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Solution of Two-dimensional Linear and Nonlinear
Unsteady Schrödinger Equation using “Quantum

Hydrodynamics” Formulation with a MLPG Collocation
Method
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Abstract: A numerical solution of the linear and nonlinear time-dependent Schrö-
dinger equation is obtained, using the strong form MLPG Collocation method.
Schrödinger equation is replaced by a system of coupled partial differential equa-
tions in terms of particle density and velocity potential, by separating the real and
imaginary parts of a general solution, called a quantum hydrodynamic (QHD) equa-
tion, which is formally analogous to the equations of irrotational motion in a clas-
sical fluid. The approximation of the field variables is obtained with the Moving
Least Squares (MLS) approximation and the implicit Crank-Nicolson scheme is
used for time discretization. For the two-dimensional nonlinear Schrödinger equa-
tion, the lagging of coefficients method has been utilized to eliminate the non-
linearity of the corresponding examined problem. A Type-I nodal distribution is
used in order to provide convergence for the discrete Laplacian operator used at the
governing equation. Numerical results are validated, comparing them with analyti-
cal and numerical solutions.

Keywords: MLPG Collocation Method, Moving Least Squares, Schrödinger Equa-
tion, Quantum Hydrodynamics.

1 Introduction

The meshless (or meshfree) methods are being actively developed as a powerful
numerical tool for various engineering and physical applications. The primary rea-
son for the significant interest in meshless computational procedures is that most of
the established numerical techniques, such as the Finite Element Method (FEM),
the Finite Volume Method (FVM), the Finite Difference Method (FDM) and the
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Spectral Method (SP) require a mesh. The automatic generation of a good quality
mesh poses a significant problem in the analysis of practical engineering systems.
Moreover, the simulation and the analysis of certain types of problems (like dy-
namic crack propagation, pulsatile and transient flows) often require an expensive
remeshing operation. Meshless techniques overcome these difficulties, associated
with the meshing and re-meshing procedures, by eliminating the mesh altogether.
Interpolation is performed in terms of nodal points scattered at the spatial domain
using functions having compact support. A weighted residual technique is used to
generate the discrete set of equations corresponding to the governing partial differ-
ential equations [Liu (2003), Liu and Gu (2005)].

Since the meshless methods emerged as a potential alternative for solutions in com-
putational mechanics, a variety of such approaches have appeared. Over the last
decades, several meshfree methods have been proposed since the prototype of the
meshfree methods, the Smoothed Particle Hydrodynamics (SPH), was born [Gin-
gold and Monaghan (1977)]. These methods include the Diffuse Approximation
Method (DAM) [Nayroles, Touzot and Villon (1991)], that is closely related to
the Moving Least Squares method; the Diffuse Element Method (DEM) [Nayroles,
Touzot and Villon (1992)], developed by the Moving Least Squares approximation,
and the Element Free Galerkin method (EFG) [Lu, Belytschko and Gu (1994)];
the Reproducing Kernel Particle Method (RKPM) [Liu, Jun and Zhang (1995),
Liu, Jun, Li, Adee and Belytschko (1995)], which is used to improve the SPH
approximation; the Partition of Unity Finite Element Method (PUFEM) [Melenk
and Babuska (1996)]; the hp-Clouds [Duarte and Oden (1996)]; the Moving Least-
Square Reproducing Kernel Method (MLSRK) [Liu, Li and Belytschko (1996)];
the meshless Local Boundary Integral Equation Method (LBIE) [Zhu, Zhang and
Atluri (1998)]; the Meshless Local Petrov–Galerkin method (MLPG) [Atluri, Kim
and Cho (1999), Atluri and Shen (2002)]; the Finite Point method (FPM) [Onate,
Idelsohn, Zienkiewicz and Taylor (1995)]; the meshless point collocation methods
(MPC) [Aluru (2000)], and more.

The present paper is referred to the numerical computation of the two-dimensional
(2D) time-dependent Schrödinger equation. Linear Schrödinger equation is written
as

−i
∂ψ

∂ t
=

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 +V (x,y)ψ, (x,y) ∈Ω, 0≤ t ≤ T (1a)

in some continuous domain with suitable initial Dirichlet and Neumann boundary
conditions and an arbitrary potential function V (x,y). The corresponding initial
condition is given by

ψ (x,y,0) = h(x,y,0) , (x,y) ∈Ω (1b)
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and the boundary conditions by

ψ (x,y, t) = s(x,y, t) , (x,y) ∈ ∂Ω
D, 0≤ t ≤ T (1c)

∂ψ

∂nnn
(x,y, t) = g(x,y, t) , (x,y) ∈ ∂Ω

N , 0≤ t ≤ T (1d)

where i =
√
−1 is the unit imaginary number, T is the final time, h, s and g are

known functions, and ∂Ω = ∂ΩD ∪ ∂ΩN , where ∂ΩD and ∂ΩN are the Dirichlet
and the Neumann parts of the boundary ∂Ω and nnn is the unit outward vector to ∂Ω.

