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Hybrid Elements for Modelling Squeeze Film Effects
Coupled with Structural Interactions in Vibratory MEMS

Devices
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Abstract: We present a hybrid finite element based methodology to solve the
coupled fluid structure problem of squeeze film effects in vibratory MEMS de-
vices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned
devices often have a thin plate like structure vibrating normally to a fixed substrate,
and are generally not perfectly vacuum packed. This results in a thin air film being
trapped between the vibrating plate and the fixed substrate which behaves like a
squeeze film offering both stiffness and damping. For accurate modelling of such
devices the squeeze film effects must be incorporated. Extensive literature is avail-
able on squeeze film modelling, however only a few studies address the coupled
fluid elasticity problem. The majority of the studies that account for the plate elas-
ticity coupled with the fluid equation, either use approximate mode shapes for the
plate or use iterative solution strategies. In an earlier work we presented a single
step coupled methodology using only one type of displacement based element to
solve the coupled problem. The displacement based finite element models suffer
from locking issues when it comes to modelling very thin structures with the lat-
eral dimensions much larger than the plate thickness as is typical in MEMS devices
with squeeze film effects. In this work we present another coupled formulation
where we have used hybrid elements to model the structural domain. The numer-
ical results show a huge improvement in convergence and accuracy with coarse
hybrid mesh as compared to displacement based formulations. We further compare
our numerical results with experimental data from literature and find them to be in
good accordance.
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1 Introduction

The numerous applications of vibratory MEMS devices such as resonators, ac-
celerometers, gyroscopes, etc., in everyday gadgets such as smart phones, tablet
computers and other ‘smart’ consumer goods have led to an increasing interest
in making such devices more energy efficient. Thus the understanding of vari-
ous dissipation mechanisms in these devices is of immense importance to MEMS
designers. Typically, such MEMS devices have a plate like structure with lateral di-
mensions much larger than the plate thickness as well as the gap between the fixed
substrate and the structure. For vibrations normal to the fixed substrate, the trapped
air (see Fig. 1) acts like a squeeze film and offers both stiffness and damping to
the vibrating structure. This phenomenon is called squeeze film effect. Under such
operating conditions, for devices fabricated with high Q (mechanical Quality fac-
tor) materials such as silicon (which have low material loss or internal damping),
squeeze film damping is usually the dominant energy dissipation mechanism [Bao
and Yang (2007)]. The squeeze film effects result in a change in the dynamic char-
acteristics of vibratory MEMS devices [Pratap, Mohite, and Pandey (2007); Pratap
and Roychowdhury (2014)]. Therefore, MEMS designers need to take the squeeze
film induced stiffness and damping into consideration in the design of such devices.

Most often vibratory MEMS devices use electrostatics for actuation and sensing.
Therefore for accurate modelling of squeeze film effects one needs to solve the
coupled problem of electrostatics, structural elasticity and fluid mechanics.

Figure 1: A schematic representation of squeeze flow between an oscillating plate
and a fixed substrate

The thin fluid domain is traditionally modelled using the Reynolds equation [Blech
(1983)] as developed in lubrication theory. Assuming rigid plate motion one can
decouple the Reynolds equation from the structural vibration equation and linearize
it under suitable conditions to obtain analytical expressions for squeeze film stiff-
ness and damping. [Darling, Hivick, and Xu (1997)] used a Greens function ap-
proach to solve the Reynolds equation assuming trivial pressure boundary condi-
tions and rigid plate motion, and presented analytical expressions for squeeze film
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pressure and forces. However, for truly modelling the fluid structure interaction
problem of squeeze film, one has to account for the spatially variable air gap cre-
ated due to the flexure of the elastic vibrating structure and the elasticity equation
has to be coupled with the fluid equation. [McCarthy, Adams, McGruer, and Potter
(2002)] used a transient finite difference method to study cantilever micro-switches
with pressure distribution taken to be invariant along the width and parabolic along
the length. The results showed good agreement with experimental measurements.
Pandey and Pratap (2007) used Greens functions for solving the compressible lin-
earized Reynolds equation and used the modal projection technique in ANSYS for
the coupled fluid structure problem in order to solve for squeeze film stiffness and
damping for several flexural modes of a cantilever beam. The analytical and numer-
ical results were found to be in good agreement with experimental results. Li, Hu,
and Fang (2007) also attempted to solve the coupled Euler Bernoulli beam equation
and Reynolds equation for squeeze film by modelling the pressure as a parabolic
function along the beam width and a cosine series along the beam length. They
used this approach to model a fixed-fixed beam and a cantilever with static bias
deflection. Hannot and Rixen (2009) presented yet another approach to solve the
coupled fluid-structure problem. The mechanical equations were modelled using a
non-linear Newmark time integration scheme and the trapezoidal rule was used for
the fluid equations.

