i =
∂

∂xi
, fff i = fff i (uuu) , ggg = ggg(uuu, xxx) , i = 0(1)N (4)

Eq. (3) is a system of balance laws derived for u belonging to an open space of
Rm. The flux vectors, fff i ∈ Rm, i = 0(1)N, are non-linear functions of u. The vector
ggg ∈ Rm is a source vector.

System (3) can be also rewritten in a quasi-linear form

∂tuuu+AAA j
∂ juuu = ggg in Ω, j = 0(1)N (5)

where AAAi (uuu) = ∂u fff i, i = 0(1)N are the corresponding m×m Jacobian matrices.
We assume AAAi (uuu) are defined such that (5) is a first-order hyperbolic system (i.e. it
has real eigenvalues).

The present Initial Boundary Value Problem (IBVP) consists of finding a function
u, which satisfies (3) or (5) subject to the initial condition

uuu = uuu0 on Γ0 (6)

together with boundary conditions of the form

BBB juuu = bbb j on Γ j, j = 1(1)2N (7)

Here, uuu0 and bbb j are given functions and BBB j are given matrices.

Consider a hypersurface S(x) which divides the region Ω into two subregions Ω+

and Ω−. Let ψ be a tensor-valued function which is continuous in Ω+ and Ω−, and
has definite limits ψ+ and ψ− as x approaches a point on the hypersurface S from
paths entirely within the regions Ω+ and Ω−, respectively. The surface is called a
singular surface with respect to ψ if

[[ψ]]S = ψ
+−ψ

− 6= 0 (8)

A singular surface is said to be a wave front if and only if it coincides with the
one induced by physics. Here, ψ+ is the region ahead of the "inflow" direction,
whileψ− is the region behind it. If u is discontinuous across a space-time hyper-
surface S, the integrated balance laws imply that the jump in u across S satisfies

ni
[[

fff i]]
S = 0 (9)
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in which n is the space-time normal to the singular hypersurface.

Let L2(Ω),L2(Γi) denote the Hilbert spaces of real-valued functions, square in-
tegrable in the Lebesgue sense on Ω,Γi respectively. The inner products for m-
dimensional vector functions can be defined as

(uuu,vvv)
Ω
= (uuu,vvv)0,Ω =

∫
Ω

uuuT vvvdx for all uuu,vvv ∈ (L2 (Ω))m

〈uuu,vvv〉
Γi
= (uuu,vvv)0,Γi

=
∫

Γi
uuuT vvvds for all uuu,vvv ∈ (L2 (Γi))

m (10)

A weak form of the balance laws including jump terms can be written as follows:(
www,∂tuuu+∂i fff i−ggg

)
Ω
+
〈
www,ni

[[
fff i]]〉

S∪Γ
+ 〈www, [[uuu]]〉

Γ0
= 0

for all uuu,www ∈ (L2 (Ω))m (11)

3 Computational model

Let the given domain Ω be replaced by a collection Ωh of hyperbrick elements Ωh,

Ωh =
NE⋃
e=1

Ωe, Ωc∩Ωd = Ø for all c 6= d, c,d = 0(1)NE, satisfying certain regu-

larity conditions [Hughes (1987)]. Suppose that the temporal and spatial domains
are discretized by a uniform mesh of elements, i. e., h0 = ht and hi = hx, i = 1(1) N,
where ht and hx are the mesh parameters representing the element size in the time
and space directions, respectively. Thus, the element aspect ratio can be defined as
r = ht /hx.

We introduce the following space-time finite element space of admissible functions:

V h = {vvv ∈ (L2 (Ω))m : vvv|
Ωe ∈ Qkl (Ω

e) for all Ω
e ∈Ωh } (12)

where Qkl denotes the space of polynomials on Ωe of degree k in space and l in
time, i.e. V h is the space of piecewise polynomials with no continuity requirement
across inter-element boundaries.