This type of partial equation models many physical problems and find applications
in quantum mechanics and various quantum dynamics calculations [Arnold (1998),
Hajj (1985), Ixaru (1997)], in electromagnetic wave propagation and the design
of certain optoelectronic devices [Levy, (2000), Huang, Xu, Chu and Chaudhuri
(1992)], and finally, in underwater acoustics [Tappert (1977)]. The time-dependent
Schrödinger equation can be represented in a hydrodynamical form, called a quan-
tum hydrodynamic (QHD) equation, a formulation which is analogous to the equa-
tions of irrotational motion in a classical fluid [Gasser, Lin and Markowich (2000),
Kalita, Chhabra and Kumar (2006)]. In this formulation, system (1) is replaced by
a system of partial differential equations in terms of particle density and velocity
potential, by separating the real and imaginary parts of a general solution

− ∂u
∂ t

= ∇
2
υ +V υ ,

∂υ

∂ t
= ∇

2u+Vu,
(2)

obtained by expressing ψ as ψ = u+ iυ , where u and υ are real-values functions.

There have been numerous attempts to develop numerical schemes for equations (1)
or the system (2). In [Simos (2008), Simos (2007)] trigonometrically-fitted meth-
ods were utilized for the numerical solution of the Schrödinger equation. The au-
thors of [Kalita, Chhabra and Kumar (2006), Subasi (2002)] studied models similar
to the present problem using finite-difference techniques. Finite-difference meth-
ods are well-known as the first technique for solving partial differential equations
(PDEs). In [Dehghan (2002)] explicit finite difference methods were used for solv-
ing the governing equations, while in [Dehghan (1999)] the need of using a large
amount of CPU time in implicit finite-difference schemes limit the applicability of
these methods. Furthermore, these methods provide the solution of the problem
on mesh points only, and the accuracy of the techniques is reduced in non-smooth
and non-regular domains. Thus, alternative computational methods, such as global
Radial Basis Functions [Dehghan and Shokri (2007)], were used for the numerical
solution of the Eq. (1).
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In the present paper we investigate a different approach to find the solution of linear
and nonlinear Schrödinger equation. We present a numerical scheme to solve the
two-dimensional (2D) time-dependent Schrödinger equation using the Collocation
method, while we approximate the solution directly using Moving Least Squares.
Actually, the meshless point collocation (MPC) method is a case of MLPG when
the collocation Dirac’s Delta function is used as the test function [Atluri and Shen
(2002)]. To test the robustness, the accuracy and the efficiency of the proposed
scheme, it is applied to four examples having analytical solutions, with our results
exhibiting very good agreement with the analytical ones. Additionally, our results
are compared with a meshless collocation and radial basis function method using
multiquadrics (MQ) and the Thin Plate Splines (TPS). The layout of the paper is
as follows. In Section 2 we present the methodology for the implementation of
the Moving Least Squares approximation for the solution of QHD equations. In
Section 3 we apply this technique on the two-dimensional (2D) time-dependent
Schrödinger equation. The results of the numerical experiments are presented in
Section 4, while Section 5 is dedicated to a brief conclusion.

2 Moving Least Squares Approximation

2.1 Methodology

In the moving least-squares technique, the approximation uh (xxx) is expressed as
the inner product of a vector of the polynomial basis, ppp(xxx) and a vector of the
coefficients, aaa(xxx)

uh (xxx) = pppT (xxx)aaa(xxx) , (3)

where ppp(xxx) ∈ RRRm, aaa(xxx) ∈ RRRm and m is the number of monomials in the polynomial
basis (in the present study m=6). The local character of the moving least-squares
(MLS) approximation can be viewed as a generalization of the traditional least-
squares approximation, in which the vector aaa is not a function of xxx.

Equation (3) is commonly referred to as the global least-squares approximation. In
addition, there exists a unique local approximation associated with each point in the
domain. In order to determine the form of aaa(xxx), a weighted discrete error norm,

J (xxx) =
n

∑
I=1

wI (xxx)

[
m

∑
j=1

pT
j (xxxI)aaa(xxx)−ui

]2

(4)

is constructed and sequentially minimized. Here, wI (xxx) denotes the weight func-
tion, wI (xxx)≡ w(xxx− xxxI), associated with node I, and the quantity in brackets is the
difference between the local approximation at node I and the data at nodes I, that



“Quantum Hydrodynamics” Formulation with a MLPG Collocation Method 53

is ui, and n is the number of nodes in the support of wI (xxx). The minimization of
Eq.(4) with respect to aaa(xxx) determines aaa(xxx). The local approximation associated
with point xxx is used only in the minimization process and is equivalent to the global
approximation at the single point xxx. Compact support of the weight functions gives
the moving least-squares method its local character.

