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Novel Iterative Algorithms Based on Regularization Total
Least Squares for Solving the Numerical Solution of

Discrete Fredholm Integral Equation

Zichun Yang1,2,3, Lei Zhang1,4 and Yueyun Cao1

Abstract: Discretization of inverse problems often leads to systems of linear e-
quations with a highly ill-conditioned coefficient matrix. To find meaningful so-
lutions of such systems, one kind of prevailing and representative approaches is
the so-called regularized total least squares (TLS) method when both the system
matrix and the observation term are contaminated by some noises. We will survey
two such regularization methods in the TLS setting. One is the iterative truncated
TLS (TTLS) method which can solve a convergent sequence of projected linear
systems generated by Lanczos bidiagonalization. The other one is to convert the
Tikhonov regularization TLS problem to an unconstrained optimization problem
with the properties of a convex function. The optimization problem will be solved
with the state-of-the-art conjugate gradient (CG) method, and moreover, the adap-
tive strategy for selecting regularization parameter is also established. Finally, both
the new methods are applied to tackle several Fredholm integral equations of the
first kind which are known to be typical ill-posed problems. The results of numer-
ical examples demonstrate that the robustness and effectiveness of the two novel
algorithms make a significant improvement in the solution of ill-posed linear prob-
lems, i.e., yield more accurate regularized solution than other typical methods.

Keywords: Ill-posed, Total least squares, regularization parameter, Fredholm in-
tegral equation, Conjugate gradient.

1 Introduction

Inverse problems often arise in engineering praxis. They originate from various
fields like acoustics, optics, model updating, computerized tomography, statistics,
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load identification and signal processing, etc. When we deal with the term inverse
problem, we will ask “inverse to what” immediately. Roughly speaking, inverse
problem is a general framework that is used to convert observed measurements into
information about a physical object or system in which we are interested. Thus,
one might say the inverse problems are concerned with determining causes for a
desired or an observed effect [Heinz, Martin and Andreas (1996)].

As we will see, most inverse problems are often ill-posed problems Therefore, the
necessary conditions for stability of solutions in a well-posed problem are often
violated. That is to say, the total measured data does not allow the existence of a
solution; the solution is also not unique, even further, not stable due to disturbances
in the data [Heinz, Martin and Andreas (1996)]. One central example of a linear
inverse problem is Fredholm integral equations of the first kind which have been
introduced by [Aster and Borchers (2004); Liu and Atluri (2009a)], such as for
one-dimension:∫

Ω

K(X ,Y ) f (Y ) = T (X)Ω = [a,b] (1)

for two-dimensions:∫ ∫
Ω

K(X ,Y ) f (Y ) = T (X)Ω = [a,b]× [c,d] (2)

where K(X ,Y ) and T (X) are known functions and f (Y ) is an unknown function.
We also suppose that K(X ,Y ) and T (X) are perturbed by random noise. As we
know, many physical problems, such as industrial control, geophysical exploration,
image processing and signal processing [Aster and Borchers (2004); Liu and Atluri
(2009a); Micheli and Viano (2011); Ioannou, Fyrillas and Doumanidis (2012)],
could usually be reduced to the problem of solving one or two-dimensions Fred-
holm integral equations of the first kind. Such integral equation may often be dis-
cretized into linear equation AAAxxx≈ bbb,(AAA ∈ Rm×n,bbb ∈ Rm×1) in order to acquire nu-
merical solution. A common feature of the discrete integral equation is ill-posed
(the matrix AAA is typically ill-conditioned) or unstable i.e., small changes like mea-
surement errors or roundoff errors in the measured effect may result in large fluc-
tuations in the estimated cause. This significant feature makes the ill-posed equa-
tions impossible to be solved directly. Thence, some indirect numerical methods
for solving above ill-posed problems have been discussed in [Liu (2008); Liu and
Atluri (2009b); Liu, Yeih and Chang (2009); Liu and Kuo (2011)]. These process-
es could be summarized as regularization approach based on Least Squares (LS)
which is one of the most significant methods for settling the linear ill-posed prob-
lems. In the ordinary LS-based approaches the measurement matrix AAA are assumed
to be free of error and hence, all errors are confined to the right hand side bbb. Howev-
er, in engineering applications this assumption is often unrealistic: sampling errors,
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human errors, modeling errors and instrument errors may imply inaccuracies in the
matrix AAA as well. For those cases, the regularization total least squares (RTLS)
approach has been devised and amounted to solving the ill-posed linear equations
reasonably [Goulb, Hanse and O’Leary (1999)].

