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Abstract: This paper introduces a numerical model to investigate the vibratory
response of elastic and rigid circular plates embedded in viscoelastic, transversely
isotropic, three-dimensional layered media. In the present numerical scheme, the
boundary-value problem corresponding to the case of time-harmonic concentrated
and distributed axisymmetric vertical ring loads within a layered half-space is for-
mulated according to an exact stiffness method. Its solution results in the required
influence functions for the modeling of the present problem. The case of an em-
bedded flexible plate is formulated in terms of a variational method. The deflection
profile of the plate is written in terms of generalized coordinates combined with a
polynomial approximation. These generalized coordinates are determined by the
solution of the Lagrange’s equation of motion, which involves the strain and ki-
netic energy of the flexible plate and energy due to contact tractions, as well as the
potential energy due to the applied load. A set of Lagrange multipliers is incorpo-
rated into the equation of motion so that the boundary conditions at the plate edge
are satisfied. The solution of the constrained Lagrangian function results in the de-
flection profile of the plate. The deflection profile of the embedded plate is shown
for different governing parameters such as frequency and type of excitation and
layering configuration of the surrounding medium. The present numerical scheme
contributes to the study of dynamic response of buried foundations and anchors in
non-homogeneous soils.
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1 Introduction

The vibratory response of circular elastic plates interacting with transversely isotropic
media has important practical applications in earthquake engineering and seismol-
ogy. The case of an elastic plate embedded within transversely isotropic layered
media is of particular interest to the analysis and design of foundations and anchors
buried in the soil.

The study of elastic wave propagation in anisotropic media is quite sophisticated.
State-of-the-art reviews on the wave propagation in such media are provided by
Crampin, Chesnokov and Hipkin (1984) and Payton (1983), and in the references
therein. More recently, Barros (1997) presented solutions for the time-harmonic be-
havior of three-dimensional viscoelastic transversely isotropic full- and half-spaces
under time-harmonic loads. A rectangular coordinate system has been used in both
cases. The present study builds on the solution derived by Wang in his PhD the-
sis (Wang, 1992), which was also reported in a paper by Rajapakse and Wang
(1993). These authors derived Green’s functions for a three-dimensional elasto-
dynamic transversely isotropic full-space and half-space. A cylindrical coordinate
system was used. The equation of equilibrium for time-harmonic motions were
solved by introducing three potential functions, which were expanded in Fourier
series, as introduced by Muki (1960). Because of the cylindrical coordinate system
that was adopted, Hankel transforms were used in the solution. Semi-analytical so-
lutions for Green’s functions were derived by considering buried circular ring loads
acting on the radial (r), circumferential (θ ) and vertical directions (z). A particular-
ization of Wang’s solution for the horizontal and rocking response of a bi-material,
transversely isotropic interface has been recently presented by Labaki, Mesquita
and Rajapakse (2013).

Considerable efforts have been invested in the derivation of methods to study lay-
ered media. Some of the most recent ones include the works by Akbarov (2013)
and Akbarov, Hazar and Eros (2013). A remarkable modeling scheme for lay-
ered media is the exact stiffness method, which resembles a finite element analysis.
A stiffness matrix of the layered medium is assembled from the stiffness matri-
ces of the layers in the same fashion that the stiffness matrix of a structure is as-
sembled from the elementary stiffness matrices of its components. This method
has been used by Wass (1972), Wass (1980), Kausel and Peek (1982), Mesquita
and Romanini (1992) and Romanini (1995) to model multilayered isotropic me-
dia. Only a few results have been presented regarding the dynamics of multilay-
ered anisotropic media. The most important ones to the present study are by Seale
and Kausel (1989), Wang (1992) and Marques de Barros (2001). The first paper
presented an extension of the thin-layer method to study the elastodynamics of a
multilayered transversely isotropic half-space due to point loads. Wang (1992) and
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Marques de Barros (2001) used an exact stiffness method to derive solutions for
two-dimensional transversely isotropic layered media under time-harmonic loads
in cylindrical and rectangular coordinates, respectively. Labaki (2012) extended
Wang’s solution for the three-dimensional case.

Different models of the flexural behavior of elastic plates have been presented in
the literature. The book by Selvadurai (1979a) contains a detailed review of the
various methods which have been used to deal with such problem. According to
Rajapakse (1988), the variational method presented by Selvadurai (1979b, 1979c
and 1980) is the most suitable to solve the problem of interaction between an elastic
plate and its surrounding medium. One drawback of the variational method is the
difficulty of obtaining an explicit representation of the traction field acting across
the surface of the plate in response to the displacement field that is established.
The integral equation system corresponding to the mixed boundary value problem
only has an explicit solution for the case of the plate resting on the surface of the
half-space or buried infinitely deep inside it [Rajapakse, (1988)]. Rajapakse (1988)
derived a solution for the case of the elastic plate embedded at a finite depth inside
an isotropic half-space. In Rajapakse’s formulation, the deflection profile of the
plate is described by a power series together with a term corresponding to a con-
centrated load derived according to the classical plate theory. The coefficients of
the power series are determined through the minimization of a constrained energy
functional involving the strain energy of the plate and of the surrounding medium
and the potential energy of the external loads. Later on, Rajapakse (1989) pre-
sented a formulation that took into account the kinetic energy of a plate with mass.
An analogous constrained Lagrangian equation of motion was constructed based
on Lagrange multipliers, so that the boundary conditions at the plate edge could
be satisfied. The resulting system of equations from the constrained Lagrangian
functional was presented in a convenient matrix form, resembling the classical fi-
nite element method, and it has some advantages over the direct explicit variational
scheme. His formulation considered the case of the plate resting on the surface of
a three-dimensional, homogeneous, transversely isotropic half-space.

The present paper describes a numerical scheme for the investigation of the iner-
tial response of an elastic circular plate embedded within viscoelastic, transversely
isotropic, three-dimensional layered media. One example of the problem of inter-
est is illustrated in Fig. 1. The flexible circular plate is modeled according to the
solution derived by Rajapakse (1989). The case of a rigid plate is obtained as a par-
ticular case of the flexible plate. A model of layered media is presented according
to the exact stiffness method [Wang, (1992)]. The model considers that each layer
is a transversely isotropic, three-dimensional, viscoelastic medium, the response of
which is given by the Green’s function derived by Wang (1992). Time-harmonic
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vertical, distributed or concentrated axisymmetric loads are considered.

Figure 1: Elastic plate buried in a layered medium.