2.2 Shape functions and their derivatives

The minimization of Eq. (4),

∂J (xxx)
∂aaa(xxx)

= 0 (5)

results in the linear system

AAA(xxx)aaa(xxx) = BBB(xxx)UUU s, (6)

where UUU s is a vector containing the nodal data, UUUT
s = [u1,u2, ...,un], and

AAA(xxx) =
n

∑
I=1

wI (xxx)ppp(xxxI) pppT (xxxI) , (7)

BBB(xxx) =
[

w1 (xxx) ppp(xxx1) w2 (xxx) ppp(xxx2) ... wn (xxx) ppp(xxxn)
]
, (8)

where AAA ∈ RRRm×m and BBB ∈ RRRm×n. The matrix AAA must be inverted at every sam-
pling point. Substitution of the solution of (Eq.(6)) into the global approximation
(Eq.(3)), completes the least-squares approximation,

uh (xxx) = pppT (xxx)AAA−1 (xxx)BBB(xxx)︸ ︷︷ ︸
ϕϕϕ(x)

UUU s. (9)

Here, the spatial dependence has been lumped into one row matrix, ϕϕϕ (xxx) and, there-
fore, the approximation takes the form of a product of a matrix of shape functions
with a vector of nodal data. Derivatives of the shape functions may be calculated
by applying the product rule to

ϕϕϕ = pppT AAA−1BBB. (10)

In order to obtain the spatial derivatives of the approximation function, uh (xxx), it is
necessary to obtain the derivatives of the MLS shape functions, ϕi (xxx),

∂

∂x j
uh (xxx) =

∂

∂x j

n

∑
i=1

ϕi (xxx)ui =
n

∑
i=1

{
∂

∂x j
ϕi (xxx)

}
ui, x j = x,y,z. (11)
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The derivative of the shape function is given as

∂φ (xxx)
∂x j

=
∂
(

pppT AAA−1BBBi
)

∂x j
=

∂ pppT

∂x j
AAA−1BBBi + pppT ∂

(
AAA−1)

∂x j
BBBi + pppT AAA−1 ∂BBBi

∂x j
, x j = x,y,z

(12)

where
∂(AAA−1)

∂x j
=−AAA−1 (xxx)AAA, j (xxx)AAA−1 (xxx). Regarding the second order derivative of

the unknown function we get

∂ 2ϕ (x)
∂x2

j
=

∂

∂x j

(
∂ϕ (x)

∂x j

)
=

∂

∂x j

(
∂ pppT

∂x j
AAA−1BBBi + pppT ∂

(
AAA−1)

∂x j
BBBi + pppT AAA−1 ∂BBBi

∂x j

)

=
∂ 2 pppT

∂x2
j

AAA−1BBBi +
∂ pppT

∂x j

∂
(
AAA−1)

∂x j
BBBi +

∂ pppT

∂x j
AAA−1 ∂BBBi

∂x j
+

+
∂ pppT

∂x j

∂
(
AAA−1)

∂x j
BBBi + pppT ∂ 2

(
AAA−1)

∂x2
j

BBBi + pppT ∂
(
AAA−1)

∂x j

∂BBBi

∂x j
+

+
∂ pppT

∂x j
AAA−1 ∂BBBi

∂x j
+ pppT ∂

(
AAA−1)

∂x j

∂BBBi

∂x j
+ pppT AAA−1 ∂ 2BBBi

∂x2
j
,

(13)

where x j = x,y,z and
∂ 2(AAA−1)

∂x2
j

=− ∂(AAA−1)
∂x j

AAAAAA−1−AAA−1 ∂AAA
∂x j

AAA−1−AAA−1AAA
∂(AAA−1)

∂x j
.

2.3 Weight Function

The weight function is non-zero over a small neighborhood of xxxi, called the support
domain of node i. The choice of the weight function W (xxx− xxxi) affects the resulting
approximation uh (xxxi) inherently. In the present paper a Gaussian weight function
is used [Liu (2003), Bourantas, Skouras and Nikiforidis (2009)], yet the support
domain does not have a standard point density value. Instead, a constant number of
nodes are used for the approximation of the field function.

