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Global Approximation for a Simulation Model Based on
the RBF Response Surface Set
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Abstract: The use of multi-dimensional global approximation for a complex
black-box function (such as a simulation or an analysis model) is steadily growing
in the past decade. It can be applied in many fields such as parameter experiment,
sensibility analyses real-time simulation, and design/control optimization. How-
ever, the widespread use of approximation methods is hampered by the lack of
the ability to approximate a complex simulation model which characterizes the dy-
namic feature with multiple inputs and multiple outputs (MIMO) in a large domain.
In this paper, a novel global approximation method for simulation models based on
the RBF response surface set is proposed. Firstly, incremental building technique
of RBF response surface set was studied, and was applied to approximate MIMO
models. Several mathematical tests were presented to demonstrate the feasibility
and effectiveness of the technique. Secondly, the approximation for complex sim-
ulation models, especially for dynamic models with state variables, was addressed.
A simple test was given to illustrate the approximation process and effectiveness
of a simulation model. Lastly, as an engineering application, the proposed method
was utilized to approximate the power-train of a pure electric vehicle, and the ap-
proximation model was successfully applied in real-time simulation platform.

Keywords: Multi-dimensional global approximation, blackbox function, response
surface set, real-time simulation, multiple inputs and multiple outputs.

1 Introduction

It is quite applicable and useful to substitute a complex nonlinear black-box func-
tion (i.e., original model) with another simple model under some special occasions,
such as parametric experiment, sensibility analysis, real-time simulation, and de-
sign or control optimization for the original model. For a typical example, the
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approximation for an original finite-element analysis model can greatly speed up
the process of a parametric experiment or design optimization for the model. In the
real-time or HIL (hardware in loop) simulation field, if an original simulation model
is too complex to be solved in real-time steps, the relationship from the inputs to
the outputs of the component model can be approximated by a simple substitute
model to realize real-time or HIL simulation. Approximating the complex model
is an effective method to solve this type of problem.

With the development of approximating technologies, there are now some com-
monly used methods that can mainly be classified into two classes: look-up table
and response surface method.

Look-up table is used to interpolate among samples to give an approximate value
for a black-box function. However, it is only suitable for lower-dimensional prob-
lems, and it is difficult to build a look-up table with appropriate data grids in the
global domain of the original model.

Response surface method (RSM) is one of the most widely used global approxi-
mation tools. Generally, a response surface for an original model is also known as
a surrogate or a meta-model. To this end, researchers on RSM were concentrated
on several key techniques [Wang and Shan (2007)]: PRS (polynomial response
surface) [Box and Wilson (1951)], Kriging [Matheron (1963); Sacks, Welch, and
Mitchell (1989)], RBF (radial basis functions) [Hardy (1971); Buhmann (2000);
Elgohary, Dong, Junkins, and Atluri (2014); Elgohary, Dong, Junkins, and Atluri
(2014)], SVR (support vector regression) [Vapnik, Golowich, and Smola (1997);
Prakasvudhisarn, Trafalis, and Raman (2003)], and MARS (multivariate adaptive
regression spline) [Friedman (1991)]. Among the five RSM techniques, PRS, SVR
and MARS belong to regression methods, while Kriging and RBF are considered
interpolation methods. The PRS technique is particularly suitable for lower order
functions and low-to-medium dimensional problems near a local area. Although
some adaptive response surface methods are proposed, see [Simpson, Landman,
and Giroux (2008); Nguyen, Sellier, and Duprat (2009)], they perform poorly for
high-order functions and high nonlinear models upon a global large domain. Ac-
cording to S. M. Clarke et al., see [Clarke, Griebsch, and Simpson (2005)], as a
regression technique, SVR had the best overall performance for the test bed of 26
engineering analysis functions in comparison to other approximating techniques.
MARS takes the form of an expansion in multivariate spline basis functions. As a
regression technique, MARS is suitable for multi-dimensional global approxima-
tion problems. However, according to Friedman, see [Friedman (1991)], the MARS
algorithm involves the calculation of a lack-of-fit procedure for finding the optimal
knots vector, which is very time-consuming. In addition, the recursive partitioning
strategies like classification and regression trees is lack of continuity, which affects
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model accuracy; the recursive partitioning often results in a poor predictive ability
for even low-order performance functions when new data are introduced. The Krig-
ing technique is suitable for high-order functions and low dimensional problems,
but it is less efficient for low order functions and high dimensional problems, see
[Gu, Li, and Dong (2012)].

To approximate a deterministic computer simulation model, the interpolation tech-
nique is preferred to the regression one because the regression model is not sensitive
to the sampling data, which may lead to large errors between the real and the ap-
proximate data. Therefore, the PRS, SVR and MARS techniques are not suitable
to approximate a computer model. RBF and Kriging are both interpolated meta-
models for nonlinear functions, but Kriging is not suitable for high dimensional
problems. In addition to the accuracy, RBF is selected as approximate model be-
cause of it fast and rapid evaluation, see [Beatson and Newsam (1992); Roussos and
Baxter (2005)]. RBF technique performs well for high dimensional and high-order
nonlinear problems. Although it is less efficient in dealing with linear functions,
this can be conquered by augmenting with a linear polynomial item, see [Fang and
Horstemeyer (2006)]. Among the literature, there have already been global ap-
proximation methods using the RBF method. In [Fang and Horstemeyer (2006)],
a variety of existing RBF basis functions was compared in both non-augmented
and augmented forms with various types of responses and limited numbers of sam-
ples. However, they were all constructed in one-stage sampling and did not fit
for approximation of black-box model. In [Driscoll and Heryudono (2007)], a
new adaptive algorithm was constructed for RBF method, which was applied in
interpolation, boundary-value, and initial-boundary-value problems with localized
features. However, the algorithm focused only on the boundary interpolation of
the function with a non-cuboid domain. In [Iske and Levesley (2005)], a method
was studied for multilevel scattered data approximation by using compactly sup-
ported radial basis functions with adaptive domain decomposition. Nevertheless,
the method is unsuitable for the approximation of a black-box model that provides
data through expensive calculating.