The approaches of various groups discussed above attempt to model the coupled
fluid-elasticity equation. However these approaches involve either approximation
to the pressure distribution or iterative solution schemes which are cumbersome
and not truly coupled. In our prior work [Roychowdhury, Nandy, Jog, and Pratap
(2013)], we presented a single step solution methodology to solve the fluid-structure
problem of squeeze film in a truly coupled form. We used 27 node displacement
based 3D elements and our numerical results showed good agreement with pub-
lished experimental data from literature. However it is to be noted that displace-
ment based elements suffer from an inherent drawback of locking in modelling
geometries that have large lateral dimensions compared to the thickness.

The Hybrid finite elements [Atluri (1975); Pian and Sumihara (1984); Pian and
Tong (1986)], which are based on two field variational formulation with displace-
ment and stresses interpolated independently, are seen to be much less susceptible
to locking. The hybrid elements show greater accuracy at much lower mesh sizes
than displacement based elements and can model both chunky geometries as well
as plate like structures [Jog (2005); Jog (2010)].

2D and 3D curvilinear hybrid stress elements have been developed in [Atluri (1984);
Punch and Atluri (1984); Rubinstein, Punch, and Atluri (1983)], where symme-
try group theory has been used to select proper stress modes such that the LBB
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(Ladyz̆enskaja–Babŭska–Brezzi) condition [Brezzi (1974)] is satisfied. This en-
sures rank sufficiency of the element stiffness matrix. A distortion sensitivity study
has been done in [Punch and Atluri (1984)]. In the context of hybrid stress FEM
there are problems of kinematic modes and frame dependence which are taken care
of by applying symmetry group theory. In [Rubinstein, Punch, and Atluri (1983)]
stress shape functions are scaled in a locally embedded co-ordinate system.

Recent advancements in the field of hybrid elements involve procedures where mul-
tifield variational principles are not used and hence the LBB conditions need not be
satisfied for the elements developed.

In the work by [Atluri, Han, and Rajendran (2004)], where they proposed a mixed
approach to the implementation of meshless finite volume method, strains were
independently assumed and collocated to assumed displacements at nodal points.
The absence of derivatives resulted in the method being more computationally ef-
ficient. Several recent studies progressed on similar lines with different collocation
approaches. Dong and Atluri (2011) also assume an independently varying strain
field which is related to the strain derived from independently assumed displace-
ments at finite number of collocation points. It has been shown that in order for
the elements to pass the patch test, the collocation points are chosen from Gauss
quadrature points. Different elements are developed by varying the choice of the
assumed strain field and the collocation points. An invariant, locking free, insensi-
tive to mesh distortion element is found after several numerical experiments.

The work by [Dong and Atluri (2011)] has been extended by [Bishay and Atluri
(2012)], where higher order 2D as well as lower and higher order 3D mixed finite
elements have been developed following the methodology mentioned in [Dong and
Atluri (2011)]. The performance and efficiency of these new mixed lockless finite
elements are shown to be much better than that of the conventional displacement
based elements and even the two field variation elements developed by [Pian and
Sumihara (1984)].

In another recent study [Dong, Ei-Gizawy, Juhany, and Atluri (2014a)], a four node
2D element is developed for modelling functionally graded materials or laminated
composite beams. The work by [Dong and Atluri (2011)] is improved upon and a
five parameter linearly varying cartesian strain field is selected. The assumed strain
field is related to the strains derived from the displacement field by enforcing five
pre-defined constraints at five pre-selected collocation points. The rationale behind
choosing the five constraints (four axial stretch and one change in angle between
two fibres) was to capture the basic kinematics of the 4 node element. The element
so developed was shown to be superior to existing hybrid lower order elements
and primal elements in modelling homogeneous beams specially if distortion in
elements is considered. Whereas the elements developed by [Pian and Sumihara
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(1984)] showed huge errors in modelling functionally graded materials, the element
discussed in [Dong, Ei-Gizawy, Juhany, and Atluri (2014a)] showed very accurate
results.