Let nnne = ne
i eeei, i = 0(1)N be the unit inward normal vector to the element boundary

Γe. The element boundaries are defined by

Γ
e =

2N⋃
j=0

Γ
e
j; Γ

e
i ∩Γ

e
j = Ø , i 6= j, i, j = 0(1)2N (13)

where

Γe
j =

{ {
x ∈ +Γe : nnne · eeei = 1, i = 0(1)N, j = 2i

}{
x ∈ −Γe : nnne · eeei =−1, i = 0(1)N, j = 2i+1

}
+Γe

i =
{

x ∈ +Γe : nnne · eeei = 1, i = 0(1)N
}

−Γe
i =

{
x ∈ −Γe : nnne · eeei =−1, i = 0(1)N

} (14)

here +Γe
i and −Γe

i are called the positive and negative element boundaries.
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3.1 Flux Vector Splitting

Although techniques for multi-dimensional splitting of flux vectors have been more
extensively utilized in finite difference computations, they are equally applicable to
finite element methods. In order to obtain a numerically stable explicit scheme for
solution of (3) or (5), it is useful to split the flux vector according to the direction
of propagation of information in the space-time domain, e.g. according to the sign
of the wave propagation speed in the differential equation. The theory of multi-
dimensional splitting of flux vectors was developed by Steger and Warming (1981)
and later used in Bar-Yoseph (1989), and Bar-Yoseph and Elata (1990). It involves
an attempt to systematically stabilize finite difference schemes employed for invis-
cid gas dynamic equations. The approach was based on the homogeneity property
of the Euler equations in combination with specific equations of state, which al-
lowed splitting the Jacobian matrix AAA into +AAA and −AAA with respect to positive and
negative eigenvalues and acquiring the positive and negative fluxes as a multiplica-
tion of the correspondent matrices with the variables uuu. This is also true for linear
systems with constant coefficients. During the last decades, various flux-splitting
techniques have proposed [Toro (2009)], mostly developed for the Euler equations
of gas dynamics and usually relying on the above homogeneity property. How-
ever, not all hyperbolic systems satisfy this property. Among those that do not are
shallow water equations and equations of elasticity, for example.

In this chapter we introduce a generalized technique for flux vector splitting that
is based on characteristic decomposition of f and that no longer requires the above
homogeneity property. Let λ i

j, λ i
j ∈ R1, j = 1(1)m, i = 1(1)N, be the m eigen-

values of the (m×m) Jacobian matrix AAAi, called characteristic speeds, and vvv( j)
i ,

vvv( j)
i ∈ Rm, j = 1(1)m, i = 1(1)N the m corresponding linearly independent right

eigenvectors that express the corresponding characteristic directions. Physically,
eigenvalues represent speeds of propagation of information. Speeds will be mea-
sured as positive in the direction of increasing x and as negative otherwise.

The total flux vector fff i may be decomposed with respect to characteristic directions
in the following way:

fff i =
m

∑
j=1

α
j

i vvv( j)
i (15)

where α
j

i , α
j

i ∈ R1, j = 0(1)m, i = 0(1)N are the eigenvector coefficients deter-
mined by direct solution of (15), which is actually an algebraic system of rank m.

We assume that the flux vectors can be split into two parts as

fff i = + fff i +− fff i (16)



Space-time Discontinuous Galerkin Method 25

where

+ fff i =

λ i
j≥0

∑
j

α
j

i vvv( j)
i

− fff i =

λ i
j≤0

∑
j

α
j

i vvv( j)
i (17)

are the flux components associated with the positive and negative direction of xi

respectively. It should be noted that in the general case of nonlinear problems, the
eigenvalues may change their signs from point to point in the space-time domain.
This implies that flux splitting must be consequently performed at each iteration,
so the positive and negative sets of fluxes will change their compound accordingly.