2 Governing equations

Consider a three-dimensional transversely isotropic full-space, the motion of which
is described in cylindrical coordinates by the displacements ur(r, θ , z), uθ (r, θ , z)
and uz(r, θ , z) in the r, θ and z directions, respectively. The cylindrical coordinate
system O(r, θ , z) is positioned in such a way that its z-axis is orthogonal to the
material’s plane of isotropy. The displacements ur, uθ and uz are related by the
following coupled equations of motion [Wang, (1992)]:
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In Eqs. (1) to (3), ρ is the mass density of the medium and ci j are elastic con-
stants of the transversely isotropic material. Rajapakse and Wang (1993) derived
a solution for this coupled equation system involving Hankel transforms. For the
particular case of axisymmetry, in which there is no θ -dependency, the displace-
ment fields and their corresponding stress fields are given by [Rajapakse and Wang,
(1993)]:
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In Eqs. (4) and (5), ζ = λ /δ , in which λ is the Hankel space variable. The kernels
of displacement and stress involved in Eqs. (4) and (5) are given by:
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In Eqs. (12) to (15), Jm represents the Bessel function of the first kind and mth

order. In the above equations the following parameterizations were also used:
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The coefficients A, B, C and D (Eqs. 6 to 11) are arbitrary functions that can be
determined from the boundary and continuity conditions of a given problem. In
the following section, these coefficients are determined for the case of a layered
half-space under axisymmetric loads.

2.1 Exact stiffness method for layered media

Consider the three-dimensional multilayered medium shown in Fig. 2. Each of the
N layers and the underlying half-space are made of a homogeneous transversely
isotropic elastic material, the behavior of which is described by Eqs. (4) and (5).
The material constants, mass density and thickness of the nth layer are denoted by
c(n)i j , ρ(n) and hn, respectively.

Let u∗(n)i1 denote the displacement in the i-direction (i=r,z) at the top surface of the
nth layer (z=zn), and u∗(n)i2 denote the displacement at the bottom surface of the nth

layer (z=zn+1). The * superscript indicates Hankel transformed domain, such as the
kernels from Eqs. (6) and (7). For example, in view of Eq. (6) this notation yields:
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Figure 2: Geometry of a multilayered system.
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The two displacement components ur and uz from Eqs. (6) and (7) at the top and
bottom surfaces of the nth layer can be combined in one matrix equation:
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The upper index (n) in the parameters ai, i=1,2,7,8, is omitted in Eq. (26) for
conciseness.

Similarly, let σ
∗(n)
i j1 denote the ijth stress component (i,j=r,z) at the top surface of the

nth layer (z=zn), and σ
∗(n)
i j2 denote the ijth stress component at the bottom surface

of the nth layer (z=zn+1). Let p∗(n)i1 denote the traction acting at the top surface of
the nth layer (n=1,N) in the i-direction (i=r,z), and p∗(n)i2 denote the traction acting
at the bottom surface of the nth layer in the i-direction. The corresponding matrix
equation can be obtained from Eqs. (10) and (11) as:
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2.1.1 Underlying half-space

Consider the half-space shown in Fig. 2 (“layer” N+1). For the particular case
of this semi-infinite medium, only the terms A(N+1) and C(N+1) are involved in
the formulation, in order to satisfy Sommerfeld’s radiation condition [Sommerfeld
(1949); Zienkiewicz, Kelly and Bettess (1977)]. This results in a reduced form of
Eqs. (23) and (28):
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and

p∗(N+1) = F(N+1)a(N+1) (36)

where
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2.1.2 Stiffness matrix of the layers and half-space

Consider the vector a(n) shown in Eqs. (23) and (28), which contains the arbitrary
functions A(n), B(n), C(n) and D(n). The vector a(n) is common to the expressions
of displacements (Eq. 23) and stresses of each layer (Eq. 28). Equations (23) and
(28) can be combined through a(n) into:

p∗(n) = F(n)a(n) = F(n)
(

G(n)
)−1

u∗(n) = K(n)u∗(n); n = 1,2, . . .,N (39)

In Eq. (39), the matrix K(n) is the stiffness matrix of layer n.

An analogous definition holds for the half-space. The vector a(N+1) shown in Eqs.
(32) and (36) is common to the expressions of displacements (Eq. 32) and stresses
of the half-space (Eq. 36). These equations can be combined through a(N+1) into:

p∗(N+1) = F(N+1)a(N+1)

= F(N+1)
(

G(N+1)
)−1

u∗(N+1) = K(N+1)u∗(N+1)
(40)

In Eq. (40), the matrix K(N+1) is the stiffness matrix of the half-space (“layer”
N+1).

Matrices K(n) depend on the material properties of the layer n (n=1,2,. . . ,N,N+1)
and its thickness, on the frequency of excitation and on the Hankel space variable
ζ . The expression of K(n) is rather long and has to be determined numerically.

2.1.3 Stiffness matrix of the multilayered medium

Let ℘n
i denote the external concentrated or distributed axisymmetric load applied

at the nth interface of two layers, in the i-direction (i=r,z), such as described below
in Section 2.2. This external load corresponds to the traction discontinuity at that
interface, which in the Hankel transformed domain is given by:

H {℘n
i }= p∗(n−1)

i2 + p∗(n)i1 ; i = r,z (41)
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Additionally, the kinematic continuity condition at the interface of any two layers
is given mathematically by:

u∗(n−1)
i2 = u∗(n)i1 ; i = r,z (42)

Equation (41) is applied together with Eqs. (39) and (38) for all layers to form the
following global stiffness matrix of the multilayered medium:

℘
∗ = Ku∗ (43)

In Eq. (43),℘*=℘*(ζ ) is the vector of external loads applied at the layer interfaces,
given by Eq. (44); u*=u*(ζ ) is the vector of resulting displacements of points of
the interfaces, given by Eq. (45), and K=K(ζ ) is the global stiffness matrix of the
medium, given by Eq. (46). All these terms are in the transformed domain denoted
by the upper index *, and depend on the normalized Hankel space parameter ζ .
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The solution of displacements from Eq. (43) must be integrated along  

according to Eq. (4) to obtain the displacements at the layer interfaces in the 

physical domain. In this work, displacements in the i-direction due to loads 

in the j-direction are denoted by uij (i,j=r,z). 

