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A High-Order Finite-Difference Scheme with a
Linearization Technique for Solving of Three-Dimensional

Burgers Equation
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Abstract: The objective of this paper aims to present a numerical solution of high
accuracy and low computational cost for the three-dimensional Burgers equations.
It is a well-known problem and studied the form for one and two-dimensional, but
still little explored numerically for three-dimensional problems. Here, by using the
High-Order Finite Difference Method for spatial discretization, the Crank-Nicolson
method for time discretization and an efficient linearization technique with low
computational cost, two numerical applications are used to validate the proposed
formulation. In order to analyze the numerical error of the proposed formulation,
an unpublished exact solution was used.
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1 Introduction

In recent decades, many authors have been developing researches looking for the
numerical solution of partial differential equations and their applications, partic-
ularly in the solution of the Burgers equations. In [Radwan (1999)], the present
authors have solved the two-dimensional unsteady Burgers equations using the
fourth-order accurate two-point compact alternating direction implicit scheme and
the fourth order Du Fort Frankel scheme. Comparisons were made between the
present schemes in terms of accuracy and computational efficiency for solving
problems with severe internal and boundary gradients. The fourth-order compact
alternating direction implicit scheme is stable and efficient and with better resolu-
tion of steep gradients related to other scheme.

In recent contributions, the high-order finite difference method has been widely
used by several authors to solve the nonlinear convection-diffusion equations or
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Burgers equation. Accordingly, [Bahadir (2003)] proposed a fully implicit finite-
difference scheme to solve two-dimensional nonlinear Burgers equations in which
accuracy was checked with analytical and numerical results and indicated that the
method was well suited. In [Radwan (2005)] the two-dimensional unsteady Burgers
equation was solved using the fourth-order accurate two-point compact scheme and
the fourth-order accurate Du Fort Frankel scheme. In conclusion, the fourth-order
two-point compact scheme is highly stable and efficient related to the fourth-order
accurate Du Fort Frankel scheme. [Young, Fan, Hu and Atluri, (2008)] demon-
strated the accuracy and simplicity of the Eulerian–Lagrangian method to solve
two-dimensional unsteady Burgers equations and compared the numerical results
with others analytical and numerical results.

Liu (2009) employed the fictitious time integration method to solve the backward
in time and forward in time Burgers equation. Because the Fictitious Time Integra-
tion Method is integrated in a new direction of fictitious time, which is independent
to the real time, the ill-posedness and noised disturbance for the backward in time
Burgers equation can be handled rather well. This method developed is very effec-
tive to find the numerical solutions of backward in time problems involving partial
differential equations .

Recently, several authors have presented results for the numerical solution of the
Burgers equations, among them are noteworthy [Srivastava, Tamsir, Bhardwaj and
Sanyasiraju (2011); Srivastava, Awasthi and Tamsir (2013); Srivastava, Singh,
Awasthi and Tamsir (2013), Zheng, Fan and Li (2014)].

However, there are few papers for the numerical treatment of the solutions of three-
dimensional Burgers equation. In order to contribute to this topic as well as extend
the problems already solved in [Campos, Romão and Moura (2014); Cruz, Campos,
Martins and Romão (2014)], in this paper the high order finite difference method
with an efficient technique of linearization and low computational cost were imple-
mented for the solution the following system of equations: given by
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where u(x,y,z, t), v(x,y,z, t) and w(x,y,z, t) are the velocity field in the x,y,z-
directions, respectively, and ν is the kinematic viscosity. These equations coincide
with the three-dimensional momentum equations for incompressible laminar flows
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if the pressure terms are neglected [Lewis et al. (2004)] This system of equations
was chosen because it is a non-linear three-dimensional problem which allows the
testing of a finite difference method of high-order jointly to linearization method
proposed in this paper.

2 Formulation – High-Order Finite Difference Method

The numerical formulation proposed in this paper to solve the three-dimensional
Burgers equation according with Eq. 1-3 begins with a discretization in time from
the Crank-Nicolson method, as follows: the following system of equations: given
by(
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Note that in Eq. 4-6 the existence of nonlinear convective terms which require
special treatment. In the literature, several authors have presented procedures for
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the linearization of the convective term, with emphasis [Galpin and Raithby (1986),
Ozisik (1994), Deblois (1997), Smith (1998), Sheu and Lin, (2004), Sheu and Lin
(2005)]. In this work the linearization technique proposed by [Jiang (1998), Jiang
and Chang (1990)] considering a sufficiently small time step for the convective
terms. Considering F = f ∂ f

∂x , which, for simplicity of notation, will be denoted by
F = st, we can expand it in a Taylor series about the current value and terminate
the series expansion after the first-derivative terms. The result is as follows:

sn+1tn+1 ≈ sntn +

[
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](
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Replacing, we obtain:
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(7)

This technique is referred to as Newton’s method because it propitiates a quadratic
convergence [Dennis and Schmabel (1983)]. Note that this technique does not
require an iterative linearization at each time step, making quicker the computation
of f .