Generally, a black-box function, such as a simulation model, always has multi-
ple inputs and multiple outputs (MIMO). However, traditional RSM techniques
are only used for approximating a model with a single output. These methods are
not suitable for dealing with a MIMO model because it needs to approximate each
output with a single response. Not only will this method cause a lot of memory con-
sumption, but it will also reduce the efficiency of the construction and evaluation
of the response. Then, some new techniques appeared. The RBF neural networks
was used to approximate the unknown nonlinear functions of MIMO control sys-
tems, see [Park, Venayagamoorthy, and Harley (2005); Zhen, Qi, and Li (2014)].
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In [Peng, Wu, and Inoussa (2009); Peng, Kitagawa, and Wu (2011); Wu, Peng, and
Chen (2014)], The Peng, H. et al. proposed a MIMO RBF-ARX model for non-
linear model-based predictive control (NMPC), and provided a state-space form of
NMPC. The predictive control strategy for nonlinear system is proven to be effec-
tive.

In this paper, a new global approximation method based on RBF response sur-
face set is proposed. This method can address the problem for black-box model
with MIMO efficiently and can be used in many occasions, such as parametric ex-
periment, sensibility analysis, etc. Here, RBF is adopted because it is a type of
interpolation response surface method, which can be easily extended to approxi-
mate multiple outputs. In addition, the RBF response surface set can be updated
incrementally and efficiently during the sequential sampling and refining process.
To approximate a complex simulation model using the proposed method, the whole
process is put forward. Additionally, if the simulation model has the properties of
state variables, the dynamic features of the simulation model also need to be con-
sidered. In this paper, a method that can handle the state variable of the simulation
model is proposed. It should be noted that if the final approximate model con-
structed based on the simulation model meets the requirement of accuracy, it can
be reused in other applications.

The remainder of this paper is organized as follows: In Section2, the theory of
the RBF method is briefly reviewed. In Section3, the method of the RBF-based
response surface set is proposed, and the build process is introduced. The pro-
posed method is tested using several mathematical tests. In Section4, the process
to approximate the simulation model is put forward, and its validity is verified by
a simple simulation model. In Section5, as an engineering application, the pow-
ertrain of a pure electric vehicle simulation model, is approximated based on the
proposed methods, and the approximation model is applied in real-time simulation
platform. Finally, the conclusions of this work are given in Section 6.

2 A review of the RBF method

Through statistically designed experiments, the sampling data S: [xi,yi] (i =1, 2. . .
n) can be obtained, where xiis a p-dimensional vector (i.e., sampling site), and yi

is its corresponding real response value. Using the sampling data, the RBF model
can be constructed in the general form of

ŷ = f̂ (xxx) =
n

∑
i=1

λiϕ(‖xxx− xxxi‖) = ΦΦΦ ·λλλ (1)

where n is the number of sampling points, xxx is a vector of design variables, xi is a
vector value of the design variables at the ith sampling point, ø is a basis function,
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||x-xi|| is the Euclidean norm, and λλλ i is the coefficient for the ith basis function,
ΦΦΦ=[ø1, ø2,. . . , øN] (ø j=ø||x -xi||), λλλ=[λ 1,λ 2,. . . ,λ N]T . The approximation function
y is a linear combination of some RBFs with weight coefficients.

Replacing the x and y in equation (1) with the sampling data xi and yi, we can
determine the N coefficients λλλ i through solving the following linear equations:

λλλ = A−1yyy (2)

where A is the design matrix, Ai j=(||xi−−x j||), and y is the vector: y=[y1,y2,. . . ,yn]
T.

There are several types of radial functions, such as cubic, linear, Gaussian, multi-
quadrics, inverse-multi-quadric, thin-plate spline and logistic functions, which are
shown in Table. 1. In this article, the linear function is adopted.

Although the RBF is good for high-order nonlinear models, it has been shown to be
inappropriate for linear models. To overcome this shortcoming, a linear polynomial
is added to the RBF model. The augmented RBF, see [Fang and Horstemeyer
(2006)], is shown as

f̂ (xxx) =
n

∑
i=1

λiϕ(‖xxx− xxxi‖)+
p

∑
j=1

c jg j(xxx) (3)

where g(x) is a linear polynomial function, p is the total number of terms in the
polynomial, and c j( j=1,2,3,. . . ,p) are the unknown coefficients. However, the
equation (3) is underdetermined, as the equations created with available data points
is less than the number of parameters to be solved. Therefore, the orthogonality
condition is needed to be imposed on coefficients λ so that

n

∑
j=1

λig j(xxxi) = 0 j = 1,2,3 . . . .., p (4)

Combining equations (3) and (4), (n+ p) equations are obtained and the matrix
form is given as

(
A G
GT 0

)(
λ

c

)
=

(
f
0

)
(5)

where Gi, j=g j(xi) (i=1,2,. . . , n, j=1,2,. . . , p) and c=[c1,c2,. . . , cp]T . Solving equa-
tion (5) gives coefficients λ and c for the augmented RBF function given in equa-
tion (3).
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Additionally, this paper will not discuss the different forms of the RBF model,
which means that the proposed method can be used for all types of the RBF models.

Table 1: Commonly-used basis functions.

Commonly-used basis functions Function
Linear ϕ(r) = r
Cubic ϕ(r) = (r+ c)3

Thin-plate spline ϕ(r) = r2 ln(cr)
Gaussian ϕ(r) = e−cr2

Multi-quadric ϕ(r) =
√

r2 + c2

Inverse-multi-quadric ϕ(r) = 1√
r2+c2

where c is a constant, and 0 < c≤ 1.