Further we formulate the positive and negative fluxes in a quasi-linear form, which
will be useful later in this paper

+ fff i = +ÂAA
i
(uuu) ·uuu − fff i = −ÂAA

i
(uuu) ·uuu (18)

where we call ±ÂAA
i

the positive and negative multiplicative matrices of u with re-
spect to ± fff i, which have two positive and two negative eigenvalues respectively. A
good question to ask here is whether it is always easy to decompose any flux in this
way. In all the examples considered in this paper this is straightforward. Otherwise,
special techniques may be required. We emphasize that ±ÂAA

i
are not the Jacobian

matrices, i.e. ±ÂAA
i 6= ±AAAi = ∂± fff i/∂uuu, and AAAi 6= +AAAi +−AAAi or AAAi 6= +ÂAA

i
+−ÂAA

i
as

implied in Steger and Warming (1981) and later in Bar-Yoseph (1989), though they
are equal for the linear case. Moreover, up to this point the fluxes are written in
their exact form with no linearization.

3.2 Discontinuous Galerkin

Two different types of styles can be used for equations and mathematical expres-
sions. They are: in-line style, and display style. The discontinuous Galerkin finite
element method of (5) is obtained by posing the following formulation on a finite
dimensional subspace Vh of the space of admissible functions. Specifically we seek
uuuh ∈VVV h such that

h
(

www,∂tuuuh +∂i fff i
h−gggh

)
Ωe
+h 〈www,[[+ fff i

h
]]〉

+Γe
i
−h 〈www,[[− fff i

h
]]〉
−Γe

i
+h
〈

www,
[[

uuuh
]]〉

Γe
0

= 0

for all www ∈VVV h; Ω
e ∈Ωh

(19)

where h (., .) and h 〈., .〉 denote the discrete inner products, and [[ψ]] = ψ in−ψout ,
ψ in, ψout are the values of ψ at the element boundary on the inside and outside of
the element, respectively, and fff i

h denotes the element flux.
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Since the approximate solution uh is uniquely determined by (19), it is possible
to compute uh successively on each element Ωe ∈ Ωh, e = 1(1)NE, starting at the
’inflow’ boundary Γ− where the initial boundary conditions are weakly imposed.
Here the initial and boundary conditions, equations (6) and (7), are replaced by
weak conditions on the flux vector components across Γ−. This means that we
have to impose a set of conditions that are combinations of the physical variables
instead of the physical variables themselves. We use the standard discontinuous
Galerkin method in which the weighting functions vector is the same within the
element domain and on the element boundary.

Alternately, the discontinuous Galerkin method can be generalized by the Petrov-
Galerkin method in which not only the jump discontinuity and the residual terms
may be weighted by different test functions, but also the test functions and the
base functions are different. Recently, Han and Atluri (2014a,b) presented an ap-
proach, which blends the (Meshless Local Petrov Galerkin) MLPG Methods of
Atluri (1998, 2004) and the energy conservation laws of Noether (1918) and Es-
helby (1951,1975), and showed that it converges much faster and leads to much
better accuracies than the classical FEM based on the global weak forms of the
Newtonian Momentum Balance Laws.

3.3 Computational aspects

In order to explain how the method works, we review the technique of constructing
the element coefficient matrix and the right-hand-side vector, using the proposed
scheme; further details may be found in Bar-Yoseph and Elata (1990).

The base functions are discontinuous both in space and time. We use the Gauss-
Lagrange interpolation, where the base functions, N̂i, are defined at the ngv points
of the Gauss-Legendre quadrature of the master element, i.e., N̂i(p̂pp j

V ) = δi j, i, j+
1(1)ngv, where p̂pp1

V , p̂pp2
V , ..., p̂ppngv

V are the integration point coordinates in each ele-
ment.

We emphasize at this point that the approximation space of the Gauss-Lagrange in-
terpolation is exactly the same as for the standard interpolation in which the nodes
are located at the corners and midside points of the element (i.e., the discretization
error is the same), but the Gauss-Lagrange interpolation for DG is more computa-
tionally efficient [Bar-Yoseph and Elata (1990)].