The work by [Dong, Ei-Gizawy, Juhany, and Atluri (2014a)] was extended to de-
velop 3D lower order lockless mixed collocation elements in the work by [Dong,
Ei-Gizawy, Juhany, and Atluri (2014b)]. Again a linearly assumed strain field was
chosen and its compatibility with derived strain from displacements was enforced
using 18 pre-defined constraints at 18 pre-selected collocation points. The 3D el-
ement so developed was shown to be very accurate in solving for in plane stresses
for functionally graded materials and laminated composite beams. Also z-pin rein-
forced laminated structures can be modelled by simply adding the stiffness of the
z-pins to the stiffness matrix of the element developed.

The choice of stress shape function in the present work follows from [Jog (2010)]
where more terms than the minimum number of terms required to satisfy LBB con-
dition [Xue, Karlovitz, and Atluri (1985)] have been chosen. It has been shown
in [Jog (2010)] through a series of examples in linear and non-linear elasticity that
the present hybrid element can take care both shear and membrane locking (it hap-
pens when there is curvature). For membrane locking, the 27 node hybrid element
showed far better results than its displacement based counterpart (see Figure 2 and
Table 1 in [Jog (2010)])

As squeeze film geometries in MEMS structures typically consists of plate like
geometries with large lateral dimensions compared to the thickness, the hybrid ele-
ment would be a better choice compared to displacement based elements for mod-
elling squeeze film effects. In modelling high frequency problems, the effectiveness
of hybrid elements is more pronounced. In this work we develop a coupled hybrid
formulation for squeeze film following the methodology outlined in our prior work
[Roychowdhury, Nandy, Jog, and Pratap (2013)]. We have used a hybrid formu-
lation for modelling the structure as an enhancement over our prior displacement
based coupled formulation. Thus our present coupled model not only uses a single
element type to model both the structure and the fluid but also incorporates a hy-
brid formulation for the structural part, resulting in a slight additional processing
as discussed in section 2.1. We show the efficacy of our coupled hybrid model over
our displacement based model in terms of accuracy both at high frequencies as well
as coarse mesh sizes. The results are benchmarked against published experimental
data and are found to be accurate within limits of numerical error.
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2 Mathematical Formulation

The problem at hand involves solving for the pressure field on a vibrating plate due
to the squeeze film while taking into account the dynamic elastic deformation of
the plate. We solve the 3D elasticity equation for the plate and the 2D Reynolds
equation for the fluid in a coupled form following the procedure detailed in [Roy-
chowdhury, Nandy, Jog, and Pratap (2013)]. For the structural equation we use a
hybrid formulation as explained in [Jog (2005)]. The structural domain is modelled
in three dimensions and the corresponding "wet" face of the structural element is
treated as the 2D domain for the fluid. We use both 27 node and 8 node 3D ele-
ments to show the efficiency of hybrid elements over displacement based elements
in modelling squeeze film geometries.

2.1 Hybrid formulation for structural domain

For dynamic structural problems without any body force, the hybrid element must
satisfy the following governing equation in a weighted integral form [Jog (2005)]:

∫
Ω

uδ .

(
∇ · τ −ρ

∂ 2u
∂ t2

)
dΩ+

∫
Γ

uδ .
(
t̄− t

)
dΓ+

∫
Ω

τδ :
[
ε̄(u)−C−1

τ

]
dΩ= 0, (1)

where u is displacement, τ is stress, t is traction, uδ and τδ are variations in dis-
placement and stress fields respectively, C is the constitutive matrix, t̄ is the pre-
scribed tractions and ε̄(u) = (∇u)T +∇u is strain. In the above equation uδ and τδ

can be chosen arbitrarily according to variational principle.

For the coupled squeeze film damping problem with structural interaction, the wet
surface (the surface facing the fluid domain) is subjected to a prescribed traction
t̄ =−p̃n̂ (This term couples the fluid and the structural domains).

We discretize u, p̃, their variations, ε̄ (u) as described in [Roychowdhury, Nandy,
Jog, and Pratap (2013)]. For hybrid formulation we discretize the stress field and
its variations as,

τ = Pβ̂

τδ = Pγ̂,
(2)

where P is the stress interpolation function, the choice of which is described in [Jog
(2010)].