2.2 Description of loading 

Let  represent general axisymmetric loads in the physical domain, such as 

those that are applied at the layer interfaces (Eq. 44). One way of 

expressing these loads is by using Hankel transforms: 

      1
m m m m0

J r d
      H H H  (47) 

(46)

The solution of displacements from Eq. (43) must be integrated along ζ according
to Eq. (4) to obtain the displacements at the layer interfaces in the physical domain.
In this work, displacements in the i-direction due to loads in the j-direction are
denoted by ui j (i,j=r,z).
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2.2 Description of loading

Let ℘ represent general axisymmetric loads in the physical domain, such as those
that are applied at the layer interfaces (Eq. 44). One way of expressing these loads
is by using Hankel transforms:

℘= H−1
m {Hm {℘}}=

∫
∞

0
Hm {℘}Jm (ζ r)ζ dζ (47)

in which Hm and H−1
m represent respectively the Hankel transform of order m

and its inverse, and Jm represents Bessel functions of the first kind and order m
[Abramowitz and Stegun, (1965)].

Consider an axisymmetric concentrated load of intensity p0 applied as a ring of
radius s, ℘=p0δ (r-s). The representation of this load in the transformed domain is
given by:

H0 {℘}=
∫

∞

0
p0δ (r− s)J0 (ζ r)r dr = p0 · s · J0 (ζ s) (48)

Based on this result, an expression for an analogous load distributed on an annular
area with inner and outer radii s1 and s2 in the transformed domain can be derived:

H0 {℘̃}=
∫ s2

s1

p0s · J0 (ζ s) ds =
1
ζ
[s2J1 (ζ s2)− s1J1 (ζ s1)] p0 (49)

The symbol ℘ with a tilde in Eq. (49) stands for distributed loads.

3 Vibrations of an embedded elastic plate

This section presents the formulation of a model of flexible circular plates. Kirch-
hoff theory of thin plates under small deflections is adopted. A trial function for the
deflection profile of the plate is described by power series with a set of generalized
coordinates. Lagrange’s equation of motion of the plate is established, based on the
assumed deflection profile. The minimization of the Lagrangian equation, under
the constraint that it must satisfy the boundary conditions at the plate edge, results
in the generalized coordinates that are used to describe the deflection profile of the
plate.

3.1 Model of elastic plate

Consider an elastic, circular plate, with radius a (considered unit length parameter),
thickness h, Young’s modulus Ep, Poisson ratio νp and mass density ρp, embedded
within an elastic media. The plate is under the effect of time-harmonic axisymmet-
ric vertical loads.
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The model of elastic plate adopted in this work comes from the classical plate
theory. This model considers that the thickness h of the plate is small, compared
with its radius a, and that the plate undergoes small deflections [Timoshenko and
Woinowsky-Krieger, (1964)]. According to classical plate theory, all stress com-
ponents can be expressed in terms of the deflection w(r) of the plate (0≤r≤a). The
linear partial differential equation that relates the deflection w(r) of the plate and
the loading q(r) applied on it is [Timoshenko and Woinowsky-Krieger, (1964)]:

D∇
4w(r)+ρph ∂

∂ t w(r) = q(r) ; 0≤ r ≤ a (50)

in which

D = Eph3/[12
(
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2
p
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r

∂ 3
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∂ 2

∂ r2 +
1
r3

∂

∂ r
(52)

In Eq. (50), q(r) is an arbitrary axisymmetric load applied perpendicularly to the
surface of the plate. The term D in Eq. (51) is known as the bending (or flexural)
rigidity of the plate. In the present case of axisymmetric bending, it involves only
derivatives with respect to the variable r.

A trial solution for the deflection profile of the plate due to a uniformly distributed
load of intensity q(r)=q0 can be described by [Rajapakse, (1988)]:

w(r) =
N

∑
n=0

αnwn (r) =
N

∑
n=0

αnr2n; 0≤ r ≤ 1 (53)

The summation in Eq. (53) comprises an approximation for the deflection of the
plate w(r) by power series. Each power profile r2n is weighed by a generalized
coordinate αn (n=0,N).

Rajapakse (1988), Wan (2003), Selvadurai (1979c) and others investigated exten-
sively the representation of an embedded plate with different sets of boundary con-
ditions. According to Rajapakse (1988), the configuration of free edge is an accu-
rate representation of the problem. This configuration, which states that the bending
moment and shear force at the plate edge are zero, is used in the present work.

In view of the deflection profile established by Eq. (53), the expressions of bending
moment Mr(r) and shear force Q(r) become [Timoshenko and Woinowsky-Krieger,
(1964)]:

Mr (r) =−D
N

∑
n=0

αn [2n(2n−1)+2nνp]r2n−2 (54)
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Q(r) = D
N

∑
n=0

4n2 (2n−2)αnr2n−3 (55)

Substitution of the first boundary conditions of free edge, Mr(r=a=1)=0 in Eq. (54)
yields:

N

∑
n=0

αn [2n(2n−1)+2nνp] = 0 (56)

Substitution of the second boundary condition of free edge, Q(r=a=1)=0 in Eq. (55)
yields:

N

∑
n=0

4n2 (2n−2)αn = 0 (57)

Equations (56) and (57) can be combined in a matrix equation involving a 2×(N+1)
matrix [B] and a 2×1 vector {R} such that:

[B]{α}= {R} (58)

in which

B11 = B12 = B22 = 0 (59)

B21 = 2(1+νP) (60)

B1 j =
[
4( j−1)2−2(1−νp)( j−1)

]
; 3≤ j ≤ (N +1) (61)

B2 j = 4( j−1)2 (2 j−4) ; 3≤ j ≤ (N +1) (62)

R =
〈

0 0
〉T (63)

{α}=
〈

α0 α1 · · · αN
〉T (64)

3.2 Strain and kinetic energy of the flexible plate

The strain energy Up of a thin elastic circular plate under flexural deformations is
given by [Timoshenko and Woinowsky-Krieger, (1964); Rajapakse, (1988)]:

Up =
∫ 1

0
πD

[(
d2

dr2 w(r)+
1
r

d
dr

w(r)
)2

−
2(1−νp)

r
d2

dr2 w(r)
d
dr

w(r)

]
r dr (65)

In view of the deflection profile w(r) from Eq. (53), this strain energy can be
expressed in a matrix form involving the generalized coordinates α:

Up = {α}T [K p]{α} (66)
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In Eq. (66), [Kp] an (N+1)×(N+1) matrix, the terms of which are:

K p
1 j = K p

j1 = 0 (67)

K p
i j =

4(i−1)( j−1)πD
2i+2 j−6

[4(i−1)( j−1)−2(1−νp)(2i−3)] ; 2≤ i, j≤ (N+1)