W (xxx− xxxi)≡W (d) =

{
e−
(

dI
a

)2

0

}
, (14)

where I = 1,2,3, ...,q are the nodes that produce the support domain of node xi,
and d = |xxx−xxxi|

a2
0

with a0 a prescribed constant (often a0 = 0.2).
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3 Collocation formulation

3.1 General description

The Meshless Point Collocation method is a MFree “strong-form” description me-
thod. The “strong-form” of the governing equations and the boundary conditions
are used and discretized by collocation techniques. The aforementioned formula-
tions possess the following attractive advantages. They are truly meshless and the
implementing procedure is straightforward, while the algorithms and the imple-
mentation can be kept simple, particularly when handling problems with Dirich-
let boundary conditions solely. Under these conditions, these methods are highly
efficient computationally, even with the application of polynomial approximation
functions, and the solution can be systematically obtained with increased accu-
racy, compared to FEM, FVM, FDM, or other computational methods. In general,
MFree strong-form methods may still suffer from some local stability and accu-
racy issues, depending on the problem [Liu and Gu (2005)]. However, these local
restrictions are now systematically avoided with the utilization of specific nodal
distributions (Type-I) and proper local point cloud refinement procedures, in ac-
cordance with [Bourantas, Skouras and Nikiforidis (2009), Kim and Liu (2006)],
even for natural or mixed type boundary conditions. The robustness of these meth-
ods has, however, been an issue especially for scattered set of points. The stability
and the convergence of the collocation methods are ensured by the resulting lin-
ear or linearized algebraic system. If the latter possesses some attractive features
then both the stability and the convergence are ensured. In fact, the robustness of
the collocation methods can be improved by understanding the possible sources of
errors. Specifically, the errors could arise because of the way the meshless approx-
imation functions and their derivatives have been constructed for a scattered set
of points or because of the way the discretization of the governing equations has
been performed. When the meshless approximation functions and its derivatives do
not satisfy certain conditions (referred to as the positivity conditions) for a given
point distribution, it is possible to get large numerical errors when using colloca-
tion methods. To satisfy the positivity conditions, the weighting function used in
the construction of the approximation functions can play an important role. These
studies suggest that positivity conditions can be important when using meshless
collocation methods. Additionally, the convergence of the discrete Laplacian oper-
ator for Dirichlet boundary conditions has been proved when a regular grid (named
Type-I) is used. Thus, both the stability and the convergence of the meshless point
collocation method, using MLS approximation and regular nodal distribution are
ensured.

Collocation method using MLS may be considered as a special case of the “weak–
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form” methods [Atluri, (2004)]. Moreover, this collocation method may be consid-
ered as a “weak-solution”, with a Dirac delta function as the test (weight) function
[Atluri, Liu and Han (2006)]. The weighted residual method provides a flexible
mathematical framework for the construction of a variety of numerical solution
schemes for the differential equations arising in the field of both science and en-
gineering. Its application, in conjunction with the Moving Least Square (MLS)
approximation method, yields powerful solution algorithms for the governing equa-
tions.

3.2 Time-dependent Meshless Point Collocation method

The collocation scheme using the Moving Least Squares approximation used in the
present work and applied for the spatial discretization of the unsteady homogeneous
diffusion equation will be discussed next, along with the explicit Euler, θ -weighted
time-stepping scheme used for temporal discretization.

Consider the governing equations of the unsteady problem

−∂u
∂ t

= ∇
2
υ +V υ , (15)

∂υ

∂ t
= ∇

2u+Vu, (16)

with the aforementioned boundary and initial conditions. By the MLS approxi-

mation one gets u(xxx) =
N
∑

i=1
Φi (xxx)ui ≡ ΦΦΦUUU s for the unknown function, uq (xxx) =

N
∑

i=1

∂Φi(xxx)
∂q ui≡ΦΦΦqUUU s for the partial x,y derivative and uqq (x)=

N
∑

i=1

∂ 2Φi(x)
∂q2 ui≡ΦΦΦqqUUU s

the second x,y partial derivative. Additionally, we set nd as the number of nodes
in the interior, nb as the number of nodes on the boundary, and the final number of
nodes as N (N = nd +nb). The first equation, Eq. (15) can be written as

∂u
∂ t

+
(
∇

2
υ +V υ

)
= 0. (17)

From the notation described above and using the Euler’s θ -weighted time-stepping
scheme for temporal discretization, for the interior nodes one gets

Φd
un+1−un

δ t +θ
((

Φd,xx +Φd,yy
)

υn+1 +V υn+1
)
+

+(1−θ)
((

Φd,xx +Φd,yy
)

υn +V υn
)
= 0.