3 RBF-based global approximation method for black-box functions

3.1 RBF-based response surface set method

For an original model with m outputs and p inputs or dimensions, described as:

yyy = f (xxx) (6)

where y: Ω ⊂ ℜm, x: Ω ⊂ ℜp; and f : ℜp → ℜm. As shown in Figure.1, the
original black-box function in (1) can be approximated as:

ŷyy = f̂ (xxx) (7)

Traditionally, the RSM techniques are only used for approximating a model with a
single output. It is single-valued mapping from a sampling point set S to the real
response value Y (Y is a vector). As shown in Figure. 2 (a), for any single sampling
point xi (the dimension of xiis the number of independent variables or inputs), there
exists a corresponding response scalar value yi.

To address the MIMO model, the common approach is to construct each output of
MIMO model by RSM method, respectively, and group these approximate models
together. The adaptive sampling strategies can be used to sample data for a higher
precision approximate model.

ŷ1 = f̂1(xxx1)

ŷ2 = f̂2(xxx2)
......

ŷm = f̂m(xxxm)

for xxx = (x1,x2, . . . ,xp) (8)
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The constructive process of these approximate models is a time-consuming. Take
an example of two outputs, if the approximate model y1 is constructed by RSM
method using a certain amount of sampling data S0 through expensive calculation.
To save time, the sampling data S0 is directly used in the next approximate model
y2. Then y2 is constructed using S0 and additional sampling data S1 which is used
to improve the accuracy for y2. However, the additional sampling data S1 is also
needed to reconstruct the y1 to improve the accuracy of the approximate model. So
it is complicated to construct the approximate models for multiple outputs.

Generally, a black-box model, such as the simulation model, always has multiple
outputs. In fact, some RSM techniques can be easily extended to approximate mul-
tiple outputs. Now, we introduce the so-called response surface set (RSS), based
on the RBF model. RSS is a multi-value mapping from the sampling point set to
the real response value Y (Y is a matrix). For any single sample point xi, there is a
corresponding vector yi (the dimension of yi is the number of dependent variables
or outputs), as shown in Figure. 2 (b). The RSS will extend the traditional single
response to multiple response RSM techniques.

Figure 1: The approximate model of the original model.
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A B  Y Λ                                            (11) 

  and the orthogonality condition 

 0TB Λ                                          (12) 

where 1 2[ , ,..., ]mY y y y ; Λ=
1 2[ , ,..., ]m
λ λ λ ; both Λand Y are n×m matrix; λ 

j
(j=1,2,…,m) is a vector; the element of 

matrix yij is the j
th

 output of the i
th

 sampling point; B is n×p matrix; the element of matrix Bij is the monomial terms in 

the polynomial;  is p×m matrix; and the element of matrix 
ij is coefficients of polynomial. 

Combining equations (11) and (12), m(n+p) equations can be obtained and the matrix form is given as 

Figure 2: Single-valued response surface and multi-valued response surfaces set.
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When using augmented RBF models, the multiple response surfaces are constructed
according to equation (3):

ŷyy1 = f̂ 1(xxx) =
n

∑
i=1

λ
1
i ϕ(‖xxx− xxxi‖)+

p

∑
j=1

c1
jg j(xxx)

ŷyy2 = f̂ 2(xxx) =
n

∑
i=1

λ
2
i ϕ(‖xxx− xxxi‖)+

p

∑
j=1

c2
jg j(xxx)

......

ŷyym = f̂ m(xxx) =
n

∑
i=1

λ
m
i ϕ(‖xxx− xxxi‖)+

p

∑
j=1

cm
j g j(xxx)

(9)

and the orthogonality condition is also needed to imposed on coefficients λ so that

n
∑
j=1

λ 1
i g j(xxxi) = 0

n
∑
j=1

λ 2
i g j(xxxi) = 0

......
n
∑
j=1

λ m
i g j(xxxi) = 0

for j = 1,2,3 . . . .., p (10)

According to the n sampling points [xi,yi] (i=1,2,. . . ,n), here, yi is a vector of the m
outputs, and we can obtain all of the coefficients of the m augmented RBF models
by solving the following equation,

YYY = AΛΛΛ+B∆ (11)

and the orthogonality condition

BT
ΛΛΛ = 0 (12)

where YYY = [yyy1,yyy2, ...,yyym]; ΛΛΛ =[λλλ 1,λλλ 2, ...,λλλ m]; both Λ and Y are n×m matrix;
λ j( j = 1,2, . . .,m) is a vector; the element of matrix yi j is the jth output of the ith

sampling point; B is n×p matrix; the element of matrix Bi j is the monomial terms
in the polynomial; ∆ is p×m matrix; and the element of matrix ∆i j is coefficients of
polynomial.

Combining equations (11) and (12), m(n+ p) equations can be obtained and the
matrix form is given as(

An×n Bn×p

BT
p×n 0p×p

)(
ΛΛΛn×m

∆p×m

)
=

(
YYY n×m

0p×m

)
(13)
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Solving equation (13) gives coefficients ΛΛΛ and ∆ for the augmented RBF function
given in equation (6).

In fact, all of the augmented RBF models of the RSS share the same design ma-
trix A; therefore, it is much more efficient and compact to approximate multiple
responses rather than using multiple independent response surfaces.