The RTLS problem has been investigated in its algebraic setting for decades. There
are two kinds of RTLS methods which are analogous to the truncated SVD and
the Tikhonov regularization based on LS. The former one is called truncated total
least squares (TTLS), which has already been studied by Fierro, Golub, Hansen and
O’Leary (1997). Unfortunately, when the dimensions of AAA are too large, computing
the complete SVD of (AAA,bbb) will result in higher complexity. And in some cases,
there is no clear gap in the singular value of the matrix (AAA,bbb). This makes it dif-
ficult to decide the best truncation index. Moreover, it usually encounters that the
singular vectors corresponding to smaller and smaller singular values have raising
complexity (meaning that they include more and more sign change, oscillation-
s) [Sima and Huffel (2007)]. Another typical RTLS method for solving ill-posed
problem is the Tikhonov regularization approach. The main emphasis of this work
was on quadratically constrained TLS problems [Sima, Huffel and Goubl (2004)].
The regularization approach with a quadratic constraint is highly suitable when
some knowledge about the characteristics of the exact solution is known at prior-
ity. However, it is difficult to obtain prior knowledge about the true solution and
the magnitude of the noise. Recently, Schaffrin and Wieser (2008) have derived
the RTLS solution using a non-linear Lagrange function approach which could be
implemented by a suitable and efficient iteration algorithm. Unfortunately their
convergence rate is always slower, and the convergence properties of these meth-
ods for Tikhonov RTLS problems aren’t also guaranteed.

Currently, the regularized TLS algorithms possess few deficiencies in practical
applications, but many scholars [Renaut and Gou (2005); Markovsky and HUf-
fel (2007); Lampe and Voss (2012)] have demonstrated that the regularized TLS
method is a feasible approach for solving linear ill-posed problems if both the sys-
tem matrix AAA and the right-hand side bbb are contaminated by some noises. Therefore,
it is necessary to overcome above deficiencies, and then, improve the efficiency and
robustness of the RTLS method for solving ill-posed problem.

In this paper, our purpose is to tackle the linear discrete ill-posed problems by two
novel regularization methods in the TLS setting described in Section 2. One is to
extend the Lanczos TTLS algorithm to the iterative TTLS method which can solve
a convergent sequence of projected linear systems in Section 2.1. The other one
in section 2.2 is the iterative RTLS method based on conjugate gradient algorith-
m, which includes three creative schemes: establishing an modified unconstrained
optimization problem with the properties of a convex function; giving the adap-
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tive strategy for selecting regularization parameters; using a state-of-the-art CG
method to solve the modified unconstrained optimization problem. In Section 3,
several numerical examples related to Fredholm integral equations of the first kind
are presented, and the efficiency and robustness of the two novel algorithms, com-
pared with other typical regularization methods, are also demonstrated. Concluding
remarks can be found in Section 4.

2 Regularized TLS

The TLS method is a generalized version of the original least squares method. Let
the Errors-in-Variables model be defined by the functional relationship

bbb− rrr = (AAA−EEE)xxx (3)

where AAA is the m× n system matrix affected by the random error matrix EEE, the
observation vector bbb ∈ Rm×1 is contaminated by random error vector rrr, xxx is the
(unknown) parameter vector. In the TLS method one allows a residual matrix as
well as a residual vector, and then the computational problem becomes

min
A0,b0
‖(AAA,bbb)− (AAA0,bbb0)‖F

or min
A0,b0
‖(EEE,rrr)‖F , subject to bbb0 = AAA0xxx

(4)

If the matrix AAA is well conditioned a solution can be found using Eq. (4). While
solving discrete ill-conditioned systems, regularization methods in the TLS setting
should be used to introduce mild assumptions on the solution and prevent overfit-
ting. In this section we survey two regularization methods in the TLS setting. One
is similar in spirit to truncated SVD, which suitable for the singular values of (AAA,bbb)
have one or more small (nonzero) singular values away from the large ones, name-
ly, with an obvious gap in the singular values spectrum. Other one is analogous
to the Tikhonov regularized method, which adapt to the singular values of (AAA,bbb)
decay gradually to zero, i.e., with no particular gap in the singular values spectrum.