(18)

Multiplying both parts by δ t one gets

Φdun+1−Φdun +θδ t
((

Φd,xx +Φd,yy
)

υ
n+1)+θδ t

(
V υ

n+1)+
+(1−θ)δ t

((
Φd,xx +Φd,yy

)
υ

n)+(1−θ)δ t (V υ
n) = 0

(19)
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In matrix notation, for all points, incorporating the boundary conditions at nb bound-
ary nodes one has[

Φd θδ t
(
Φd,xx +Φd,yy +V

)
GV Φb 0

][
un+1

υn+1

]

=

[
Φd −(1−θ)δ t

(
Φd,xx +Φd,yy +V

)
0 0

][
un

υn

]
+

[
0

gn+1
1

]
, (20)

where GV is the operator defining the boundary conditions for velocity (Dirichlet
type on ∂Ω).

These equations can be written in a more compact manner by setting

HHH+
A =

[
Φd θδ t

(
Φd,xx +Φd,yy +V

)
GV Φb 0

]
,

HHH−A =

[
Φd −(1−θ)δ t

(
Φd,xx +Φd,yy +V

)
0 0

]
and FFFA =

[
0

gn+1
1

]
,

where HHH+
A ∈ RRRN×2N , HHH−A ∈ RRRN×2N , and FFFA ∈ RRRN×1.

Regarding the second Eq. (16) and following the same procedure described for Eq.
(15) one can derive (in matrix notation)[

θδ t
(
−Φd,xx−Φd,yy−V

)
Φd

0 GBΦb

][
un+1

υn+1

]

=

[
−(1−θ)δ t

(
−Φd,xx−Φd,yy−V

)
Φd

0 0

][
un

υn

]
+

[
0

gn+1
2

]
, (21)

where GB is the operator defining the boundary conditions for the induced magnetic
field on ∂Ω. Once again, the above equations can be written in more compact form
by setting

HHH+
B =

[
θδ t

(
−Φd,xx−Φd,yy−V

)
Φd

0 GBΦb

]
,

HHH−B =

[
−(1−θ)δ t

(
−Φd,xx−Φd,yy−V

)
Φd

0 0

]
,

and FFFB =

[
0

gn+1
2

]
,
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where HHH+
B ∈ RRRN×2N , HHH−B ∈ RRRN×2N and FFFB ∈ RRRN×1.

The final system of the QHD coupled partial differential equations can be written
as[

HHH+
A

HHH+
B

][
un+1

υn+1

]
=

[
HHH−A
HHH−B

][
un

υn

]
+

[
FFFA

FFFB

]
. (22)

Finally, setting

uuun =

[
un

υn

]
, FFF =

[
FFFA

FFFB

]
, QQQ+ =

[
HHH+

A
HHH+

B

]
, QQQ− =

[
HHH−A
HHH−B

]
,

the discretized PDEs of QHD flow are summed as

uuun+1 =
(
QQQ+
)−1 (QQQ−uuun +FFF

)
, (23)

where QQQ+ ∈ RRR2N×2N , QQQ− ∈ RRR2N×2N and FFF ∈ RRR2N×1.

4 Numerical experiments

In order to examine the validity and the effectiveness of the proposed scheme,
four representative case studies were examined [Dehghan and Shokri (2007), De-
hghan, and Mirzaei (2008), Dehghan, and Mirzaei (2008)]; thee cases for the linear
Schrödinger equation with and without the potential function present, and a fourth
one for nonlinear Schrödinger equation.

Example 1

Initially, we consider the case with potential V = 0 at the Schrödinger equation,
in the spatial domain (0,1)× (0,1) and initial conditions [Dehghan, and Mirzaei
(2008)]

ψ (x,y,0) = ei(x+y),

which generates the exact solution

ψ (x,y, t) = ei(x+y−2t).

The Dirichlet boundary conditions were extracted from the analytical solution.
Table 1 presents the relative error of both real and imaginary parts, defined as
ε =

‖unum−uexact‖2
‖uexact‖2

, for t = 5 and t = 20 sec. The meshless point method with MLS
approximation depends on several parameters that have to be chosen properly in
order to achieve convergence and accuracy. These parameters include the proper
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nodal distribution, the number of nodes in the support domain, and the user-defined
variables used in the weight function. For our investigation purposes we use a regu-
lar nodal distribution of Type-I [Kim and Liu (2006)], which ensures the fulfillment
of the so-called positivity conditions [Jin, Li and Aluru (2004)]. Additionally, we
set the user-defined parameter α0 at the weight function to be α0 = 0.2, the number
of nodes in the support domain 10, and time step dt = 0.05. As pointed out else-
where [Bourantas, Skouras and Nikiforidis (2009)], when the number of nodes in
the total domain is increased, the accuracy is improved. This also is depicted at the
Table 1.