Bilinear and biquadratic Lagrangian base functions are used in two dimensions
over the master element. Similarly, in three dimensions trilinear and triquadratic
Lagrangian bases are used over a brick.

We apply the Gaussian quadrature formula to define the discrete L2 (Ωe) inner
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product as

h
(

www,∂tuuuh
)

Ωe
=

ngv

∑
j=1

H j
V w̃ww∂t ũuuh (20)

h (www,∂i fff i
h
)

Ωe =
h
(

www,AAAi
∂iuuuh

)
Ωe

=
ngv

∑
j=1

H j
V w̃wwÃAA

i
∂iũuuh (21)

h
(

www,gggh
)

Ωe
=

ngv

∑
j=1

H j
V w̃ww∂tgggh (22)

where w̃ww = www(α̃ j
V ), ũuuh = uuuh(α̃ j

V ), ÃAA
i
= AAAi(α̃ j

V ), α̃
j

V are the coordinates of the Gauss
points (α̃ j

V coincides with p̂pp j
V ), and H j

V are the quadrature weights. AAAi denotes the
Jacobian matrices of fff i with respect to u.

Similarly, for the surface integral we define the discrete L2 (Γe
i ) inner product, as

applied on the discontinuities in the split flux vectors, as

h 〈www,[[± fff i
h
]]〉

Γe
i
= h
〈

www,
[[
±ÂAA

i
uuuh
]]〉

Γe
i

=
ngs

∑
j=1

H j
Si

w̃ww
[[
± ˜̂AAAiũuuh

]]
(23)

h
〈

www,
[[

uuuh
]]〉

Γe
0

=
ngs

∑
j=1

H j
Si

w̃ww
[[

ũuuh
]]

(24)

where ±ÂAA
i

are the positive and negative multiplicative matrices of u with respect
to ± fff i, w̃ww = www(α̃ j

S), ũuuh = uuuh(α̃ j
S),
± ˜̂AAAi =± ÂAA

i
(α̃ j

S), α̃
j

S are the coordinates of the
surface Gauss points, H j

Si
are the quadrature weights on Γe

i , ngs is the number of
nodal points per element face, and ngs is the number of integration points on an
element face.

Substituting (20-24) into equation (20) yields a matrix equation in the following
form:

(KKKV +KKKS)ddd = qqq (25)

where KKKV is the volume matrix; KKKS is the surface matrix; q represents the contri-
bution of adjacent elements to the flux jump conditions; d is the unknown element
values of uh; and Γe

i , the element surfaces, are singular surfaces with respect to uh.

As mentioned in section 3.1, in the general case of quasi-linear equations (5) the
sign of every characteristic speed can be a function of (x, u). Therefore, it would be
more natural to solve (25) by a semi-iterative technique with an alternating sweep
in the forward and backward x-directions.
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The algorithm is composed of two sequential steps. In the first step, using the
solution of the previous iteration for imposing weak conditions along the element
boundaries, the solution within each element is directly defined by a LU decom-
position or an iterative solver. In the second step, the element flux vectors are
iteratively updated. Since the solution procedure follows an element-by-element
iteration, the problems of bandwidth and frontwidth associated with direct solvers
do not arise. Consequently, storage and computation are not influenced by element
or node numbering.

The following examples demonstrate the application of this procedure to linear and
quasi-linear problems.

4 Numerical examples

In this section we provide examples of different vibrating string and elastic rod
models in which discontinuities appear. All problems are solved by bilinear (BL)
and biquadratic (BQ) discontinuous finite elements, since LQ and QL elements
were found not to be effective [Bar-Yoseph (1989)]. Based on the work of Lax
(1964), we analytically estimate the critical time required for solution of nonlinear
problems to reach a breakdown and compare this to the one obtained from numeri-
cal results. In addition, we calculate and analyze the rate of convergence.