(68)

On the other hand, the kinetic energy of an elastic plate of mass density ρp and
thickness h is given by [Timoshenko and Woinowsky-Krieger, (1964); Rajapakse,
(1989)]:

Tp =
h
2

∫ 1

0

∫ 2π

0
ρp (ẇp)

2 r dr dθ (69)

In view of Eq. (53), this kinetic energy can be written as:

Tp = {α̇}T [Mp]{α̇} (70)

in which

Mp
i j = hρpπ

(
1

2(i+ j−1)

)
; 1≤ i, j ≤ (N +1) (71)

3.3 Potential energy due to contact tractions

Let tz(r) represent the contact traction in the vertical direction. It is assumed that
the influence of radial contact tractions is negligible [Rajapakse, (1988)]. The work
done due to contact tractions is given by [Fung, (1965)]:

Uh =
1
2
∫ 1

0 2πr · tz (r)w(r)dr (72)

Let tnz(r) be the vertical contact traction field corresponding to each term wn(r)=r2n

of the power series in Eq. (53). Then,

tz (r) =
N

∑
n=0

αntnz (r) (73)

A solution for tnz(r) by analytical methods is not feasible due to the complexity
of the problem. A numerical solution is obtained by considering that the plate is
made up of M concentric annular discs elements of inner and outer radii s1k and s2k



Vertical Vibrations of an Elastic Foundation 295

(k=1,M). The traction fields tnz(rk) acting on each annular disc element are assumed
to be uniformly distributed. For the discretized plate, it holds:

M

∑
k=1

uzz (ri,s1k,s2k,ω) tnz (rk,ω) = r2n
i ; i = 1,M; n = 0,N (74)

Equation (74) is solved for each n, resulting in tnz(rk, ω).

In Eq. (74), uZZ(ri, s1k, s2k, ω) denotes the vertical displacement of a ring of radius
ri due to a vertical load that is uniformly distributed on an annular area of radii s1k
and s2k. This influence function is obtained from the solution of Eq. (43).

In view of Eqs. (73) and (53), Eq. (74) can be written as:

Uh = {α}T
[
Kh
]
{α} (75)

In Eq. (75), [Kh] is an (N+1)×(N+1) matrix, the terms of which are given by:

Kh
i j =

M

∑
k=1

t(i−1)z (rk)π (s2k− s1k) · r2 j−1
k ; 1≤ i, j ≤ (N +1) (76)

3.4 Potential energy of the external loading

Let q0 denote the intensity of a loading per unit area, that is uniformly distributed
on a circular area of radius R≤a. A concentrated force can be represented by this
loading by making R small. The potential energy Eq of this loading is given by
[Zaman and Faruque, (1991)]:

Eq = 2π

∫ R

0
q0w(r)r dr (77)

In view of the deflection profile w(r) from Eq. (53), the potential energy due to q0
can be written in terms of generalized coordinates:

Eq = 〈Fq〉{α} (78)

in which 〈Fq〉 is a 1×(N+1) vector given by:

Fq
i = πq0

R2i

i
; 1≤ i≤ (N +1) (79)
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3.5 Lagrangian formulation of the embedded plate

The Lagrangian function L of the system comprising the flexible plate, including
contact tractions, can be expressed as [Washizu, (1982)]:

L =−Up +Tp−Uh +Ep (80)

Or, in terms of generalized coordinates:

L =−{α}T [K p]{α}+{α̇}T [Mp]{α̇}−{α}T
[
Kh
]
{α}+ 〈Fq〉{α} (81)

In order to satisfy the boundary conditions at the plate edge, it is necessary to
introduce a constraint Lagrange functional L̄p that takes into account the boundary
conditions expressed in Eq. (58):

L̄ = L+{λ}T ([B]{α}−{R}) (82)

in which {λ} is a 2×1 vector of Lagrange multipliers given by:

{λ}=
{

λ1 λ2
}

(83)

The Lagrangian equation of motion for the plate can be written as:

d
dt

(
∂

∂ α̇i
L̄
)
− ∂

∂αi
L̄ = {0} , 0≤ i≤ N (84)

And

∂

∂λi
L̄ = {0} , i = 1,2 (85)

Substitution of Eq. (81) into (82) and subsequent differentiation according to Eqs.
(84) and (85) results in:[
[Ks] [B]T

[B] [0]

]{
{α}
{λ}

}
=

{
{F}
{R}

}
(86)

where

[Ks] =−ω
2
[
Mp +(Mp)T

]
+K p +(K p)T +Kh +

(
Kh
)T

(87)

The numerical solution of Eq. (86) results in the generalized coordinates αn (n=0,N).
The deflection profile, bending moment and shear force on the plate can be obtained
upon substitution of αn (n=0,N) into Eqs. (53), (54) and (55), respectively.
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4 Validation and numerical results

The hardest computational task that arises in the solution of the embedded plate
is obtaining the solution of uZZ that appears in Eq. (74). In order to obtain this
solution for each embedment configuration, Eq. (43) must be assembled and solved
for each value of the space parameter ζ . The values of ζ for which Eq. (43) must
be solved depend on the numerical scheme that is chosen to perform the integral
expressed in Eq. (4). In the present implementation, a numerical solver of improper
integrals, based on globally adaptive quadratures, is used for this purpose [Piessens,
Doncker-Kapenga and Überhuber, (1983)]. Since the integrator is free to choose
the values of ζ that are necessary to perform its integration scheme, it may select
values that result in ill-conditioned matrices [K] (Eq. 43). In order to avoid this
problem, a small damping η is introduced to all material constants according to
Christensen’s elastic-viscoelastic correspondence principle [Christensen (2010)].
A hysteretic damping model is adopted [Gaul (1999)].

4.1 Validation

The present implementation was used to reproduce the results from Rajapakse
(1988). Rajapakse’s problem corresponds to the case of an elastic massless plate at
an arbitrary depth H within an isotropic half-space (Fig. 3a). Uniformly distributed
static loads (ω=0) on the surface of the plate are considered. In the present im-
plementation, the different depths of embedment H are obtained by considering a
single layer on top of the plate and a half-space below it. The cases labeled H/a=0
correspond to the case of the plate resting on the surface of the half-space. The
case of distributed loads are reproduced by making the outer radius of the loading
area R/a=1. The case of concentrated loads is represented by making R/a=10−3. A
discretization of M=20 annular disc elements and N=6 generalized coordinates are
used in all results. Numerical convergence studies performed within this work and
in the work by Rajapakse (1988) showed that these parameters (M=20 and N=6)
furnish accurate results for the investigated cases.