The MLS approximation is obtained by a special least-squares method [Liu and
Gu (2005)]. The function obtained by the MLS approximation is a smooth curve
(or surface), which does not pass through the nodal values inherently. Therefore,
the MLS shape functions do not, in general, satisfy the Kronecker delta condition.
Thus, when the nodes in the support domain increase, the Gaussian weight func-
tion loses its local character (delta function property), resulting in truncated errors
which decrease the accuracy of the numerical results. Thus, in Table 2, we present
the dependence of the accuracy from the number of nodes in the support domain.
To do that, we used a constant grid of 31× 31 nodes and altered the number of
nodes at the support domain. The results obtained show the very good accuracy of
the proposed scheme when the number of the nodes in the support domain is kept
small. Moreover, in Fig. 1, plots are presented for numerical and exact solutions
for the real and imaginary part at t = 20, using a 21×21 regular grid and 10 nodes
in the support domain.

Table 1: Relative errors at t = 5 and t = 20 for different grids, dt = 0.05 for support
domain 10.

t = 5 t = 20
Grid Real Imaginary Real Imaginary
11x11
16x16
21x21
26x26
31x31

7.6981E-05
2.2556E-05
8.7172E-06
5.8460E-06
5.4051E-06

1.2284E-04
6.7048E-05
4.8229E-05
3.9876E-05
3.5865E-05

1.6446E-05
1.5732E-04
1.1227E-04
7.9893E-05
5.9303E-05

2.9136E-04
9.3423E-05
3.6805E-05
1.7957E-05
1.4117E-05

Example 2

As a second example, we consider the Schrödinger equation in the spatial domain
(0,1)× (0,1), with potential function [Dehghan and Shokri (2007), Dehghan, and
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Table 2: Relative errors at t = 5 and t = 20 for different number of nodes in the
support domain, dt = 0.05.

t = 5 t = 20
Sup. Domain Real Imaginary Real Imaginary
10
15
20
25
30
35

5.4051E-06
7.1039E-05
6.3606E-05
6.2948E-04
5.3568E-03
1.5133E-02

3.5865E-05
7.1072E-05
1.8795E-05
1.9208E-03
7.4155E-03
3.0736E-02

5.9303E-05
5.9706E-05
2.5153E-04
2.2634E-03
6.9545E-03
3.0478E-02

1.4117E-05
1.4208E-05
7.6710E-05
8.1771E-04
2.8022E-03
1.2842E-02

Figure 1: Plots of numerical and exact solutions for the real and imaginary part at
t = 20, using a 21×21 regular grid and 10 nodes in the support domain.

Mirzaei (2008)]

V (x,y) = 3−2tanh2 x−2tanh2 y.

Initial and boundary conditions are defined as

ψ (x,y,0) =
i

cosh(x)cosh(y)
, 0≤ x,y≤ 1

and

ψ (0,y, t) =
ieit

cosh(y)
, ψ (1,y, t) =

ieit

cosh(1)cosh(y)
,

ψ (x,0, t) =
ieit

cosh(x)
, ψ (x,1, t) =

ieit

cosh(x)cosh(1)
.
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The analytical solution is given by

ψ (x,y, t) =
ieit

coshxcoshy
.

Table 3 presents the maximum absolute error for the real and the imaginary parts
of the solution at different times up to t = 1, using meshless point collocation
method with MLS approximation. For comparison purposes, numerical results are
also presented using meshless collocation method with global Radial Basis Func-
tions approximation using multiquadrics (MQ) and thin plate splines (TPS) respec-
tively [Dehghan and Shokri (2007)]. These results were obtained for dx = dy =
0.1, and dt = 0.001. The maximum relative error, ε , defined as ε = Max(x,y)∈Ω(
|uexact(x,y,t)−uapproximate(x,y,t)|

|uexact(x,y,t)|

)
, was also reported. The total number of nodes was

121 (11×11), the number of nodes in the support domain was set to 10, ensuring
the inversion of the moment matrix, AAA(xxx), and the parameter α0 was set to α0 = 0.2
[Liu (2003)].

At Table 4 the CPU time (in seconds) is presented, in order to demonstrate the
efficiency of the meshless point collocation method. The shape functions are not
pre-defined, and they must be constructed before the numerical solution of the re-
sulting algebraic system. Thus, in our in-house code, the numerical procedure
contains two parts; first comes the construction of the shape functions and, then,
the solution of the resulting linear system.

Figure 2: Plots of numerical and exact solutions for the real and imaginary part at
t = 1, using a 11×11 grid.

In Fig. 2 the graphs of the real part and the imaginary parts of the numerical and
the analytical solutions using MLS are shown at time t = 1, with dx = dy = 0.1,
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Table 3: Maximum absolute error of multiquadrics and thin plate spline based
scheme at different times with dx = dy = 0.1, dt = 0.001 and c = 0.7 for MQ.
For every value of t, the first and second rows of data correspond to the use of MQ,
TPS as the radial basis function respectively and the third for the MPC.