3.2 Incremental construction of RSS

The equation (13) can also be expressed as(
0p×p BT

p×n
Bn×p An×n

)(
∆p×m

ΛΛΛn×m

)
=

(
0p×m

YYY n×m

)
(14)

For an existing RSS model y, if we add another q sampling points S′: [x′i, y′i] (i=1,
2, . . . , q), the matrix form is given as 0p×p BT

p×n QT
p×q

Bn×p An×n V T
n×q

Qq×p Vq×n Dq×q

 ∆p×m(
ΛΛΛn×m

βq×m

) =

 0p×m

YYY n×m

αm×m

 (15)

where Vi j = ϕ(
∥∥∥xxxi− xxx′j

∥∥∥), Di j = ϕ(
∥∥∥xxx′i− xxx′j

∥∥∥). Let A =

(
0p×p BT

p×n
Bn×p An×n

)
, U =(

QT
p×q

V T
n×q

)
, V = ( Qq×p Vq×n), µµµ =

(
∆p×m

ΛΛΛn×m

)
, U =

(
0p×m

YYY n×m

)
, D = (Dq×q),

δδδ = (βq×m), and UUU
′
= (αm×m). The matrix form in equation (15) can be expressed

as(
A U
V D

)(
µµµ

δδδ

)
=

(
U
U
′

)
=>

(
µµµ

δδδ

)
= A−1

1

(
U
U
′

)
(16)

where A1 =

(
A U
V D

)
. The coefficients of new RSS model µµµ and δδδ can be ob-

tained through solving the

inverse matrix A−1. According to Duncan’s study on the inverse of a block matrix
[27], we have

A−1
1 M−1 =

[
A−1 +A−1UC−1VA−1 −A−1UC−1

−C−1VA−1 C−1

]
(17)

where V =UT , C = D−V−1AU .

As we know, the complexity for calculation A−1
1 is O((N +K)3) originally, but if

we store the A−1
1 at the previous step, the complexity then becomes O(K3) which

is mainly consumed for calculating C−1.
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3.3 The construction process of the RBF-based response surface set

The RBF-based response surface set is constructed based on the Multi-dimensional
Global Approximation (MGA) algorithm, see [Wei, Wu, and Chen (2012)], and the
procedure of the MGA algorithm for multiple outputs is similar to that for a single
output. The algorithm can be summarized in six steps as follows:

Step 1: Initial sampling. To ensure a unique construction process of RSS, Grid
sampling with identical level q is adopted in the initial design stage. The points
generated by Grid sampling are called “expensive points” because their values are
evaluated by black-box simulation functions or analytical models.

Step 2: Construct the initial RSS model. The first modification involves the con-
struction of the initial RSS model, the evaluation using RSS and the incremental
construction of RSS rather than the single RBF model. These have been described
in Section 3.1.

Step 3: Check stopping criteria. The off-design test, such as Root-mean-square er-
rors (RMSE), is not suitable for stopping criteria, as too many function evaluations
need to be done. In this paper, two criteria are adopted at this step: one is the max-
imum number of iterations, M1; the other is the maximum number of continuous
relative error M2 between the corresponding true function value and function value
calculated from the RBF models. The former limits the number of function eval-
uations while the latter means that the model is accurate enough. The continuous
relative error is calculated as

|yi− ŷi−1| ≤ δ (18)

where yi is the real response value of a sampling site xi; ŷi−1 is the approximate
value of the RBF model constructed without the point [xi, yi]; δ is the absolute
tolerance, a positive number set by user.

If one of the criteria is satisfied, go to Step6.

Step 4: Sequential Optimal Sampling. The Sequential Optimal Sampling (SOS)
is a typical global optimization problem and can be settled by DIRECT algorithm,
see [Jones (2001)]. The criterion of SOS [Wei, Wu, and Chen (2012)] has the form
of{

f ind : xxx
max : K(xxx) ·dD

min(xxx)
(19)

where dmin(x) is minimum distance from x to other existing sampling sites, K(x) is
the curvature of the site x on the response surface, and the power Dis set to 2.

The calculation for curvature K(x) should be modified to meet the properties of the
RSS method. The curvature at a given point on the RSS model can be calculated
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by using:

K(xxx) = max(Ki(xxx)) (20)

where Ki(x) (i=1,2,. . . ,m) is the curvature of the ith response surface.

Step 5: Update the RSS model. After adding a new sampling point (optimal site) to
the current sampling point set, the RSS model should be constructed incrementally
rather than recalculating the RSS model completely. To realize its incremental
construction, the sampling sites S and the inverse matrix of design matrix A−1

should be contained in the RSS model structure. These have been described in
Section 3.2. Go to Step3.

Step 6: Stop.

3.4 Mathematical test

In this section, the performance of the MGA algorithm, RMSE, (through additional
off-design testing), will be compared with some mathematical models. These math-
ematical models are mainly composed of some well-known benchmark functions.
All of these tested models are approximated by RBF-based RSS methods, but the
response surfaces are constructed through three sampling strategies (i.e., LHD,
Grid, and SOS) with the same sampling size. Note that the LHD and Grid sam-
pling strategies are common used sampling method, and can spatial sample in the
whole design space, just like the SOS method.

Besides, to compare the performances of RBF-based RSS model, the Kriging-
based RSS model is also constructed using corresponding incremental construction
method. Both of these two models adopt the SOS sampling method.

The RMSE is expressed as

RMSE =

√
1
n

n

∑
k=1

( f (xk)− fapp(xk))2 (21)

Where n is the number of test points, f (xk) represents the actual function value at
the test point xk, and fapp(xk) is the value estimated by the surrogate at the test
point xk.

Note that the RMSE of the RSS model is calculated via the average one:

RMSE =

m
∑

i=1
RMSEi

m
(22)

where RMSEi (i=1,2,. . . ,m) is the RMSE of the ith response surface.
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Example 1: An expanded form of the Easom function with 2 inputs and 2 outputs:
2-dimension

y1 =−cosx1 cosx2e−(x1−π)2−(x2−π)2

y2 =−cosx1 cosx2e−(x1+π)2−(x2+π)2 (23)

Example 2: This model is a hybrid of the Golden-Price function (GP), a sim-
ple exponential function and the Banana Function with 2 inputs and 3 outputs:
2-dimension

y1 = 30+1/200000(1+(x1 + x2)
2(19−14x1 +3x2

1−14x2 +6x1x2 +3x2
2))...