Figure 4 presents the normalized central displacement w*(r=0) and bending mo-
ment M∗r (r) of the plate under the effect of distributed static loads (ω=0). These
and other normalizations, such as the differential displacement w∗d and the normal-
ized shear force Q∗(r), are defined as:

w∗ (r) =
w(r)Es

q0 (1−ν2
s )a

and w∗d =
Es [w(0)−w(a)]

q0 (1−ν2
s )a

(88)

M∗r (r) =
Mr (r)
q0 ·a3 and Q∗ (r) =

Q(r)
q0 ·a2 (89)
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Kr =
(
1−ν

2
s
) Ep

Es

(
h
a

)3

(90)

in which Es and νs are the Young’s modulus and Poisson ratio of the surrounding
medium, q0 is the intensity of the loading per unit area, and h is the thickness of the
plate. For fixed values of Es, νs, h and a, the relative rigidity Kr (Eq. 90) represents
essentially the stiffness of the plate. As this normalized parameter tends to a large
value, the plate tends to a rigid plate. The present implementation can be used to
study the vibration of rigid plates by making Kr large.
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(a)  

(b) 

Figure 3: (a) embedment of the elastic plate at an arbitrary depth H within a 

homogeneous half-space, and (b) embedment at the interface of an arbitrary 

number of layers and a half-space. 

Figure 3: (a) embedment of the elastic plate at an arbitrary depth H within a homo-
geneous half-space, and (b) embedment at the interface of an arbitrary number of
layers and a half-space.
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Figure 4: Response of an elastic plate at different embedments within an 

isotropic half-space, due to a uniformly distributed static load - a) 

displacement w
*
(r=0) and b) bending moment Mr

*
(r=0). 
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in which a0 is the normalized frequency of excitation defined by: 

0
S

a
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in which cS (c
2

S=c44/) is the shear wave propagation speed in the 

homogeneous surrounding medium. 

These results agree with the ones presented by Pak and Gobert (1992) for 

vertical vibration of a massless rigid circular plate embedded at a depth 

H/a=2 inside an isotropic half-space. The compliance shown in Fig. 5 is 

normalized by the vertical static compliance of a plate resting on the surface 

of the half-space, C
0

ZZ(a0=0), whose closed-form solution was derived by 

Pak and Gobert (1992). 

Figure 4: Response of an elastic plate at different embedments within an isotropic
half-space, due to a uniformly distributed static load - a) displacement w∗(r=0) and
b) bending moment M∗r (r=0).
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The present implementation has also shown good agreement with the results by
Rajapakse (1988) for the case of concentrated loads.

Figure 5 shows the case of a rigid plate at the interface between an isotropic half-
space and two layers of unit thickness. These results are presented in terms of the
normalized dynamic vertical compliance defined by:

CZZ (a0) =
w(r = 0,a0) ·Es

πq0a
(91)

in which a0 is the normalized frequency of excitation defined by:

a0 =
ω ·a
cS

(92)

in which cS (c2
S=c44/ρ) is the shear wave propagation speed in the homogeneous

surrounding medium.

These results agree with the ones presented by Pak and Gobert (1992) for vertical
vibration of a massless rigid circular plate embedded at a depth H/a=2 inside an
isotropic half-space. The compliance shown in Fig. 5 is normalized by the vertical
static compliance of a plate resting on the surface of the half-space, C0

ZZ(a0=0),
whose closed-form solution was derived by Pak and Gobert (1992).
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(b) 

Figure 5: Normalized vertical dynamic compliance of a rigid plate between 

two isotropic layers of unit thickness and an isotropic half-space. 
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Figure 6: Influence of the frequency of excitation on the central deflection 

of the flexible plate under uniformly distributed loads. 

 

Figures 6 and 7 show a consistent physical behavior. As the embedment 

ratio H/a increases, the stiffness of the medium also increases, and the static 

displacement decreases (a0=0). The dynamic behavior, on the other hand, 

shows an increasing oscillating behavior for larger values of the embedment 

parameter H/a.  

Figure 5: Normalized vertical dynamic compliance of a rigid plate between two
isotropic layers of unit thickness and an isotropic half-space.

4.2 Influence of the frequency of excitation

The present model of embedded plates is capable of dealing with the case of time-
harmonic loads. Figures 6 and 7 show the influence of the frequency of excitation
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on the central deflection (r/a=0) of a flexible massless plate (Kr=0.5). Uniformly
distributed loads are considered. Different depths of embedment H for the plate are
considered. The plate is situated between the half-space and the first layer above it.
All layers and the half-space are homogeneous isotropic media.
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Figure 5: Normalized vertical dynamic compliance of a rigid plate between 

two isotropic layers of unit thickness and an isotropic half-space. 
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Figure 6: Influence of the frequency of excitation on the central deflection 

of the flexible plate under uniformly distributed loads. 

 

Figures 6 and 7 show a consistent physical behavior. As the embedment 
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parameter H/a.  

Figure 6: Influence of the frequency of excitation on the central deflection of the
flexible plate under uniformly distributed loads.

Figure 7: Influence of the frequency of excitation on the central deflection of the
flexible plate under uniformly distributed loads – Absolute value of the middle
point deflection.

Figures 6 and 7 show a consistent physical behavior. As the embedment ratio H/a
increases, the stiffness of the medium also increases, and the static displacement
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decreases (a0=0). The dynamic behavior, on the other hand, shows an increasing
oscillating behavior for larger values of the embedment parameter H/a.

4.3 Influence of the stiffness of the plate

Figures 8 to 10 show how the normalized central deflection w*(0), differential de-
flection w*d and bending moment M*r(0) acting on a massless plate are affected
by the stiffness of the plate, represented by the relative stiffness Kr (Eq. 90). Fre-
quencies from the static case (a0=0) up to a0=4 are used. Two cases of embedment
are shown: the plate at the interface between a half-space and a layer of thickness
h1/a=0.5 or two layers of thickness hi=a. In all cases, the layers and the half-space
are of the same homogeneous isotropic material and the loads are uniformly dis-
tributed.