4.1 Nonlinear string

In the following examples we consider the standing vibrations of a finite, continu-
ous, and nonlinear string [Zabusky (1962)], stretched along the x-axis from 0 to L,
fixed at its end points. The reference mass density of the string denoted by ρ0, T0 is
the tension of the string and φ(x, t) is the deflection of the string in the transversal
direction.

The governing equation is given by

∂ 2φ

∂ t2 = c2 ∂ 2φ

∂x2 x ∈ (0,L) (26)

where

c2 = c2
0

(
1+ ε

∂φ

∂x

)γ

(27)

is the square effective wave speed [Zabusky (1962)], the nonlinearity of interest,

c0 =
√

T0
/

ρ0 is a reference wave speed, and ε and γ are real positive scalars. The
initial and boundary conditions are as follows

φ (x,0) = sin(πx/L) φ (0, t) = φ (L, t) = 0 (28)
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The second-order equation (26) may be transformed to the following system of
first-order equations

∂u1

∂ t
− c(u1,u2)

2 ∂u2

∂x
= 0

∂u2

∂ t
− ∂u1

∂x
= 0

x ∈ (0,L) (29)

where

u1 =
∂φ

∂ t
u2 =

∂φ

∂x
(30)

In general these variables do not have to have a definite physical interpretation but
rather some combination of some physical variables. In the case of a vibrating
string, choosing them in this way gives them a physical meaning of velocity and
slope of the string, respectively.

The initial and boundary conditions become

u1 (x,0) = 0 u1 (0, t) = u1 (L, t) = 0
u2 (x,0) = π/L · cos(πx/L) u2 (0, t) = π/L · cos(c(u1,u2)πt/L)

u2 (L, t) =−π/L · cos(c(u1,u2)πt/L)
(31)

The Jacobian matrix of (29) is

AAA(u1,u2) =

[
0 −c(u1,u2)

2

−1 0

]
(32)

with the eigenvalues

λ1 = c(u1,u2) λ2 =−c(u1,u2) (33)

and the corresponding eigenvectors

vvv(1) =
{
−c(u1,u2)
1

}
vvv(2) =

{
c(u1,u2)
1

}
(34)

The total flux of the system can be obtained by integration

fff (u1,u2) =

{
−
∫

c(u1,u2)du2
−
∫

du1

}
(35)

It should be emphasized that the similar flux obtained using the Steger and Warming
(1981) technique, fff (u1,u2)

T =
{
−c(u1,u2)u2 −u1

}
, is essentially linearized.
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To recapture the displacement φ from u2 we may use the Newton-Cotes numerical
integration for every time level j, in a trapezoidal sense for bilinear elements

φi, j = φi−1, j +hx ·
1
2
·
(
ui−1, j

2 +ui, j
2

)
(36)

and in a Simpson sense for biquadratic elements

φi, j = φi−1, j +hx ·
1
3
·
(

ui−1, j
2 +4u

i− 1
2 , j

2 +u, j
2

)
(37)

where φi, j and ui, j
2 are the values at the points i, j of the space-time domain and hx

is the element size in the space direction, thus obtaining an exact integration of u2.

4.1.1 4.1.1 Linear spring

As a first example we consider the simplest case of linear infinite string (γ = 0), so
(27) becomes

c(u1,u2)
2 = c2

0 (38)

The analytical solution for this IBVP is given by:

φ = sin(πx/L) · cos(c0πt/L)
u1 =−c0π/L · sin(πx/L) · sin(c0πt/L)
u2 = π/L · cos(πx/L) · cos(c0πt/L)

(39)

The expressions for the total flux (35), the right eigenvectors, and the positive and
negative flux vectors were obtained using the technique described in section 3.1,
and the multiplicative matrices (18) are presented in the Appendix.

In this particular example the Steger and Warming (1981) splitting technique yields
identical results because f is linear. For this example we use the following param-
eters, L = 1 , c0 = 1.

In this paper we concentrate only on a posteriori error analysis. In the example
problems, the L2 error norm is considered

‖e‖2 =

√∫
Ω

(u−uh)2dΩ (40)

where u is the exact solution (or reference solution at dense mesh) and uh is the
approximated solution.