(30+(2x1−3x2
2)(18−32x1 +12x2

1 +48x2−36x1x2 +27x2
2))

y2 = 60+ x1ex2 + x2ex1

y3 = 1/100(100(x2− x2
1)

2 +(1− x1)
2)

(24)

Example 3: This model is a hybrid of the Colville function, Levy function, Dixon-
Price Function, Trid function, Rosenbrock function, and Zakharov function with 4
inputs and 6 outputs: 4-dimension

y1 = 1/105(100(x2
1-x2)2+(x1-1)2+(x3-1)2+90(x2

3-x4)2

+10.1((x2-1)2+(x4-1)2)+19.8(x2-1)(x4-1))

y2 = 1/10(sin2(πw1)

+
3

∑
i=1

(wi−1)2[1+10sin2(πwi +1)]+(wd−1)2[1+ sin2(2πwd)])

y3 = 1/104((x1−1)2 +
4

∑
i=2

i(2x2
i − xi−1)

2)

y4 = 1/10(
4

∑
i=1

(xi−1)2−
4

∑
i=2

xixi−1)

y5 = 1/105(
3

∑
i=1

[100(xi+1− x2
i )

2 +(xi−1)2])

y6 = 1/105(
4

∑
i=1

x2
i +(

4

∑
i=1

0.5ixi)
2 +(

4

∑
i=1

0.5ixi)
4)

(25)

where wi = 1+ xi−1
4 , i = 1, ...,d.

Example 4: This model is a hybrid of the Hartman function (HN), Zakharov func-
tion, Trid function, and Rosenbrock
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functions with 6 inputs and 4 outputs: 6-dimension

y1 =−
4

∑
i=1

ci exp[−
6

∑
j=1

ai j(x j− pi j)
2]

y2 = 1/107(
6

∑
i=1

x2
i +(

6

∑
i=1

0.5ixi)
2 +(

6

∑
i=1

0.5ixi)
4)

y3 = 1/10(
6

∑
i=1

(xi−1)2−
6

∑
i=2

xixi−1)

y4 = 1/105(
5

∑
i=1

[(1− xi)
2 +100(xi+1− x2

i )
2])

(26)

where c=[1,1.2,3,3.2]T ,

a =


10 3 17 3.05 17 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , p = 10−4


1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1001 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381


Example 5: This model is a hybrid of the Zakharov function, Trid function, and
Rosenbrock functions with 10 inputs

and 3 outputs: 10-dimension

y1 = 1/108(
10

∑
i=1

x2
i +(

10

∑
i=1

0.5ixi)
2 +(

10

∑
i=1

0.5ixi)
4)

y2 = 1/10(
10

∑
i=1

(xi−1)2−
10

∑
i=2

xixi−1)

y3 = 1/105(
9

∑
i=1

[100(xi+1− x2
i )

2 +(xi−1)2])

(27)

Example 6: This model is a hybrid of the Dixon-Price Function, and Zakharov
Function with 13 inputs and 2 outputs:

13-dimension

y1 = 1/105((x1−1)2 +
13

∑
i=2

i(2x2
i − xi−1)

2)

y2 = 1/109(
13

∑
i=1

x2
i +(

13

∑
i=1

0.5ixi)
2 +(

13

∑
i=1

0.5ixi)
4)

(28)
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The parameters of D, q, M1, M2, and δ in Table. 2 represent the smoothness of
the approximate model surface, sampling number, the maximum number of iter-
ations, maximum number of continuous relative error between the corresponding
true function value and function value calculated from the RBF models, and the
absolute tolerance. The performances about RMSE are compared in Table. 3, and
some of the approximate models are shown in Figure. 3 and Figure. 4. As ob-
served from Table. 3, the SOS method can address the multiple outputs quite well,
and the RMSE of the SOS method is typically smaller than the other methods. In a
word, the SOS method can sample in a quickly and better way, and the approximate
model constructed using these sampling points has a higher precision than those of
LHD and Grid method.

Besides, from the planer view of Figure. 3, it can be found that the sample points
gained from the SOS method, unlike GRID and LHD, gather in a region that has
the feature of larger curvature than other places and smaller distances from the new
sample point to other existing sampling sites.

Moreover, the results of the comparison between RBF-based RSS model and Krig-
ing-based RSS model are also shown in Table. 4. As observed form Table. 4,
the RMSE of RBF model is close to the one obtained by Kriging model, however,
the time it takes to construct the Kriging model is much longer than RBF model,
particularly when the problem is a complicated one.

Table 2: Preprocessing results.
Example Space D q M1 M2 δ

1 x1,x2 ∈ [−10, 10] 2 3 200 5 [1e-2,1e-2]
2 x1,x2 ∈ [−2, 2] 2 3 200 5 [1e-2,1e-2,1e-2]
3 x1, ...,x4 ∈ [−10, 10] 2 3 400 5 [1e-2, 1e-2, 1e-2, 1e-2, 1e-2, 1e-2]
4 x1, ...,x6 ∈ [−10, 10] 2 3 500 5 [1e-2, 1e-2, 1e-2, 1e-2]
5 x1, ...,x10 ∈ [−10, 10] 2 2 900 5 [1e-2,1e-2, 1e-2]
6 x1, ...,x13 ∈ [−10, 10] 2 2 1000 5 [1e-2, 1e-2]

4 Global approximation method for the simulation model

The simulation model (as the original model) in many fields, such as parametric
experiment, sensibility analysis, real-time simulation, and design or control opti-
mization, is always a complex nonlinear model. To test the simulation model in the
real-time simulation or HIL, simplifying or approximating is necessary.