Maximum absolute error
t Real Imaginary
0.1

0.3

0.5

0.7

1.0

MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS

2.4407E-05
7.8895E-05
1.4644E-04
2.9466E-05
1.0368E-05
1.3317E-04
2.7468E-05
7.7545E-05
8.3716E-05
2.5495E-05
8.9137E-05
1.5182E-05
2.9444E-05
1.0626E-04
1.5138E-04

2.9974E-05
9.8635E-05
1.5220E-04
2.3861E-05
8.6876E-05
9.8297E-05
3.4044E-05
9.1676E-05
1.9683E-04
1.8694E-05
7.7454E-05
1.7088E-05
2.4222E-05
9.3425E-05
9.5315E-05

Table 4: CPU time in seconds for shape construction and solution of the resulting
transient, linear system.

nodes Shape Functions (sec) Linear system (sec)
121
441
961
1681

0.53125
1.90625
3.78125
6.9375

9.54687
35.98437
108.01562
282.06250
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dt = 0.001. Note that there is no essential divergence between the exact solution
and the numerical solution in Fig. 2, for the given accuracy.

One can notice that, for coarse grids, as in the case of 121 nodes, the numerical re-
sults obtained by the meshless point collocation with MLS approximation are less
accurate than those obtained by the global multiquadrics Radial Basis Function.
Although full-domain RBF methods are highly flexible and can exhibit high-order
convergence rates [Madych and Nelson (1990)], in their basic implementation the
fully-populated matrix systems produced lead to poor numerical conditioning as
the size of the dataset increases. This problem is described by Schaback [Schaback
(1993)] as the “uncertainty relation”, in which better conditioning is associated
with worse accuracy, and worse conditioning is associated with improved accuracy.
With increasingly large datasets and increasingly flat basis functions, this problem
becomes more pronounced. Thus, global RBF are not appropriate for real world
applications, were the number of the degrees of freedom (nodes) are large. On
the other hand, MLS approximation, being a localized-type approximation, uses a
small number of neighboring nodes for interpolation. This makes the MLS approx-
imation more suitable for many applications arising in science and engineering.
Furthermore, the small number of nodes used makes the method computationally
time and memory saving. This is evident at Table 5 where doubling the nodal dis-
tribution density increases the accuracy of the numerical solution by an order of
magnitude, while the computational efficiency of the scheme is retained.

Table 5: Absolute and relative errors at different times for dx = dy = 0.05 and
0.025, and dt = 0.001.

Maximum absolute error Maximum relative error
t Real Imaginary Real Imaginary
0.1

0.3

0.5

0.7

1.0

dx = 0.05
dx = 0.025
dx = 0.05
dx = 0.025
dx = 0.05
dx = 0.025
dx = 0.05
dx = 0.025
dx = 0.05
dx = 0.025

3.6969E-05
8.6811E-06
3.9436E-05
9.4746E-06
2.3815E-05
7.6615E-06
4.2027E-05
9.9946E-06
2.5305E-05
6.1169E-06

3.6482E-05
9.0573E-06
2.9388E-05
7.6511E-06
4.1528E-05
1.0489E-05
1.8415E-05
4.7105E-06
3.4800E-05
9.7405E-06

1.6920E-04
4.3579E-05
6.2200E-05
1.6000E-05
2.8327E-05
7.3170E-06
3.4707E-05
9.0405E-06
1.7559E-05
3.6556E-06

1.9557E-05
4.9694E-06
0.4472E-05
3.8843E-06
2.6131E-05
6.4270E-06
1.2463E-05
3.8419E-06
3.8282E-05
9.9219E-06
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Example 3

Following, we consider the Schrödinger equation in (0,1)× (0,1) spatial domain
and with potential function [Dehghan and Shokri (2007), Dehghan, and Mirzaei
(2008)]

V (x,y) = 1− 2
x2 −

2
y2

and initial and boundary conditions

ψ (x,y,0) = x2y2

and

ψ (0,y, t) = 0, ψ (1,y, t) = y2eit , ψ (x,0, t) = 0, ψ (x,1, t) = x2eit ,

The analytical solution is given as

ψ (x,y, t) = x2y2eit .

Table 6 presents the maximum absolute error for the real part and imaginary part
at different times up to t = 1, using MLS approximation and time step dt = 0.05.
The results obtained were compared with those obtained using the multiquadrics
and the thin plate spline RBF with the same nodal distribution and time step, dt =
0.0005 [Dehghan and Shokri (2007)]. One can observe that, for MPC with MLS
approximation of localized type, using a time step two orders lower than the time
step used in global RBF, the absolute errors present two orders higher accuracy.