The error as a function of the element aspect ratio r for different elements is shown
in Fig. 3a (here ht is increased while hx is held fixed; hx =20 for BL and BQ
elements).
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Figure 1: Linear spring: (a) displacement, (b) velocity and (c) slope for hx= 1/20,
r= 1.

 

Figure 2: Linear spring: slope at t = 3.0 for hx= 1/5, r= 1.
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Figure 3: Linear spring: solution accuracy and convergence in L2 norm as function
of (a) r, and (b) hx.

Above a certain value of r, the error is dominated by the temporal error, and the
optimal rate of convergence h1+1 for BL and h1+2 for BQ is recovered. Moreover
the scheme is unconditionally stable (independent of Courant No.= |c|r). We can
use BL or BQ elements with Courant No. = 1 without affecting the solution accu-
racy. The rate of convergence is depicted in Fig. 3b (here the element aspect ratio
r is held fixed =1/2). Again, the optimal rate of convergence is obtained.

4.1.2 Nonlinear spring with γ = 1

As a second example we consider a nonlinear case with γ = 1, so that (27) becomes:

c(u1,u2)
2 = c2

0 (1+ εu2) (41)

The expressions for the total flux (35), the right eigenvectors, and the positive and
negative flux vectors are obtained with the technique described in section 3.1, and
the multiplicative matrices (18) are presented in the Appendix.

In this example we use the following parameters, ε = 0.2, L = 1, c0 = 1.

The critical time required for a solution to reach a breakdown in non-linear prob-
lems can be estimated analytically based on the work of Lax (1964)

Tcr ∼= 2 ·
[

c,u2 |u2=0 ·max φ,xx (0)
]−1

(42)

Based on (42) the breakdown is expected to occur in this example at Tcr ∼=
4L2
/
(c0επ2) = 2.0264.
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Figure 4: γ = 1: (a) displacement, (b) velocity and (c) slope for hx= 1/20, r= 1.

 

Figure 5: γ = 1: (a) velocity and (b) slope at t = 3.0 for hx= 1/32, r= 1.
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Figure 6: γ = 1: solution accuracy and convergence in L2 norm as function of hx.

Fig. 5 shows that biquadratic elements produce a steeper shock front and have less
dissipation than bilinear ones.

Fig. 6 shows the rate of convergence in a regular region. Since it is impossible
to say anything about the rate of convergence in the vicinity of the shock front
[Bar-Yoseph (1989)], in most of the examples the regions away from the shock
front (at every regular point) are considered. The examples show that the full rate
of convergence is achieved. In the BL case the convergence is even faster than
expected: ≈2.3.

4.1.3 Nonlinear spring with γ = 2

As a third example we consider a nonlinear case with γ = 2, so that (27) becomes:

c(u1,u2)
2 = c2

0 (1+ εu2)
2 (43)

The expressions for the total flux (35), the right eigenvectors, and the positive and
negative flux vectors are obtained with the technique described in section 3.1, and
the multiplicative matrices (18) are presented in the Appendix.

For this example we used the following parameters, ε = 0.2, L = 1, c0 = 1.

Based on (42), in this example the breakdown is expected to occur at Tcr ∼=
4L2
/
(c0επ2) = 1.0132.

In this example the breakdown occurs faster than in the previous example. There-
fore, we only discuss the solution up until t=1.0.

This example again shows that BQ elements produce a steeper shock front but also
more wiggles. BL elements produce more dissipation, which damps the waves with
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Figure 7: γ = 2: (a) displacement, (b) velocity and (c) slope for hx= 1/20, r= 1.

 

Figure 8: γ = 2: (a) velocity and (b) slope at t = 1.0 for hx= 1/20, r= 1.
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Figure 9: γ = 2: (a) velocity and (b) slope at t = 3.0 for hx= 1/40, r= 1.

the high frequencies that cause those wiggles. Fig. 8 - 9 show that as we refine the
mesh, the solution becomes more accurate, producing a steeper shock front and
fewer oscillations.