After substituting the above quantities in Eq. 1 we finally arrive at the discretized
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structural equation as;

ûT
δ

(∫
Ω

ρNu
T NudΩ

)
¨̂u+ ûT

δ

(∫
Γwet

Nu
T n̂NpdΓ

)
p̂+ ûT

δ

(∫
Ω

Bu
T PdΩ

)
β̂+

γ̂
T
(∫

Ω

PT BudΩ

)
û− γ̂

T
(∫

Ω

PT C−1PdΩ

)
β̂ = ûT

δ

(∫
Γt

Nu
T t̄dΓ

)
,

(3)

where Γt is the surface with external applied load. Following the procedure detailed
in [Jog (2010)], and using the arbitrariness of τδ we first choose γ̂T = 0 and then
appealing to the arbitrariness of ûδ

T in Eq. 3 we obtain the following:

(∫
Ω

ρNu
T NudΩ

)
¨̂u+
(∫

Γwet

Nu
T n̂NpdΓ

)
p̂+
(∫

Ω

Bu
T PdΩ

)
β̂ =

(∫
Γt

Nu
T t̄dΓ

)
.

(4)

Proceeding in a similar fashion from Eq. 3, and choosing ûδ = 0 (as uδ is arbitrary)
and then considering the arbitrariness of γ̂ , we arrive at:(∫

Ω

PT BudΩ

)
û−

(∫
Ω

PT C−1PdΩ

)
β̂ = 0. (5)

We can rewrite Eq. 4 and Eq. 5 in the following notations

[Mu] ¨̂u+
[
GT ]

β̂ = [fwet]+ [fu] ,

[G] û− [H] β̂ = 0,
(6)

where,

[Mu] =
∫

Ω

ρNu
T NudΩ

[fwet] =−
(∫

Γwet

Nu
T n̂NpdΓ

)
p̂

[fu] =
∫

Γt

Nu
T t̄dΓ.

[H] =
∫

Ω

PT SPdΩ

[G] =
∫

Ω

PT BudΩ,

(7)

where S = C−1 the compliance matrix.
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Eliminating β̂ from Eq. 6 we finally arrive at the following,

[Mu] ¨̂u+[Ku] û = [fwet]+ [fu] , (8)

where,

[Ku] =
[
GT ][H−1] [G] . (9)

Now using harmonic solution we get,

[Kuu] û+
[
Kup
]

p̂ = [fu] , (10)

where

[Kuu] =−ω
2 [Mu]+ [Ku][

Kup
]
=
∫

Γwet

Nu
T n̂NpdΓ

[fu] =
∫

Γt

Nu
T t̄dΓ.

(11)

We note that the use of the hybrid formulation in this coupled model involves the
additional processing needed for eliminating β̂ . The term [Ku] now involves an
inverse operation for the matrix [H]. This additional processing has to be done at
the element level.Thus the [Kuu] term of the coupled formulation would now be
computed differently from our displacement based coupled model. This results in
a slightly higher computational cost.

2.2 FEM formulation for the fluid domain and coupling with structural me-
chanics

The fluid domain is modelled using the linearized Reynolds equation for squeeze
film as follows,

h0
3

12µeff

(
∂ 2P
∂x2 +

∂ 2P
∂y2

)
=

h0

Pa

∂P
∂ t

+
∂H
∂ t

, (12)

where µeff, h0, Pa are the effective viscosity, the initial air gap and the ambient air
pressure respectively. P is the perturbed fluid pressure about Pa, and H is the per-
turbed air gap about h0. The last term in the above equation signifies the coupling
between the fluid and the structural domains.

Considering a harmonic solution, we have P = p̃e jωt and H = ũze jωt . Substituting
for P and H in Eq. 12 we get,

h0
3

12µeff

(
∂ 2 p̃
∂x2 +

∂ 2 p̃
∂y2

)
=

h0 jω
Pa

p̃+ jω ũz. (13)
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Now considering ‘pδ ’ as the variation in ‘ p̃’, and following the procedure outlined
in [Roychowdhury, Nandy, Jog, and Pratap (2013)] we get the weak form of the
fluid equation as,∫

Ω

(
h0

3

12µeff
∇p̃∇pδ

)
dΩ+

∫
Ω

(
jωh0

Pa
p̃pδ

)
dΩ+

∫
Ω

( jω ũz pδ )dΩ = 0 (14)