Several steps should be taken to address the simulation model before obtaining the
approximate model.
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Table 3: Test results.

Example
RMSE

LHD Grid SOS
1 0.0358 0.0416 0.0138
2 0.3134 0.1257 0.0827
3 1.0701 2.3294 0.8110
4 0.1022 1.4352 0.6205
5 1.9374 11.2347 0.7185
6 0.7889 9.1854 0.4155

Figure 3: RBF-based RSS for the model in (23) by using different sampling strate-
gies.

Figure 4: RBF-based RSS for the model in (24) by using different sampling strate-
gies.
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Table 4: Test results for different RSM RSS model.

Example
RBF-based RSS model Kriging-based RSS model
RMSE Time/s RMSE Time/s

1 0.0138 107.4494 0.0121 66.2585
2 0.0827 165.6150 0.0365 280.6364
3 0.8110 3.8511e+003 0.9257 5.4121e+003
4 0.6205 1.9513e+004 0.2205 3.2478e+004
5 0.7185 1.0543e+005 0.5332 1.9755e+005
6 0.4155 1.1725e+006 0.5065 2.734e+006

4.1 The process to approximate a simulation component

As shown in Figure. 5, the simulation model has three modules: the previous mod-
ule, next module and current module. Ignoring the previous and the next modules,
we only discuss the approximate method for the current module.

Figure 5: Simulation module with multi-inputs and outputs.

Step 1: Establish the initial ISM model. Before approximating the “current mod-
ule”, an independent simulation module (ISM) model of the current module needs
to be established. The ISM model is a black-box function that can be simulated
independently. Several pretreatment sub-steps need to be adopted to establish the
ISM model:

• Deal with the inputs and outputs of the module. In general, there are not
explicit inputs and outputs in the module, and it is necessary to address the
inputs and outputs (including the state variables added) from the simulation
model according to the requirement.

• Analyze the scope of input variables of the module. According to the simu-
lation history data or the physical analysis of the simulation model, it is not
difficult to get the scope of all of the input variables (including the state vari-
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ables added) of the module. All of the sampling sites will be restricted in this
scope.

• Deal with the time-step t0. In fact, the current module is time-dependent,
which means that with different simulation time t the outputs (including the
state variables added) will be different. As we know, a constant time-step
(such as t0 = 0.1 second) is normally adopted when running the real-time
simulation. The same case happens in the control optimization where the
time-step is usually set to 1 second (t0 = 1), see [Liu (2007)]. Note that
the model will be run with the time-step t0 to evaluate the outputs from the
different sampling sites.

To this end, the Independent simulation module for an original model component
can be expressed as Figure.6 shows. It has three facts: inputs and outputs as the
original component (In1, In2, ..., Inp, Out1, Out2, ..., Outk), the inputs and outputs
of state variables (S1, S2,. . . , SM, S1′, S2′, . . . , SM′), and the time-step constant t0.
Dealing with the state variables will be discussed in Section 4.2.

Figure 6: Independent simulation module of the original component.

Step 2: Construct the approximate model. Based on the Independent simulation
module, the approximate model of original component can be constructed accord-
ing to the RBF-based RSS method mentioned in section 3.3. Note that the Indepen-
dent simulation module will be run with the time step t0 in each iteration to evaluate
the outputs from the different sampling sites.

Step 3: Check the accuracy of the approximate model. The accuracy of the ap-
proximate model should be verified compared with the original simulation model.
Then the component needed to be approximated in the original simulation model
can be replaced with approximate model. The properties of the simulation model
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with approximate component compared with the original simulation model can be
checked during the test, such as whether the values of some interested variables are
close enough to the values of the original simulation model. Additionally, the ac-
curacy of the approximate model can be measured by R2 in (31) through off-design
testing.

If the accuracy of the approximate model meets certain requirements, go to Step 5
and ignore Step 4.

Step 4: Improve the accuracy of the approximate model during the simulation. To
obtain higher accuracy, more optimal sampling points are needed using the Sequen-
tial Optimal Sampling (SOS) method. Go to Step 2.

Step 5: Stop.

Additionally , according to the time-step t0, the total number of iterations Niteration

is obtained from following equation:

Niteration =
Tsimulation_time

t0
(29)

where Tsimulation_time is the simulation time of the original model.

4.2 Dealing with state variables

If a simulation model has the property of state variables, the model can be expressed
as:{

f (uuu,sss, ṡss, t) = 0
yyy = g(sss, ṡss,uuu, t)

(30)

where t is time variable, and u, s and y are the input, state and output variables,
respectively.

Because of the integrated characteristic of the state variables, they need to be han-
dled individually in the simulation. As shown in Figure. 7, when replacing the
current module with the ISM model or approximate model during the simulation
process, all of the M state variables (S1, S2, . . . , SM) should be handled and self-
loops are formed. We can see that M inputs and M outputs are added to the model,
and the total number of inputs and outputs are P+M and K+M. The inputs S1,
S2,. . . , SM are only one time-step delay from the outputs S′1, S′2, . . . , S′M, and the
initial values of the inputs are set with S0

1, S0
2, . . . , S0

M. The self-loop guarantees
that all of the state variables can be updated during the simulation process.
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Figure 7: Handling the state variables in the procedure of simulation.

4.3 Performance metrics

The accuracy of the ISM model or the approximate model during the simulation
process can also be measured by R2 through off-design testing.

R2 = 1−

n
∑

k=1

(
y(xk)− yapproximate(xk)

)2

n
∑

k=1
(y(xk)− yapproximate)

2
(31)

where y(xk) obtained from the simulation model represents the actual value at the
test point xk, yapproximate(xk) is the value estimated by the approximate model at the
test point xk, yapproximate is the mean values calculated from the approximate model
at all test points. The value of R2 is between 0 and 1 and reveals the accuracy of
the model. Basically, the closer to 1, the more accurate the tested model will be.