Writing Eq. 7 for the term uux, for example, we have:
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A similar procedure will be used in other nonlinear terms of Eq. 4-6.

In this manner, replacing the Eq. 7 in Eq. 4:
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Now, replacing the Eq. 7 in Eq. 5, it yields
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Finally, replacing the Eq. 7 in Eq. 6, we obtain
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.

Now, in order to carry out the spatial discretization of Eq. 9-11, the following
procedure is used: considering nodes with ∆x,∆y or ∆zdistance from the boundary
using the Central Difference Method with O(∆x2) (see Romão, Aguilar, Campos
and Moura (2012)) to Eq. 9, we obtain:
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Similarly to Eq. 10:
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Finally, to Eq. 11:
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Now, considering the internal nodes and using the Central Difference Method with
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O(∆x4) (see Romão, Aguilar, Campos and Moura (2012)), to Eq. 9, we obtain:(
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Similarly, to Eq. 10:(
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Finally, to Eq. 11:(
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(17)
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where

F6 =
wn

i, j,k

∆t
+0.5ν

(−wn
i+2, j,k +16wn

i+1, j,k−30wn
i, j,k +16wn

i−1, j,k−wn
i−2, j,k

12∆x2

+
−wn

i, j−2,k +16wn
i, j−1,k−30wn

i, j,k +16wn
i, j+1,k−wn

i, j+2,k

12∆y2

+
−wn

i, j,k−2 +16wn
i, j,k−1−30wn

i, j,k +16wn
i, j,k+1−wn

i, j,k+2

12∆z2

)
.

3 Numerical Applications

A linear system was generated from the Eq. 12-17 to solve the three-dimensional
Burgers equation. Gauss-Seidel method was implemented to solve the linear sys-
tem and in order to save computational time the matrix generated has only non-zero
coefficients. The numerical implementation was performed in FORTRAN.

In order to evaluate the efficiency of the proposed formulation, two numerical ap-
plications are proposed and compared to the exact solution, providing the analysis
of the error from L∞ and L2 norms [Romão, Campos and Moura (2011)].

Case 1: Here, in order to validate the numerical code, it was adopted the follow-
ing exact solution: u(x,y,z, t) = −0.5x+y+z−2.25xt

1−2.25t2 , v(x,y,z, t) = x−0.5y+z−2.25yt
1−2.25t2 and

w(x,y,z, t) = x+y−0.5z−2.25zt
1−2.25t2 , using the same principle as used in Romão (2014).

Taking Lx = Ly = Lz = 1, Lt = 0.1 (end instant), ∆x = ∆y = ∆z = Lx/20, ∆t =
Lt /20, the numerical results were compared with the exact solution considering the
maximum error for stopping criterion for the Gauss-Seidel on the order of 10−14.

Table 1 shows the accuracy of the numerical solutions of u,v and w according to
L∞ and L2 norms. It was figured it out that the accuracy for the L2 norm is in the
same order of Gauss-Seidel method truncation error.

Table 1: Analysis of numerical accuracy of the solution u,v and w according to the
L∞ and L2 norms.

L∞ norm L2 norm
u 1.48E-13 4.46E-14
v 1.51E-13 4.55E-14
w 1.54E-13 4.64E-14

Figures 1-3 show the velocity profiles of u, v and w in the XY plane, respectively,
for z= 0,5. It was noted, for example, in Fig. (1), for x = y=1 the velocity profile
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reaches approximately u ≈ 0.8, which approaches the value given by the exact
solution u ≈ 0.7928. Now, Fig. 2, for x = 0 and y = 0.15, the velocity profile v
reaches the value of approximately 0.4, which coincides with the value obtained
via exact solution (v≈ 0.40025). Finally, in Fig. 3, for x = 0 and y = 0.75, we have
w(0;0.75;0.5;0.1)≈ 0.4, which value approaches the value of w≈ 0.3964, obtained
by exact solution.

 

Figure 1: Two-dimensional velocity profile of u in the XY -plane with z = 0.5.

 

Figure 2: Two-dimensional velocity profile of v in the XY -plane with z = 0.5.
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Figure 3: Two-dimensional velocity profile of w in the XY -plane with z = 0.5.