Now using the following interpolations for pressure, its variation and the displace-
ment in the z direction,

p̃ = Npp̂,
pδ = Npp̂δ ,

ũz = Nuz û
(15)

and following the procedure outlined in [Roychowdhury, Nandy, Jog, and Pratap
(2013)], we arrive at the following discretized form of the fluid equation:

p̂δ
T
[(

h0
3

12µeff

∫
Ω

Bp
TBpdΩ

)
p̂+
(

jωh0

Pa

∫
Ω

Np
TNpdΩ

)
p̂+
(

jω
∫

Ω

Np
T NuzdΩ

)
û
]
=0,

(16)

where Ω is two dimensional fluid domain, and Np,Nuz and Bp are as described in
[Roychowdhury, Nandy, Jog, and Pratap (2013)]. Again using arbitrariness of p̂δ

in Eq. 16 we get the following matrix form of the element equation[
Kpp
]

p̂+
[
Kpu
]

û = 0, (17)

where

Kpp =
h0

3

12µeff

∫
Γwet

Bp
T BpdΓ+

jωh0

Pa

∫
Γwet

Np
T NpdΓ,

Kpu = jω
∫

Γwet

Np
T NuzdΓ.

(18)

Here in the coupled problem, the two dimensional fluid domain is nothing but the
wet surface of the vibrating elastic structure.

Now combining both Eq. 17 and Eq. 10 we get the coupled element equation for
modelling squeeze film effects with structural interaction as follows,[

Kuu Kup
Kpu Kpp

][
û
p̂

]
=

[
fu
0

]
(19)
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3 Results and Discussions

We now discuss the simulation results for two kinds of 3D elements namely the 27
node brick and the 8 node brick. We compare the results of the displacement based
elements with that of the hybrid based elements and try to find the most suitable
element for modelling squeeze film geometries. We discuss the accuracy of results
as well as efficiency of computation in the two cases.

3.1 Validation and benchmarking

In our prior work [Roychowdhury, Nandy, Jog, and Pratap (2013)] we had val-
idated our coupled formulation with experimental data from literature and with
analytical expressions. Here we set a benchmark mesh for comparing the re-
sults obtained from other mesh sizes for both the 27 node and the 8 node ele-
ments. We use a very fine 27 node hybrid element mesh (no. of elements =
2400 (Nx = 100,Ny = 6,Nz = 4), number of nodes = 23517, degrees of freedom
= 94068) as our benchmark mesh. Table 1 shows the quality factors for the first
three modes of a cantilever computed with the benchmark 27 node hybrid mesh
and the corresponding values of the experimentally reported quality factors and
natural frequencies from Pandey and Pratap (2007).

The cantilever modelled is of length 350 µm, width 22 µm and thickness 4 µm,
having an air gap of 1.4 µm. The cantilever is made of polysilicon. The relevant
mechanical properties of polysilicon used in the simulations are [Pandey and Pratap
(2007)], ρSi = 2330 Kg/m3 as density, ESi = 160 GPa as Young’s modulus, and
ν = 0.22 as Poisson’s ratio. The fluid medium considered is air, with properties as
follows; ρair = 1.2 Kg/m3 as density, and µ = 1.8× 10−5N-s/m2 as viscosity. In
the discussions to follow we will use the benchmark mesh to compare with other
mesh sizes for both the 27 node as well as the 8 node simulation results, we also use
this same cantilever dimensions for all the mesh sizes compared. Figure 2 shows a
27 node Mesh (Nx = 7,Ny = 2,Nz = 1).

Table 1: Comparison of the computed Q factor from the benchmark mesh with the
experimentally reported values.

Mode QFEM−Hyb−27n QExp Natural Frequency
1 1.095 1.20 43 kHz
2 5.869 7.58 245 kHz
3 20.369 18.52 690 kHz
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Figure 2: 27 Node mesh (Nx = 7, Ny = 2, Nz = 1)

3.2 Comparison between hybrid and displacement based formulations for lin-
ear elements

We first compare the performance of the hybrid formulation vis a vis the displace-
ment based (conventional) formulation for linear elements, i.e., the 8 node brick
elements. We model the same benchmark cantilever as discussed in the previous
section and plot the percentage error in the tip displacement for different mesh sizes
for a frequency of 1 kHz. The error is computed with respect to the tip displacement
value obtained with the benchmark mesh using 27 node hybrid elements. Figure 3
shows the percentage error in the computed tip displacement of the cantilever for
the two elements. We find from Fig. 3 that the hybrid element shows less than 1%
error with respect to the benchmark mesh, as opposed to large error percentages for
the corresponding displacement based element. We also note that the convergence
for hybrid elements is much quicker, and the hybrid element converges at moderate
mesh sizes compared to the displacement based elements.