Regardless of the frequency of excitation and depth of embedment, the amplitude
of central and differential deflection decrease as the plate gets stiffer, while the am-
plitude of the bending moment increases accordingly. As expected, the differential
displacement w∗d goes to zero as the plate gets stiffer, and regardless of the fre-
quency of excitation, its amplitude decreases for deeper embedments, since deeper
embedments correspond to stiffer surrounding media. Notice that the static cases
in all figures (a0=0) correspond to those from Rajapakse (1988) (Fig. 4).
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Figure 8: Influence of the stiffness of the plate on the central deflection of 

the plate under uniformly distributed loads, for embedments between a half-

space and (a) a layer with thickness h1/a=0.5 and (b) two layers of thickness 

hi=a. 
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Figure 9: Influence of the stiffness of the plate on the differential deflection 

of the plate under uniformly distributed loads, for embedments between a 

half-space and (a) a layer with thickness h1/a=0.5 and (b) two layers of 

thickness hi=a. 

When looking at the behavior of the bending moment (Fig. 10), for 

example, it can be seen that the frequency of excitation that results in the 

smallest bending moment of a flexible plate (Kr=0.5) is not the same 

frequency that results in the smallest bending moment of a stiffer plate 

(Kr>>1), regardless of the depth of embedment. It was seen in Figs. 6 and 7 

that the deflection and moment acting on the plate are not monotonic curves 

and that their shape is strongly affected by the depth of embedment, but 

these new results show that the stiffness of the plate plays a relevant role in 

the amplitude of those curves. Figures 11 to 13 show this influence. The 

normalized central deflection w*(0), differential deflection w*d and bending 

moment M*r(0) acting on the plate are shown for different relative stiffness 

Kr and depths of embedment. 

Figure 8: Influence of the stiffness of the plate on the central deflection of the plate
under uniformly distributed loads, for embedments between a half-space and (a) a
layer with thickness h1/a=0.5 and (b) two layers of thickness hi=a.

When looking at the behavior of the bending moment (Fig. 10), for example, it
can be seen that the frequency of excitation that results in the smallest bending
moment of a flexible plate (Kr=0.5) is not the same frequency that results in the
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Figure 8: Influence of the stiffness of the plate on the central deflection of 

the plate under uniformly distributed loads, for embedments between a half-

space and (a) a layer with thickness h1/a=0.5 and (b) two layers of thickness 

hi=a. 
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Figure 9: Influence of the stiffness of the plate on the differential deflection 

of the plate under uniformly distributed loads, for embedments between a 

half-space and (a) a layer with thickness h1/a=0.5 and (b) two layers of 

thickness hi=a. 
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(Kr>>1), regardless of the depth of embedment. It was seen in Figs. 6 and 7 

that the deflection and moment acting on the plate are not monotonic curves 

and that their shape is strongly affected by the depth of embedment, but 

these new results show that the stiffness of the plate plays a relevant role in 

the amplitude of those curves. Figures 11 to 13 show this influence. The 

normalized central deflection w*(0), differential deflection w*d and bending 

moment M*r(0) acting on the plate are shown for different relative stiffness 
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Figure 9: Influence of the stiffness of the plate on the differential deflection of the
plate under uniformly distributed loads, for embedments between a half-space and
(a) a layer with thickness h1/a=0.5 and (b) two layers of thickness hi=a.
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Figure 10: Influence of the stiffness of the plate on the bending moment of 

the plate under uniformly distributed loads for embedments between a half-

space and (a) a layer with thickness h1/a=0.5 and (b) two layers of thickness 

hi=a. 
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Figure 11: Influence of the stiffness of the plate on the central deflection of 

the plate under uniformly distributed loads for embedments between a half-

space and (a) a layer with thickness h1/a=0.5 and (b) two layers of thickness 

hi=a. 

 

 

 

 

 

 

 

 

Figure 10: Influence of the stiffness of the plate on the bending moment of the plate
under uniformly distributed loads for embedments between a half-space and (a) a
layer with thickness h1/a=0.5 and (b) two layers of thickness hi=a.
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Figure 11: Influence of the stiffness of the plate on the central deflection of 

the plate under uniformly distributed loads for embedments between a half-

space and (a) a layer with thickness h1/a=0.5 and (b) two layers of thickness 

hi=a. 

 

 

 

 

 

 

 

 

Figure 11: Influence of the stiffness of the plate on the central deflection of the
plate under uniformly distributed loads for embedments between a half-space and
(a) a layer with thickness h1/a=0.5 and (b) two layers of thickness hi=a.

 

 
 

25 

0 1 2 3 4
0

0.05

0.1

Frequency a
0

A
b

s
[w

d
*]

 

 

Kr=0.5

Kr=1

Kr=10

Kr=50

Kr=100

 
(a) 

0 1 2 3 4
0

0.05

0.1

Frequency a
0

A
b

s
[w

d
*]

 

 

Kr=0.5

Kr=1

Kr=10

Kr=50

Kr=100

 
(b) 

Figure 12: Influence of the stiffness of the plate on the differential 

deflection of the plate under uniformly distributed loads for embedments 

between a half-space and (a) a layer with thickness h1/a=0.5 and (b) two 

layers of thickness hi=a. 
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Figure 13: Influence of the stiffness of the plate on the bending moment of 

the plate under uniformly distributed loads for embedments between a half-

space and (a) a layer with thickness h1/a=0.5 and (b) two layers of thickness 

hi=a. 

 

4.4 Influence of the damping factor 

In the present work, a model of hysteretic damping is introduced in the 

formulation according to the elastic-viscoelastic correspondence principle 

[Christensen, (2010)]: 

 *
ij ijc c 1 i    (93) 

In Eq. (93), c
*
ij are the real elastic constants c11, c12, c13, c33 and c44 that 

define the transversely isotropic material and cij are their complex 

counterparts that are used in the computer code. The hysteretic damping 

model considers that the damping factor  is a constant [Gaul, (1999)]. 

Figure 12: Influence of the stiffness of the plate on the differential deflection of the
plate under uniformly distributed loads for embedments between a half-space and
(a) a layer with thickness h1/a=0.5 and (b) two layers of thickness hi=a.
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space and (a) a layer with thickness h1/a=0.5 and (b) two layers of thickness 
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ij ijc c 1 i    (93) 

In Eq. (93), c
*
ij are the real elastic constants c11, c12, c13, c33 and c44 that 

define the transversely isotropic material and cij are their complex 

counterparts that are used in the computer code. The hysteretic damping 
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Figure 13: Influence of the stiffness of the plate on the bending moment of the plate
under uniformly distributed loads for embedments between a half-space and (a) a
layer with thickness h1/a=0.5 and (b) two layers of thickness hi=a.

smallest bending moment of a stiffer plate (Kr >>1), regardless of the depth of
embedment. It was seen in Figs. 6 and 7 that the deflection and moment acting
on the plate are not monotonic curves and that their shape is strongly affected by
the depth of embedment, but these new results show that the stiffness of the plate
plays a relevant role in the amplitude of those curves. Figures 11 to 13 show this
influence. The normalized central deflection w*(0), differential deflection w*d and
bending moment M*r(0) acting on the plate are shown for different relative stiffness
Kr and depths of embedment.