2.1 Iterative TTLS approach based on a Lanczos Bidiagonalization Algorithm

The first TLS-based regularization approach is inspired by the TSVD method. The
major difference between the two methods lies in the way that this is done: in
TSVD method the small singular values of AAA are discarded, while in TTLS method
the key idea is to neglect the small singular values of (AAA,bbb) by treating small sin-
gular values below a given threshold as zeros. See, for example, in [Fierro, Golub,
Hansen and O’Leary (1997)]. The details of the TTLS algorithm can be summa-
rized as follow
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Algorithm. 1

1) execute the SVD of the augmented matrix (A,b)

(A,b) = U∑VVV T =
n+1

∑
i=1

uiσivT
i

where UUU ∈ Rm×(n+1), VVV ∈ R(n+1)×(n+1) is orthonormal matrices. The diagonal ma-
trix ∑ = diag(σ1, · · ·,σn+1) holds that σ1 ≥ · · · ≥ σn+1.

2) select a truncation parameter k ≤min(n,rank(AAA,bbb))

3) block-partition VVV ∈ R(n+1)×(n+1) as

VVV =

(
VVV 11 VVV 12
VVV 21 VVV 22

)
,VVV∈11Rn×k, VVV∈22R1×(n+1−k)

4) compute the TTLS solution xT T LS,k as

xxxT T LS,k =−VVV 12VVV+
22 =−

VVV 12VVV T
22

‖VVV 22‖2
2

where VVV+
22 =VVV T

22 ‖VVV 22‖−2
2 is the pseudoinverse of VVV 22, and VVV 22 6= 0.

The TTLS method which simultaneously considers error and noise on both sides
can be applied to handle ill-posed problems, especially when there are obvious gap
in the singular values spectrum. And its performance is usually better than conven-
tional Tikhonov method. However, when the dimensions of AAA become large, the
efficiency and robustness of this approach become increasingly poor because the
SVD algorithm is of high complexity. We shall therefore describe that a Lanczos
technique which can project large-scale TLS problems onto the smaller subspaces
may improve the efficiency of the TTLS algorithm.

The typical algorithm is the Lanczos bidiagonalization method which can generate
a sequence of bidiagonal matrices. Here, the extremal singular values of bidiag-
onal matrices are progressively better estimates of the extremal singular values of
the given matrices [Goulb, Hanse and O’Leary (1999)]. The main advantages of
the Lanczos method are that the original matrix is not overwritten and little storage
is required since only matrix-vector products are computed. Therefore, the compu-
tation cost of SVD of a matrix may be more attractive, which makes the Lanczos
method interesting for large matrices especially if they are sparse and there exists
fast routines for computing matrix-vector products.

The Lanczos TTLS algorithm is proposed by considering Lanczos bidiagonaliza-
tion of the matrix AAA rather than (AAA,,,bbb). Firstly, we compute the bidiagonal matrix
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BBBk ∈ R(k+1)×k of AAA with ŨUUk+1 ∈ Rm×(k+1), ṼVV k ∈ Rn×k such that

AAAṼVV k = ŨUUk+1BBBk

where ṼVV k = [ṽvv1, ṽvv2, · · ·, ṽvvk], ṽvv1, ṽvv2, · · ·, ṽvvk ∈ Rn, ŨUUk+1 = [ũuu1, ũuu2, · · ·, ũuuk+1]ũuu1, ũuu2, · ·
·, ũuuk+1 ∈ Rm.

BBBk =


α1
β2 α2

· · ·
βk αk

βk+1

 ∈ (k+1)×k

with starting vector ũuu1 = bbb/β1, β1 = ‖bbb‖2, the bidiagonal iterative process is as
follows

α1ṽvv1 = AAAT ũuu1

βi+1ũuui+1 = AAAṽvvi−αiũuui

αi+1ṽvvi+1 = AAAT ũuui+1−βi+1ṽvvi

〉
, i = 1,2, · · ·

ŨUUk+1(β1eee1) = bbb

AAAṼVV k = ŨUUk+1BBBk

AAATŨUUk+1 = ṼVV kBBBT
k +αk+1ṽvvk+1eeeT

k+1

Thus after k Lanczos iterations, the projected TLS problem mentioned in Eq. (4) is
given by

min
∥∥∥∥ŨUUT

k+1 ((AAA,,,bbb)− (AAA0,bbb0))