4.4 A simple test

The battery model was extracted from the pure electric vehicle model and was the
equivalent circuit model of PNGV proposed by the US Department of Energy. It
provided the voltage and current to drive the external load.

The battery model, as shown in Figure. 8, was tested under the condition of dis-
charging. To realize discharging under the condition of constant power, a current
module that can adjust current using PID control automatically was connected to
the battery model.
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Figure 8: Diagram of the test simulation model.

The goal of this application was to approximate the battery model and replace the
battery model in the original simulation model, as shown in Figure. 9. The ISM
of battery was established as follows: two inputs and one output from the original
component: Vin– the input voltage, Pexternal_load– the reference power, Vout–the
output voltage; one input and one output extracted from the state variable: SOC- the
current state of charge, SOCnext-the state of charge of next step; the scope of input
variables, Vin, Pexternal_load , and SOC, were set according to the original simulation
history data; time-step t0 was set to 0.1 seconds, as shown in Table. 5. Besides,
simulation time Tsimulation_time and R2 were set to 200 and 0.95. Then the final ISM
model was established as shown in Figure. 10. Note that the variable values at
red circle in Figure. 9 were needed to be saved for the inputs of ISM model. The
parameters in Table. 5 were used to construct the approximate model.

The approximate model was constructed based on the ISM model using the RBF-
based RSS method. Note that the obtained approximate model is in the form of
RSS, it is needed to integrate the RSS to Simulink environment, which will be
discussed in Section 5.1. Then the accuracy of the approximate model in Simulink
environment needs to be verified. The battery of original simulation model was
replaced with approximate model, and tests were carried out to verify the accuracy
of approximate model, as shown in Figure. 11. The detailed settings of the tests
will described in Section 5.1.

The comparisons between the simulation model with approximate component and
the original simulation model and are shown in Figure. 12, and the performances
about R2 were calculated in Table. 6. As observed from Figure. 12, the output val-
ues, SOCnext and Vout , of the simulation model with approximate component were
nearly the same as the original simulation model, which meant that the approximate
model had high precision.
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Figure 9: The purpose of using approximate model.

Figure 10: Constructing the approximate model using the ISM model.
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Figure 11: Verifying the accuracy of approximate component in simulation model.

Figure 12: Comparisons between the simulation model with approximate compo-
nent and the original simulation model.
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Table 5: Parameters for constructing the approximate model.
Test
cases

Inputs Scope of variables Outputs D q M1 M2 δ

Battery
Vin [188,191.2] Vout

2 3 1250 20 [1%,1%]Pexternal load 8000 SOCnext
SOC [95.5, 98]

Table 6: Performances results.
Performance metrics SOC V

R2 0.9769 0.9899

5 An engineering application

As a part of the important government project “Research and application on key
technologies of integrated development for pure electric vehicles”, “Multi-domain
modeling and simulation for pure electric vehicle (PEV)” aims at building an entire
PEV simulation model and doing some experiments to analyze the performances
of the vehicle. The PEV simulation model is a complex system, including a motor,
chassis, controller, battery, driver, etc., and is shown in Figure. 13.

The pure electric vehicle simulation model is built based on the experiments of the
actual PEV. The layout of the PEV model is shown in Figure. 14, and PEV model
is composed of driver, controller, powetrain module. The driver module provides
drive cycle, namely the speed of the vehicle. The controller module calculates the
power requirements of motor according to the drive cycle and the feedback signals
of powertrain.

In this study, the driver followed the New European Drive Cycle (NEDC) to drive
the vehicle. The NEDC is a driving cycle consisting of four repeated European
urban (ECE-15) driving cycles and an extra-urban driving cycle (EUDC) as shown
in Figure. 15. To explain the problem in a simple and clear way, the European
urban driving cycle was used in this paper. Additionally, the road surface and wind
resistance were considered in the simulation process.

To test the controller of a PEV, real-time simulation or HIL is necessary. Simplify-
ing or approximating the powertrain is the important measure to realize real-time
simulation, because usually the calculation of the original model of powertrain can-
not meet the requirement of real-time simulation.
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Figure 13: Pure electric vehicle: The appearance of the PEV (left) and the structure
of the PEV (right)

Figure 14: The pure electric vehicle simulation model.

5.1 Approximating the powertrain

The purpose of this application was to approximate the powertrain model and re-
place the powertrain model in the original simulation model, as shown in Figure.
16.

(1) Establish the initial ISM model

Before constructing the approximate model, the ISM model should be establised.
The ISM model can be established as follows: two inputs, Cmd_acc – acceleration
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Figure 15: The NEDC drive-cycle.

command, Cmd_brake – break command; two outputs: W – the angular velocity of
motor, Tau-the output torque of motor; two inputs and two outputs extracted from
the state variables exist: V – the current vehicle speed, SOC–the current state of
charge, Vnext–the vehicle speed of next step, SOCnext–the state of charge of next
step; the scope of input variables, Cmd_acc, Cmd_brake, SOC, and V, can be ob-
tained according to the simulation history data of the simulation model; and the
time-step t0 was set to 0.1 seconds. Besides, simulation time Tsimulation_time and R2

were set to 200 and 0.95. Then the final ISM model is established as shown in
Figure. 17, and the parameters in Table. 7 were used to construct the approximate
model.

Table 7: Parameters for constructing the approximate model.
Test cases Inputs Space Outputs D q M1 M2 δ

PEV

SOC [96.8,98] Tau

2 3 6500 20 [1%,1%,1%,1%]
V [0,14] W
Cmd_acc [0,1] Vnext
Cmd_break [0,1] SOCnext

(2) Construct the approximate model

Based on the ISM model, the approximate model can be expressed as follows:

{Tau,W,Vnext ,SOCnext}= RSS_t0{Cmd_acc,Cmd_brake,V,SOC} (32)

The approximate model was constructed using the RBF-based RSS method. For
the outputs, four corresponding response surfaces were generated with the same
four input variables.
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Figure 16: The purpose of using approximate model.