4.4 Influence of the damping factor

In the present work, a model of hysteretic damping is introduced in the formu-
lation according to the elastic-viscoelastic correspondence principle [Christensen,
(2010)]:

ci j = c∗i j (1+ iη) (93)

In Eq. (93), c∗i j are the real elastic constants c11, c12, c13, c33 and c44 that define the
transversely isotropic material and ci j are their complex counterparts that are used
in the computer code. The hysteretic damping model considers that the damping
factor η is a constant [Gaul, (1999)].

The representative embedment condition of the plate between a half-space and a
layer of thickness h1/a=0.5 is considered. Both the half-space and the layer are
made of the same homogeneous isotropic material. Their damping coefficient is
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varied between η=0.01 and η=0.2. Figure 14 shows the normalized central deflec-
tion w*(0) of a relatively flexible (Kr=0.5) and of a relatively stiff massless plate
(Kr=100) under uniformly distributed loads.
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Figure 14: Influence of damping coefficient on the normalized central 

deflection w*(0) acting on a (a) relatively flexible plate (Kr=0.5) and (b) 

relatively stiff plate (Kr=100) under uniformly distributed loads. Figures (c) 

and (d) display the same results on a reduced frequency range (0<a0<1). 

 

The results obtained for the parameters chosen in this particular case (Fig. 

14) show that higher damping coefficients stiffen the surrounding domain 

and cause an overall decrease in the displacement amplitude compared to 

the ones with smaller damping coefficients. This amplitude decay is 

supported by Gaul (1999). These results indicate that the strategy adopted 

in this work to represent the material attenuation in the transversely 

isotropic materials produces physically consistent results. 

All results from sections 4.2 to 4.4 considered embedment of a massless 

plate within an isotropic half-space so that the influence of loading 

configuration, frequency of excitation, depth of embedment, stiffness of the 

Figure 14: Influence of damping coefficient on the normalized central deflection
w*(0) acting on a (a) relatively flexible plate (Kr=0.5) and (b) relatively stiff plate
(Kr=100) under uniformly distributed loads. Figures (c) and (d) display the same
results on a reduced frequency range (0<a0 <1).

The results obtained for the parameters chosen in this particular case (Fig. 14)
show that higher damping coefficients stiffen the surrounding domain and cause an
overall decrease in the displacement amplitude compared to the ones with smaller
damping coefficients. This amplitude decay is supported by Gaul (1999). These re-
sults indicate that the strategy adopted in this work to represent the material attenu-
ation in the transversely isotropic materials produces physically consistent results.

All results from sections 4.2 to 4.4 considered embedment of a massless plate
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within an isotropic half-space so that the influence of loading configuration, fre-
quency of excitation, depth of embedment, stiffness of the plate and damping coef-
ficient of the surrounding medium could be separated from that of the composition
of the layered system or the anisotropy of each layer.

4.5 Inertial response

The present formulation enables the study of cases of foundations possessing mass.
The inclusion of mass is done by considering the kinetic energy of the plate accord-
ing to Eq. (70). In this section, a representative case of a relatively flexible plate
(Kr=0.5) of outer radius a, thickness h/a=0.1, Young’s modulus Ep and Poisson’s
ratio νp is considered. The plate rests on the surface of a homogeneous half-space
and its surface is under uniformly distributed unit loads.
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plate and damping coefficient of the surrounding medium could be 

separated from that of the composition of the layered system or the 

anisotropy of each layer.  
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Figure 15: Central displacement of a flexible plate with different mass 

densities. 

 

The results from Fig. 15 show how the central displacement of the plate is 

affected as the mass density of the plate P varies respective to that of the 

underlying half-space,  (Eqs. 1-3). For these particular cases, there is an 

increase in the amplitude of the displacement of the plate as the relative 

mass density increases. 

 

4.6 Influence of layered construction 

In this section, the bending of an elastic plate embedded in non-

homogeneous layered media is investigated. Three different layered 

systems are considered (Fig. 16 and Tables 1 and 2). In all cases, the plate 

is embedded between two layers of thickness hi=a (i=1,2) and a half-space. 

In all cases, the layers and the half-space are transversely isotropic 

materials with Poisson ratio =0.25 and damping coefficient =0.01, while 

Figure 15: Central displacement of a flexible plate with different mass densities.

The results from Fig. 15 show how the central displacement of the plate is affected
as the mass density of the plate ρP varies respective to that of the underlying half-
space, ρ (Eqs. 1-3). For these particular cases, there is an increase in the amplitude
of the displacement of the plate as the relative mass density increases.

4.6 Influence of layered construction

In this section, the bending of an elastic plate embedded in non-homogeneous lay-
ered media is investigated. Three different layered systems are considered (Fig. 16
and Tables 1 and 2). In all cases, the plate is embedded between two layers of thick-
ness hi=a (i=1,2) and a half-space. In all cases, the layers and the half-space are
transversely isotropic materials with Poisson ratio ν=0.25 and damping coefficient
η=0.01, while their other properties are obtained by varying an anisotropy index
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n=c33/c11. The material of the layers and their thicknesses in each case are shown
in Table 1. The material properties of the materials m1, m2 and m3 are shown
in Table 2. In Table 2, EZ is the Young’s modulus in the vertical direction, and
νZ the Poisson ratio that relates deformations between the horizontal and vertical
directions.

Table 1: Multilayered media configurations used in this section.
Layer Case A Case B Case C

1 Material m1; h1/a=0.5 Material m3; h1/a=0.5 Material m3; h1/a=0.3
2 Material m1; h2/a=0.5 Material m2; h2/a=0.5 Material m2; h2/a=0.7

half-space Material m1; h3 = ∞ Material m1; h3 = ∞ Material m1; h3 = ∞

Table 2: Transversely isotropic materials used in this section (c’i j=ci j/c44).

Material n c’11 c’12 c’13 c’33 E’ E’Z ν νZ

m1 1.0 3.0000 1.0000 1.0000 3.0000 2.5 2.5000 0.25 0.2500
m2 1.5 2.8284 0.8284 0.8284 4.2426 2.5 3.8673 0.25 0.2265
m3 2.0 2.7749 0.7749 0.7749 5.5497 2.5 5.2114 0.25 0.2183
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Figure 16: Illustration of different layered system configurations with an 

embedded plate subjected to uniformly distributed vertical loads. 