Case 2: Considering the governing equations given by Eq. (1-3) with the following
analytical solution proposed by Srivastava and Ashutosh (2013):

u(x,y,z, t)=− 2
Re

a2+a5y+a7z+a8yz+γA(Bcosγx−C sinγx)(Dsinδy+E cosδy)(F sin µz+Gcos µz)e

(
−α2

Re t
)

H ,

v(x,y,z, t)=− 2
Re

a3+a5x+a6z+a8xz+δA(Bsinγx+C cosγx)(Dcosδy−E sinδy)(F sin µz+Gcos µz)e

(
−α2

Re t
)

H ,

w(x,y,z, t)=− 2
Re

a3+a6y+a7x+a8xy+µA(Bsinγx+C cosγx)(Dsinδy+E cosδy)(F cos µz−Gsin µz)e

(
−α2

Re t
)

H
where H = a1 + a2x + a3y + a4z + a5xy + a6yz + a7xz + a8xyz + A(Bsinγx +C

cosγy)(Dsinδx +E cosδy)(Fsinµx +G cosµy)e
(
−α2

Re t
)
, with α , γ , δ , µ , a1, a2, a3,

a4, a5, a6, a7, a8, a3, A, B, C, D, E, F and G arbitrary constants.

Taking a1 = a2 = 1; a3 = a4 = ... = a8 = 0; A = B = D = F = 1; C = E = G
= 0; γ = δ = µ = 1 and α =

√
Re, the analytical solution analytical solution is

employed of the form: u(x,y,z, t) = − 2
Re

(
1+cos(x)sin(y)sin(z)e−t

1+x+sin(x)sin(y)sin(z)e−t

)
, v(x,y,z, t) =

− 2
Re

(
sin(x)cos(y)sin(z)e−t

1+x+sin(x)sin(y)sin(z)e−t

)
and w(x,y,z, t) =− 2

Re

(
sin(x)sin(y)cos(z)e−t

1+x+sin(x)sin(y)sin(z)e−t

)
.

It was considered, then, h = ∆x = ∆y = ∆z, Lx = Ly = Lz = Lt = 0.1 and the maxi-
mum error for stopping criterion for the Gauss–Seidel on the order of 10−10.

Table 2 shows the analysis of the error in terms of u, showing that is similar to the
ones found to v and w, considering h=∆t = 0.005 and varying the kinematic viscos-
ity. Several computational tests were performed by fixing the kinematic viscosity
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and refining the mesh spatially or temporally, and no differences in the solution
accuracy were visualized.

Figures 4-6 show, respectively, speed profiles of u, v and w in the XY-plane with z =
0.5, considering the kinematic viscosity at 100 and 10−2. Considering, for example,
in the Fig. 4, x = 0.02 and y = 0, the velocity profile reaches, approximately,
u ≈ -1.96, which approaches the value of the analytical solution (u ≈ -1.9607).
Similarly, in Fig. 5, for x = 0.075 and y = 0, the profile of the velocity u reaches the
value of
-0.01860, coinciding with the value obtained via analytical solution (u≈ -0.01860).

  

                   (a)                                      (b) 

 Figure 4: Two-dimensional velocity profile of u in the XY-plane with z = 0.5 con-
sidering (a) ν = 100 and (b) ν = 10−2.

Considering the domain and the time the proposed in this application, some varia-
tions of the h and ∆t were performed and the results showed no significant changes
( see Table 3) in order to allow an a study of the convergence rate.

4 Conclusions

The objective of this study was to present a numerical solution of high accuracy
and low computational cost for the three-dimensional nonlinear Burgers equations.
Using a numerical code in FORTRAN, it was possible to obtain excellent results
in both applications, even when using coarse meshes. It is noteworthy that the
proposed linearization technique has shown good results for a small number of
time steps and there is no need to generate some iterative code each time step.
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                      (a)                      (b) 

 Figure 5: Two-dimensional velocity profile of v in the XY-plane with z = 0.5 con-
sidering (a) ν = 100 and (b) ν = 10−2.

  

                      (a)                    (b) 

 Figure 6: Two-dimensional velocity profile of win the XY-plane with z = 0.5 con-
sidering (a) ν = 100 and (b) ν = 10−2.
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Table 2: Analysis of numerical accuracy of the solution u for h = ∆t = 0.005 varying
the kinematic viscosity.

ν L∞ norm L2 norm
101 2.95E-05 9.80E-06
100 5.19E-06 1.98E-06

10−1 1.98E-06 7.12E-07
10−2 2.70E-06 9.66E-07
10−3 9.76E-07 3.29E-07
10−4 1.45E-07 4.51E-08
10−5 1.60E-08 4.78E-09

Table 3: Variation of some mesh for case 2 considering ∆t = 0.025.

ν = 101 ν = 100 ν = 10−1

Lx/4 5.57E-06 6.48E-07 1.44E-06
Lx/5 5.86E-06 6.81E-07 1.64E-06
Lx/6 6.36E-06 6.73E-07 1.66E-06
Lx/7 6.48E-06 6.62E-07 1.70E-06
Lx/8 6.30E-06 6.81E-07 1.75E-06

Thus, an important contribution of this work is the fact that the linearization tech-
nique can be applied for other numerical formulations that make use of Finite Ele-
ment Method or Finite Volume Method.
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