4.2 Nonlinear elastic rod

4.2.1 Nonlinear elastic rod with clamped-free boundary conditions

Next we consider the longitudinal vibration of the clamped-free finite elastic rod
of length L exposed to initial deflection φ0 at the free edge. The reference mass
density of the rod is denoted by ρ0, E0 is the Young modulus, and φ (x, t) is the
deflection of the rod in the longitudinal direction. The governing equation is the
same equation (26), as in the previous example, but with a different effective wave
speed

c2 = c2
0

1
1+ ε

(
1+

ε(
1+∂φ

/
∂x
)2

)
(44)

where c0 =
√

E0
/

ρ0 is the reference wave speed and ε is a real positive scalar.

The initial and boundary conditions are as follows

φ (x,0) = φ0x/L φ (0, t) = 0
∂φ(L,t)

∂x = 0
(45)

Now the governing equation is transformed, as in section 4.3, to the system of first-
order equations as (29) and (30), where u1 and u2 are the velocity in the longitudinal
direction and the axial strain, respectively.
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The initial and boundary conditions become

u1 (x,0) = 0 u1 (0, t) = 0
u2 (x,0) = φ0/L u2 (L, t) = 0

(46)

and (44) becomes

c(u1,u2)
2 = c2

0
1

1+ ε

(
1+

ε

(1+u2)
2

)
(47)

The expressions for the total flux, the right eigenvectors, and the positive and neg-
ative flux vectors are obtained with the technique described in section 3.1, and the
multiplicative matrices (18) are presented in the Appendix.

For this example we use the following parameters, L = 1, c0 = 1, φ0 = 0.2.

 

Figure 10: Nonlinear clamped-free elastic rod: (a) displacement, (b) velocity and
(c) slope for hx=1/20, r=1.
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Figure 11: Nonlinear clamped-free elastic rod: (a) velocity and (b) strain at t = 3.0
for hx =1/20,r=1.

 
Figure 12: Nonlinear clamped-free elastic rod: strain in the middle of the rod as a
function of time (0≤ t ≤10), hx= 1/20 , r= 1.
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Fig. 12 shows that in this example the BQ elements are absolutely superior to the
BL elements: they yield steeper solution profiles with less dissipation and a smaller
amount of overshoot (away from boundaries) than in the BL case. The overshoot
is greater for the BQ case only until t=0.5.

Fig. 13 demonstrates the rate of convergence of the problem in the whole space-
time domain. Because there are shock fronts in the solutions for both the linear and
the nonlinear cases, we should not expect the full rate of convergence. In all these
cases the rate of convergence is ≈1.

In all these examples, 10 -15 iterations per time level were required for convergence
to meet π/10−4 error criteria.

Though the discontinuities in this example are present from the beginning, no
breakdown occurs, as can be seen in Fig. 10 - 11. This is compatible with the
Lax (1964) prediction, in which for φ,xx (0) = 0 the breakdown is not expected to
occur, Tcr = ∞.

 
Figure 13: Nonlinear clamped-free elastic rod: solution accuracy and convergence
in L2 norm as function of hx (0≤ t ≤3).

4.2.2 Nonlinear elastic rod with clamped-clamped boundary conditions

We still want to examine the emerging breakdown for the rod problem, so we
change the initial and boundary conditions as in the vibrating string problem in
the previous examples (31). In this example we use the following parameters,
ε = 0.5, L = 1, c0 = 1, φ0 = 0.2.
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Figure 14: Nonlinear clamped- clamped elastic rod: (a) displacement, (b) velocity
and (c) strain for hx= 1/20, r= 1.