Figure 17: Constructing the approximate model using the ISM model.



Global Approximation for a Simulation Model 455

(3) Test the approximate model

The obtained approximate model was in the form of RSS, and the powertrain of
original simulation model in the Simulink environment cannot be replaced directly
with RSS. The RSS has a reusable feature that can be used when needed. As the
RSS is a mat-file, the block ‘Embedded MATLAB function’ can be used to inte-
grate the RSS to Simulink environment. Then the powertrain of original simulation
model was replaced with approximate component, as shown in Figure. 18.

The accuracy of approximate component in simulation model needs to be verified.
The settings of the test were set as follows: the solver options in the configuration
parameters of Simulink was set to fixed-step; the fixed-step size (fundamental sam-
ple time) was set to 0.1 seconds; the stop time was set to 200. The sample time
of block was set to 0.1 seconds. The inputs and outputs of state variables were
connected through the ’Memory’ block.

The comparisons between the simulation model with approximate component and
the original simulation model and are shown in Figure. 19, and the performances
about R2 of the approximate model are calculated in Table. 8.

Figure 18: Verifying the accuracy of approximate component in PEV simulation
model.

5.2 Approximating results and analysis

As observed from Figure. 19, the variable values of SOC, V, W, and Tau of the
simulation model with approximate component are nearly the same as the values in
the original simulation model.

However, the computational time between the original simulation model and the
simulation model with approximate component is quite different. On a 2.70Ghz
Pentium 4 PCs with 2 GB of random-access memory, it takes about 124 minutes
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Figure 19: Comparisons between the simulation model with approximate compo-
nent and the original simulation model.

to simulate the original simulation model. However, the time it takes to test the
simulation model with approximate component is about 3 minutes. Apparently, the
test process of the simulation model with approximate component lasts so short a
time, as it is not needed to run the complex simulation model in each time-step t0.
Instead, the simulation data can be obtained directly from the approximate compo-
nent in the sampling sites. Therefore, the efficiency of the simulation model with
approximate component is much higher than the original simulation model. If the
final approximate model meets the requirement of precision, the component in the
original simulation model could be replaced by the approximate model, and the
simulation model with approximate component can be used in real-time simulation
or HIL.

Table 8: Performances results.
Performance metrics SOC V W Tau

R2 0.9848 0.9745 0.9743 0.9811
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5.3 Real-time simulation

To test the performance of the approximate model, a real-time test-bench was built
based on the PCI extensions for Instrumentation (PXI) real-time platform. The PXI
real-time platform is connected with a PC workstation by TCP/IP. Using TCP/IP,
the codes (DLL) generated from the simulation model with approximate compo-
nent through Real-Time Workshop (RTW) can be downloaded to the PXI real-time
platform, and the simulation results in the PXI real-time platform can be sent back
to PC workstation and shown on the display.

The PXI real-time platform mainly includes following hardware: PXI 1024Q box,
PXI 8110RT controller, etc. The following softwares are required for the PC
workstation: Matlab R2010b (including Simulink and RTW modules) LabView
2011sp1, LabView Real-Time 11.0, NI Verstand RT Engine 2011, Simulink Inter-
face Toolkit (SIT), etc.

The process of importing the simulation model with approximate component in
Simulink to LabView is illustrated in Figure. 20 The simulation model in Section
5.1 was used. To generate DLL for LabView to call, RTW was used which can
translate the simulink model to DLL format. The SIT was used as an interface
between Simulink and LabView, and user can download simulink model to PXI
real-time platform using SIT server.

Figure 20: The process of importing the approximate model to LabView environ-
ment.

The fixed-step size of the test was set to 0.1 second as the requirements of real-
time simulation, and the test results were presented in Figure. 21 As can be seen
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from these figures, the curves of the simulation model with approximate component
obtained from real-time simulation were almost the same as the ones came from
numerical simulation.

It is noted that we also tested the codes generated directly from original simulation
model through RTW in the PXI real-time platform. However, we found that the
PXI real-time platform failed to execute, and prompted the real-time performance
of the tested model cannot meet the requirement (Fixed-step size: 0.1 second). We
even set the fixed-step size to 10 seconds, the PEV simulation model still failed to
run in the PXI real-time platform.
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HIL simulation will be carried out in the next step. The controller of the PEV model
will be replaced with real controller in the close-loop test system. We believed that
the approximation method proposed in this paper can play an important role in HIL
simulation.

6 Conclusions

This paper presented a novel global approximation method to approximate complex
simulation models. Several mathematical and simulation model tests were carried
out to demonstrate the feasibility and effectiveness of the proposed method. The
proposed methods have some attractive features, as follows:

1. The complex MIMO simulation model can be approximated using the pro-
posed method efficiently. After pretreatment, the complex simulation model
with multiple inputs and multiple outputs can easily be approximated us-
ing the RBF-based response surface set method. The obtained approximate
model can replace the complex simulation model, and can be used in many
fields, such as parametric experiment, sensibility analysis, design or control
optimization, etc.

2. The proposed method can address the dynamic features of the simulation
model. The dynamic features, namely state variables, can also be addressed
using the proposed method for the simulation model. The internal charac-
teristics of the simulation model can be obtained from approximate model
constructed using these state variables at any time.

3. The proposed method can be used in real-time simulation. As the complexity
of simulation model, it is difficult to be solved in real-time steps. Therefore,
an approximate model constructed using the proposed method can be used to
realize real-time simulation.

However, as to digital simulation, it will be more efficient to change the time-step
automatically. The proposed method needs to be improved to address the variable
time-step.
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