Finally, in Fig. 3, the graphs of the real part and the imaginary parts of the nu-
merical and the analytical solutions using MLS are shown at time t = 1, with
dx = dy = 0.1, dt = 0.05. Note that there is no essential divergence between the
exact solution and the numerical solution in Fig. 2, for the given accuracy.

Example 4

Finally, we consider the generalized nonlinear two-dimensional Schrödinger equa-
tion written as [Dehghan, and Mirzaei (2008)]:

−i
∂ψ

∂ t
+

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 = B(x,y, t)ψ +C (x,y, t) |ψ|p ψ,

with the initial and boundary conditions

ψ (x,y,0) = cos(x)cos(y) , (x,y) ∈Ω
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Table 6: Maximum absolute error of multiquadrics and thin plate spline-based
scheme at different times with dx = dy = 0.1, dt = 0.0005 and c = 0.45 for MQ.
For every value of t, the first and second rows of data correspond to the use of MQ
and TPS as the radial basis function, respectively and the third for the MPC when
dx = dy = 0.1, dt = 0.05.

Maximum absolute error
t Real Imaginary
0.1

0.3

0.5

0.7

1.0

MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS
MQ
TPS
MLS

4.0410E-04
8.6297E-04
2.7156E-06
5.1291E-04
8.0754E-04
3.1253E-06
4.6396E-04
5.0822E-04
1.7575E-06
3.8999E-04
7.5356E-04
2.2781E-06
3.7209E-04
6.5917E-04
1.4423E-06

3.5722E-04
8.3522E-04
1.1912E-06
3.0509E-04
7.1756e-04
1.5355E-06
3.9520E-04
7.7982E-04
2.2252E-06
4.1646E-04
9.2228E-04
3.7907E-06
4.1267E-04
8.9195E-04
1.0944E-06

Figure 3: Plots of the exact and the numerical solution at t = 1.0.
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and Neumann boundary conditions on all sides of the spatial domain

∂ψ

∂nnn
= 0.

The analytical solution is given as

ψ (x,y, t) = e−it cos(πx)cos(πy) .

The lagging of coefficients method has been utilized to eliminate the non-linearity
of the examined problem. The spatial domain of the problem is defined as 0≤x,y≤1.
The function used in the present problem are defined as C (x,y)= 1−2π2, B(x,y)=(
1−2π2

)(
1− cos2 (πx)cos2 (πy)

)
and p = 2. We have to notice that the accuracy

of the case under consideration agrees with the exact solution at about two signifi-
cant digits and, as the time increases it becomes worse. This is due to the imposition
of the Neumann boundary conditions. When using Dirichlet boundary conditions
the accuracy of the numerical results increases. Following the aforementioned pro-
cedure the final linearized system in matrix notation can be written as

HHH+
A =

[
Φd θδ t

(
Φd,xx +Φd,yy−BΦd−C (|Ψ|p)n

Φd
)

GV Φb 0

]
,

HHH−A =

[
Φd −(1−θ)δ t

(
Φd,xx +Φd,yy−BΦd−C (|Ψ|p)n

Φd
)

0 0

]
and FFFA =

[
0

gn+1
1

]
,

HHH+
B =

[
θδ t

(
Φd,xx +Φd,yy−BΦd−C (|Ψ|p)n

Φd
)

Φd
0 GBΦb

]
,

HHH−B =

[
−(1−θ)δ t

(
Φd,xx +Φd,yy−BΦd−C (|Ψ|p)n

Φd
)

Φd
0 0

]
,

and FFFB =

[
0

gn+1
2

]
.

5 Conclusions

In the present work we used the meshless numerical scheme to solve the two-
dimensional time-dependent linear and nonlinear Schrödinger equation using the
point collocation method with MLS approximation. For the Schrödinger equation
we developed a fully coupled, transient, and strong-form solver for the real and
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Figure 4: Analytical and numerical solutions at various time.

the imaginary parts of the general solution of the so-called quantum hydrodynamic
(QHD) equation. The proposed scheme is applied to four benchmark cases hav-
ing analytical solutions, with our results exhibiting excellent agreement with all the
analytical ones. The numerical results were also compared with those provided by
another collocation method, that is, the global Radial Basis Function method. The
numerical results provided by the proposed scheme are highly accurate, compared
with the ones provided by the multiquadrics and the thin plates splines RBF. Fur-
thermore, in some cases they are also less CPU time and memory consuming. This
makes the application of the MLS approximation very attractive for the numerical
solution of this kind of physical problems.
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