Based on (42) the breakdown is expected to occur at Tcr ∼= 2(1+ ε)L2/(0.2c0επ2)
= 3.0396. From all these examples we can see that when ε = 0 no breakdown
will occur. Again it is evident that BQ elements produce a steeper shock front and
clearly a greater amount of overshoot. Lower order elements produce more numer-
ical dissipation and therefore can yield solution profiles with a smaller amount of
overshoot compared to those of higher order elements.

Fig. 15 also indicates a phase difference between the BL and BQ cases: The av-
erage location of the shock front for the BL case is to the right of the one for the
BQ case. As we have seen in the previous example, BL elements produce more
dispersion errors than BQ elements. Fig. 16 shows the rate of convergence in a
regular region. Again we can see that the full rate of convergence is achieved.
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Figure 15: Nonlinear clamped-clamped elastic rod: (a) velocity and (b) strain at t
= 3.0 for hx= 1/20, r= 1.

 
Figure 16: Nonlinear clamped-clamped elastic rod: solution accuracy and conver-
gence in L2 norm as function of hx (0≤ t ≤1).
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5 Concluding remarks

The main conclusions of this work are as follows:

1. The space-time discontinuous finite element algorithm enhanced with a new
generalized technique for flux vector splitting has been proved to be an efficient
algorithm in numerical approximation for IBVP, especially for those solutions that
develop shock layers. Moreover, it has also been shown to be valid for problems in
elasticity.

2. The proposed technique for the splitting of flux vectors based on characteristic
decomposition is valid for any kind of flux. Its computational efficiency for other
types of problems should be further investigated.

3. Based on a posteriori error analysis we found that for smooth solutions, the
optimal rate of convergence hn+1 was recovered in L2 norm for both linear and
nonlinear hyperbolic systems, while in some cases of bilinear elements even a slight
super convergence was observed. For regions with discontinuities in the solution,
the convergence is slower than optimal.

4. All the profiles have a typical overshoot, although the wave front is quite crisp.
Lower order elements have a greater degree of numerical dissipation and therefore
can yield solution profiles with a smaller amount of overshoot compared to those of
higher order elements, though higher order elements produce a steeper shock front.

5. Numerical results demonstrate that the present method may be effective in sup-
pressing spurious oscillations with short wavelength. It is concluded that a proper
combination of an h− p refinement strategy can be a viable alternative to schemes
equipped with artificial stabilizers. The exact jump conditions can be reconstructed
by tilting the element boundaries in the direction of a shock wave front [Bar-Yoseph
and Elata (1990)].

6. The breakdown time in all relevant examples was found to be in agreement with
theoretical prediction [Lax (1964)].

7. This method has a particular advantage for problems in solid mechanics that
involve large deformations in soft materials, because this method, being essentially
Eulerian, uses the fixed mesh, and contrary to its Lagrangian counterpart, no ele-
ment distortions will occur.
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Appendix

In this appendix, for each example, we present the expressions for the total flux
(35), right eigenvectors, the positive and the negative flux vectors, obtained with
the technique described in the section 3.1, and the multiplicative matrices (18).

4.1.1.

fff =
{
−c2

0u2
−u1

}
(A.1)

λ1 = c0 λ2 =−c0 (A.2)
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−c0
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}
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4.1.2.

fff =
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−c2

0
(
1+ 1

2 εu2
)

u2
−u1

}
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+ fff =

{
1
2 c0
√

1+ εu2 ·u1− 1
4 c2

0 (2+ εu2) ·u2

−1
2 u1 +

1
4 c0

(2+εu2)√
1+εu2

·u2

}
− fff =

{
−1

2 c0
√

1+ εu2 ·u1− 1
4 c2

0 (2+ εu2) ·u2

−1
2 u1− 1

4 c0
(2+εu2)√

1+εu2
·u2

} (A.9)
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4.1.3.
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+ÂAA =

[ 1
2 c0 (1+ εu2) −1

2 c2
0
(
1+ εu2 +

1
3 ε2u2

2
)

−1
2

1
2 c0

(1+εu2+
1
3 ε2u2

2)
(1+εu2)

]
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4.2.
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