Thus for modelling squeeze film geometries where one is limited to using linear
elements (say due to the limitations in mesh generator or otherwise) a hybrid for-
mulation shows much faster convergence and greater accuracy than its displace-
ment based counterpart, and is therefore a better choice for modelling squeeze film
geometries.
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Figure 3: Convergence of computed tip displacement and the corresponding errors
for 8 noded conventional (displacement based) and hybrid elements

3.3 Performance study of 8 node hybrid element

In the previous section we saw that the hybrid linear element is much superior
to its displacement based counterpart in terms of accuracy and convergence. In
this section we investigate how efficient the 8 node hybrid element is in modelling
squeeze film parameters, namely the Q factor. We compute the first three Q factors
for our benchmark cantilever and plot the percentage error in the computed Q,
against our benchmark 27 node hybrid mesh. The first three Q factors correspond
to the first three modes of the benchmark cantilever with corresponding natural
frequencies as 43 kHz, 245 kHz and 690 kHz respectively.

From Table 2 we see that the 8 node hybrid formulation results in convergence
for all the Q factors at moderate mesh sizes. We also note that with very fine
meshes for the 8 node hybrid the results converge towards the benchmark 27 node
hybrid mesh values. We further note that hybrid elements give results within 5%
of the benchmark values for moderate mesh sizes (Nx = 30,Ny = 6,Nz = 4) for
Q1. For meshes finer than (Nx = 60,Ny = 12,Nz = 4) the 8 node hybrid elements
give results within 1% of the more accurate and computationally intensive 27 node
benchmark mesh results for Q1.
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Table 2: Percentage and absolute errors in Q factors computed with 8 node hybrid
elements with progressive mesh refinement. The error is computed with respect to
the 27 node benchmark mesh.

Mesh Total Absolute Error % Error
Nx× Ny× Nz Nodes Q1 Q2 Q3 Q1 Q2 Q3

10×4×3 220 0.155 1.511 4.821 14.15 25.74 23.67
15×4×3 320 0.120 1.011 3.191 10.96 17.23 15.66
20×4×4 525 0.095 0.831 2.311 8.67 14.16 11.34
20×6×4 735 0.065 0.531 1.491 5.94 9.05 7.32
30×6×4 1085 0.045 0.411 0.831 4.11 7.00 4.08
40×6×4 1435 0.035 0.361 0.731 3.19 6.15 3.59
60×8×4 2745 0.022 0.221 0.491 2.01 3.76 2.41

60×10×4 3355 0.016 0.170 0.371 1.46 2.89 1.82
60×12×4 3965 0.012 0.141 0.311 1.09 2.40 1.53
80×16×4 6885 0.007 0.061 0.201 0.64 1.04 0.98
80×16×6 9639 0.007 0.061 0.201 0.64 1.04 0.98
100×20×4 10605 0.005 0.051 0.078 0.50 0.87 0.38

3.4 Comparison between hybrid and conventional 27 node elements

In this section we try to determine how effective a hybrid formulation is in terms
of accuracy and convergence, when compared to the conventional 27 node formu-
lation. We also do a performance study and compare the accuracies of the two for-
mulations at high and low mesh refinements. Table 3 shows the percentage errors
in Q factor computed for the first three modes of the benchmark cantilever using
27 node conventional and hybrid elements. The hybrid 27 node elements perform
well at low and moderate mesh sizes, and perform slightly better than the conven-
tional element at higher mesh sizes. We also see that at very fine mesh sizes the
conventional 27 node mesh values are similar to the hybrid 27 node mesh values.

We note from Table 3 that even for very coarse meshes the high frequency Q factor
is within 30% of the benchmark value, whereas for the conventional formulation
the error is > 200% at the same mesh refinement. We see from Table 3 That the
hybrid elements show less than 5% error with as coarse a mesh as (Nx = 7,Ny =
2,Nz = 1) for all the three Q factor values. Thus we find the hybrid 27 node element
to outperform its conventional counterpart at lower mesh sizes. At higher mesh
refinement levels the difference between the two is not so pronounced.
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Table 3: Percentage errors in Q factors computed with 27 node conventional (Qi−c)
and 27 node hybrid (Qi−h) elements as compared to the benchmark mesh