 

Figures 17 to 19 show respectively the normalized deflection profile w*(r) 

of the plate, the normalized circumferential bending moment Mr*(r) and the 

normalized shear force Q*(r) acting on it, for the frequencies a0=0 and a0=4. 

All cases consider a uniformly distributed vertical load. In these results, the 

material properties Es and s considered in the relative stiffness Kr (Eq. 91) 

are those of the underlying half-space (material m1 from Table 2). 

Figure 16: Illustration of different layered system configurations with an embedded
plate subjected to uniformly distributed vertical loads.

Figures 17 to 19 show respectively the normalized deflection profile w*(r) of the
plate, the normalized circumferential bending moment Mr*(r) and the normalized
shear force Q*(r) acting on it, for the frequencies a0=0 and a0=4. All cases consider
a uniformly distributed vertical load. In these results, the material properties Es and
νs considered in the relative stiffness Kr (Eq. 91) are those of the underlying half-
space (material m1 from Table 2).
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Figure 17: Normalized deflection profile w*(r) of a relatively flexible plate 

(Kr=0.5) under uniformly distributed loads, for different layered systems, 

for the frequencies (a) a0=0 and (b) a0=4. 
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(b) 

Figure 18: Normalized bending moment Mr*(r) acting on a relatively 

flexible plate (Kr=0.5) under uniformly distributed loads, for different 

layered systems, for the frequencies (a) a0=0 and (b) a0=4. 
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Figure 19: Normalized shear force Q*(r) acting on a relatively flexible plate 

(Kr=0.5) under uniformly distributed loads, for different layered systems, 

for the frequencies (a) a0=0 and (b) a0=4. 

 

Figure 17: Normalized deflection profile w*(r) of a relatively flexible plate
(Kr=0.5) under uniformly distributed loads, for different layered systems, for the
frequencies (a) a0=0 and (b) a0=4.
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Figure 17: Normalized deflection profile w*(r) of a relatively flexible plate 

(Kr=0.5) under uniformly distributed loads, for different layered systems, 

for the frequencies (a) a0=0 and (b) a0=4. 
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Figure 18: Normalized bending moment Mr*(r) acting on a relatively 

flexible plate (Kr=0.5) under uniformly distributed loads, for different 

layered systems, for the frequencies (a) a0=0 and (b) a0=4. 
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Figure 19: Normalized shear force Q*(r) acting on a relatively flexible plate 

(Kr=0.5) under uniformly distributed loads, for different layered systems, 

for the frequencies (a) a0=0 and (b) a0=4. 

 

Figure 18: Normalized bending moment Mr*(r) acting on a relatively flexible plate
(Kr=0.5) under uniformly distributed loads, for different layered systems, for the
frequencies (a) a0=0 and (b) a0=4.
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(b) 

Figure 17: Normalized deflection profile w*(r) of a relatively flexible plate 

(Kr=0.5) under uniformly distributed loads, for different layered systems, 

for the frequencies (a) a0=0 and (b) a0=4. 
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(b) 

Figure 18: Normalized bending moment Mr*(r) acting on a relatively 

flexible plate (Kr=0.5) under uniformly distributed loads, for different 

layered systems, for the frequencies (a) a0=0 and (b) a0=4. 
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Figure 19: Normalized shear force Q*(r) acting on a relatively flexible plate 

(Kr=0.5) under uniformly distributed loads, for different layered systems, 

for the frequencies (a) a0=0 and (b) a0=4. 

 

Figure 19: Normalized shear force Q*(r) acting on a relatively flexible plate
(Kr=0.5) under uniformly distributed loads, for different layered systems, for the
frequencies (a) a0=0 and (b) a0=4.

Notice that in all cases the moment Mr*(r) and the shear force Q*(r) satisfy the
boundary conditions of free edge established in Eqs. 56 and 57. Moreover, the
deflections of the plates shown in Fig. 17 are different than zero at the plate edge
(w(r/a=1)6=0), which physically agrees with the boundary conditions of free edge.

Figure 17b enables an interesting physical interpretation of the problem. It is
straightforward to observe, from that figure, that the most flexible surrounding
medium (Case A) results in the largest displacement amplitudes. In cases B and
C, the two layers on top of the plate are stiffer than those in Case A (Fig. 16). It
can be seen that the displacement amplitude in both cases is smaller for these cases
than for Case A, as expected (Fig 17b). Moreover, from Case B to Case C, the
only difference is that the relative thickness of the layers changes toward the most
flexible medium (layer 2). That is, the layered system in Case C is less stiff than
in Case B. Consequently, Case C results in a larger displacement amplitude of the
plate than Case B (Fig. 17b). This behavior is physically consistent and it holds for
all results in this section, even though it is more clearly seen in Fig. 17b.

The overall conclusion from observing Figs. 17 to 19 is that the change in material
composition has a more significant influence on the deflection of the plate than a
change in the relative thickness of the layers, for the present embedment config-
urations. The variation between each Case, however, has little significance when
compared to how much the magnitude of these quantities varies across the plate.
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5 Concluding remarks

In the present paper, it is shown that the problem of an embedded flexible plate
can be solved accurately by applying variational techniques, in which the solu-
tion of a constrained Lagrangian functional involving strain and kinetic energy of
the plate and of its surrounding medium results in the deflection profile of the plate.
The present implementation has been validated against existing results for homoge-
neous media in the literature. It has been observed that the amplitude of deflection
of a plate decreases with increasing frequency of excitation, depth of embedment
and plate stiffness. However, the combination of stiffness and frequency that results
in the largest deflection amplitude is not obvious a priori. The general observation
is that plates with higher flexibility under concentrated static loads at shallow em-
bedments in low-damped media have the largest bending moment, shear force and
deflection amplitudes. On the other hand, the smallest deflection, bending moment
and shear force are observed for deeply embedded stiffer plates under uniformly
distributed loads at higher frequency. The radius at which the maximum bending
moment and shear force occur depends on the depth of embedment. As for the
effects of non-homogeneous layered media on plate vibration, it was found that the
bending moment, shear force and deflection are significantly more sensitive to pa-
rameters such as the loading area, depth of embedment, stiffness of plate, frequency
of excitation and dissipation characteristics compared to the layered configuration
or anisotropy of the surrounding medium.
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