Mesh (Nx×Ny× Nz ) Node Q1−c Q1−h Q2−c Q2−h Q3−c Q3−h
3×2×1 105 16.80 12.33 49.65 20.46 210.67 28.33
5×2×1 165 7.39 5.07 16.54 8.60 21.80 6.14
7×2×1 225 2.75 2.65 10.73 4.89 11.39 3.47
10×2×1 315 1.28 1.26 4.28 2.80 5.12 1.65
10×2×2 525 1.28 1.26 4.24 2.79 5.11 1.65
15×3×2 1085 0.55 0.53 2.15 0.86 1.99 0.81
20×3×2 1435 0.32 0.27 1.57 0.62 0.99 0.25

50×10×2 10605 0.16 0.16 0.36 0.36 0.20 0.20

3.5 Computational cost study

We have seen that the hybrid 27 node element shows great accuracy even at coarse
mesh sizes. We now see how the 27 node hybrid element compares with the three
other element types discussed as far as computational cost is concerned. For this
purpose we compare results for coarse, medium and fine meshes for the same num-
ber of nodes for all the elements. Again we tabulate the percentage error (see Table
4) in the computed first three Q factors against our benchmark mesh for the 8 and
27 node hybrid and conventional formulation for three different mesh refinements.
For each mesh refinement, we have chosen an appropriate number of elements, for
both the 8 and the 27 node formulations so as to have the same degrees of freedom
for a true comparative performance study.

We see from Table 4 that for all levels of mesh refinement the 8 node hybrid
element is more accurate when compared to its displacement based counterpart. For
the case of 27 node elements the hybrid element outperforms its displacement based
counterpart (specially at high frequencies, i.e., Q3 computation). However, for
more refined meshes the displacement based 27 node element performs comparably
to the hybrid counterpart.

We now look at the computational cost with respect to accuracy for equivalent
meshes among the four element types discussed. We present in Table 5 the com-
putational times (using a machine with Intel i5-2500 CPU @ 3.30 GHz and 20 GB
RAM) for a run of 50 frequencies for the mesh sizes discussed in Table 4. The per-
centage errors in computing the high frequency (Q3) quality factor are presented
alongside the computational time in seconds for the mesh sizes under discussion.

For a relatively coarse mesh (Nx = 7,Ny = 2,Nz = 1) the computational times (See
Table 5) for 27 node hybrid and 27 node conventional elements are similar; however
the hybrid element even at such a coarse mesh comes to within 5% of benchmark
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Table 4: Equivalent mesh study: percentage errors in computed Q factors

Element 8 Node Hyb 8 Node Con 27 Node Hyb 27 Node Con
Coarse 14×4×2 14×4×2 7×2×1 7×2×1

Q1 11.38 367.12 2.65 2.75
Q2 18.40 471.13 4.89 10.73
Q3 16.10 621.46 3.47 11.39

Medium 20×6×4 20×6×4 10×3×2 10×3×2
Q1 5.94 221.10 1.26 1.28
Q2 9.05 284.73 2.77 4.24
Q3 7.32 305.15 1.65 5.11

Fine 30×6×4 30×6×4 15×3×2 15×3×2
Q1 4.11 122.93 0.53 0.55
Q2 7.00 161.03 0.86 2.15
Q3 4.08 143.94 0.81 1.99

values for all the three computed quality factors (Refer Table 4). At fine mesh
(Nx = 15,Ny = 3,Nz = 2) the accuracy of the 27 node hybrid is comparable to its
conventional counterpart at low frequencies and slightly better at higher frequen-
cies. However the computational cost for the hybrid 27 node at fine mesh size is
much higher than the equivalent conventional 27 node mesh.

Thus for the current problem the conventional 27 node compares at par with its hy-
brid counterpart for refined mesh sizes, and at a lesser cost. For coarse meshes the
hybrid element is more efficient considering both accuracy and cost for all frequen-
cies. If however, one were to consider locking effects due to curvature in geometry
(as shown in example 3C, Table 1, in the reference [Jog (2010)]) the hybrid 27
node performs much better than the conventional 27 node elements and the addi-
tional cost of computation of using hybrid formulation may be well justified. It is
however, clear from the data that for reasonably high accuracy and lower computa-
tional cost, the 27 node conventional element is a good choice.

Considering the case of the linear elements, the 8 node hybrid element greatly
outperforms its conventional counterpart at all frequencies with a slightly higher
computational cost in each case. Thus for the scenarios where one is limited to
using linear elements (say due to mesh generator limitations) the 8 node hybrid
element is a better choice for modelling squeeze film geometries.
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Table 5: Comparative cost (time in seconds for run of 50 frequencies) and efficiency
study across 8 node and 27 node equivalent meshes for both hybrid and linear
elements

8 Node Element
Mesh Hybrid Conventional

Nx×Ny×Nz % Error(Q3) time % Error(Q3) time
14×4×2 16.10 2.64 621.46 2.45
20×6×4 7.32 26.66 305.15 24.67
30×6×4 4.08 37.68 143.94 35.08

27 Node Element
Mesh Hybrid Conventional

Nx×Ny×Nz % Error(Q3) time % Error(Q3) time
7×2×1 3.47 3.25 11.39 3.25

10×3×2 1.65 36.69 5.11 21.99
15×3×2 0.81 54.34 1.99 32.51

3.6 Varying aspect ratio study

We studied the variation of element aspect ratio on the computed Quality factor for
the first mode of vibration for both 8 node hybrid and 8 node conventional elements.
For this study we again chose to model the benchmark cantilever with dimensions
and material properties as mentioned in section 3.1. We vary the element aspect
ratio (element length to element thickness ratio) by varying the number of elements
along the length direction, and fixing the number of elements along the width and
the thickness (z direction) at a moderate value. The percentage errors in the first
Q factor for both the hybrid and the conventional elements for varying aspect ratio
for the corresponding mesh sizes are presented in Table 6.

We find that the hybrid formulation is able to handle higher element aspect ra-
tios (thus lower mesh sizes ) with reasonable levels of accuracy. We see that
even for element aspect ratios above 10 (Nx = 30,Ny = 6,Nz = 4) the error in
computing the first Q factor is < 5% compared to benchmark, when using hy-
brid elements. However using conventional elements, even a relatively large mesh
(Nx = 100,Ny = 6,Nz = 4) and much lower element aspect ratio still results in error
values > 20%, when compared to benchmark (we note that the width direction has
been kept constant in this study that is why the convergence trend is different from
Table 2). Thus the lower order conventional elements are not suitable for mod-
elling high element aspect ratio geometries as found in MEMS structures showing
squeeze film effects.
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Table 6: Percentage errors for first mode Q factors for varying element aspect ratios,
computed with 8 node conventional (Q1−c) and 8 node hybrid (Q1−h) elements as
compared to the benchmark mesh

Mesh (Nx× Ny× Nz) Aspect Ratio Q1−c Q1−h

10×6×4 35.00 546.79 11.01
20×6×4 17.50 221.10 5.94
30×6×4 11.66 122.93 4.11
40×6×4 8.75 82.57 3.19
50×6×4 7.00 57.79 3.19
60×6×4 5.83 44.95 3.19
70×6×4 5.00 35.78 3.19
100×6×4 3.50 21.10 3.19

4 Conclusions

In this study we have discussed the implementation of a hybrid finite element for-
mulation for coupled squeeze film modelling in MEMS devices. We have devel-
oped both hybrid 8 node as well as hybrid 27 node elements for modelling squeeze
film geometries. We have compared their performance to their corresponding dis-
placement based counterparts. We find that the hybrid elements outperform the
displacement based elements significantly specially at coarse mesh sizes. This is
primarily due to the fact that the hybrid elements are able to handle geometries
that have unfavourable aspect ratios (i.e., very thin plate elements). The effect of
element aspect ratios for hybrid and conventional formulations have been com-
pared for 8 node elements and we have shown that the hybrid formulation handles
steeper aspect ratios favourably compared to the conventional formulation. Even
for the superior 27 node elements we have shown that the hybrid formulation for a
very coarse mesh (Nx = 7,Ny = 2,Nz = 1) comes to within 5% of the benchmark
mesh results.

We also find that the hybrid elements perform very well for high frequency mod-
elling (accuracy of computing Q3). We have studied equivalent meshes for both 8
and 27 node hybrid as well as conventional elements and discussed their efficiency.
We have considered both computational cost as well as accuracy with respect to
bench mark values for all the element types. We find that the 27 node hybrid ele-
ment is an optimal choice when moderate accuracy levels are required (thus coarse
meshes maybe employed which result in accuracy within 5% of benchmark). For
fine meshes the 27 node conventional element proves to be a more optimal choice
after considering both cost and accuracy. For the linear 8 node elements the hybrid
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formulation is seen to outperform the conventional elements greatly for low as well
as high frequency computations, and involves only a marginally higher computa-
tional cost than the 8 node conventional element.
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