(
ṼVV k 0
0 1

)∥∥∥∥
F

(5)

or

min‖(BBBk,β1eee1)− (BBB0,k,eee0,k)‖F , BBB0,ky = eee0,k (6)

where eee1 = (1,0, · · ·,0)T . In each Lanczos step we can now compute a TLS so-
lution x̃xxT T LS,k = ṼVV kyyyk by applying the TTLS algorithm to the small-size problem
(2). To obtain an optimal TLS solution of the Eq. (4), we must determine a suit-
able iteration parameter k which has a similar meaning as a truncated index. An
effective criterion is the discrete L-curve criterion which plotted in log-log scale via
solutions norm ‖x̃xxT T LS,k‖2 versus the residual norm ‖(AAA,bbb)− (AAA0,k,bbb0,k)‖F [Fierro,
Golub, Hansen and O’Leary (1997)]. Nevertheless, the solutions of the Lanczos T-
TLS algorithm would be repeated for kmax times, which cost amount of time. And
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the maximal truncate index kmax, as a critical precondition, isn’t easy to get. If
the maximal truncate index kmax is larger, the advantage of the lanczos method
may disappear, while smaller kmax may make the L-curve method invalidation for
determining optimal truncation index k. At present, we can only determinate the
maximal truncate index kmax by means of experiential knowledge.

To overcome these deficiencies, we note that it is easy to extend the above algo-
rithm to an iterative TTLS method without any prior knowledge. This method can
solve a convergent sequence of projected linear systems generated by the Lanczos
bidiagonalization method, which is a potentially inexpensive task. The structure of
this algorithm is as follows

Algorithm. 2 (iteration Lanczos TTLS called I-LTTLS)

1) set starting vector x̃xx(0)T T LS, k = 0

2) for k = 1,2, · · · until convergence do

3) obtain the projected TLS problem of (4) based on Lanczos bidiagonalization.

min‖(BBBk,β1eee1)− (BBB0,k,eee0,k)‖ ,BBB0,ky = eee0,k

4) compute the TTLS solution yyyk,l via algorithm.1, l denotes truncate parameter.

5) compute solutions x̃xx(k)T T LS,l = ṼVV kyyyk,l of the Eq. (4)

6) end for

7) output the approximate truncated TLS solution x̃xx(k)T T LS

We now discuss details how to efficiently execute algorithm. 2.

· Typically the starting vector x̃xx(0)T T LS = 000n×1is reasonable.

· We apply an modified generalized cross validation (GCV) combined with the
TTLS method to obtain truncate parameter l in step 4, which has been proposed in
[Sima and Huffel (2007)] , see Eq.(4)

min
l

‖HHHxxxT T LS,l−bbb‖2
2

(m− pe f f
l )2

(7)

where pe f f
k is computed as the sum of the TTLS filter factors.

· The convergence criteria is determined by considering the relative change of two
restoration solution vector x̃xx(k)T T LS and x̃xx(k−1)

T T LS is smaller terminate tolerance ε , i.e.,
η =

∥∥xxxk
T T LS− xxxk−1

T T LS

∥∥/∥∥xxxk−1
T T LS

∥∥< ε .
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2.2 Iterative Tikhonov RTLS approach based on conjugate gradient method

For some discrete ill-posed problems the TTLS method is efficient, but cutting off
filtering strategy is not the best choice when facing that the singular value of (AAA,bbb)
decay gradually to zero. In this case, the TTLS algorithm faces several deficiencies
that the truncation index is hard to determine and the truncated singular values
may be the useful system information. To solve such problems, the second TLS-
base regularization method based on the Tikhonov formulation is proposed in this
section. We adopt the Tikhonov regularization concept to stabilize the TLS problem
described as Eq. (4), i.e., consider the problem

min
x,E,r

{
‖EEE‖2 +‖rrr‖2 +λ ‖LLLxxx‖2 : (AAA+EEE)xxx = bbb+ rrr

}
(8)

where LLL ∈ R(n−1)×n is a full row rank matrix (regularization matrix) and λ > 0 is a
penalty parameter (regularization parameter).

The Lagrangian of the problem (8) is given by

Φ(EEE,rrr, λ̃λλ ) = ‖EEE‖2 +‖rrr‖2 +λ ‖LLLxxx‖2 +2λ̃λλ
T
((AAA+EEE)xxx−bbb− rrr) (9)

where λ̃λλ ∈ Rm×1denotes Lagrange coefficient.

Let us first consider the minimization problem with respect to the variables EEE and
rrr. Obviously the Eq. (9) is a convex optimization problem, and the KKT condi-
tions [Maziar and Hossein (2009)] are necessary and sufficient for optimality that
follows:

2EEE +2λ̃λλxxxT = 0 (∇EΦ = 0) (10)

2rrr−2λ̃λλ = 0 (∇rΦ = 0) (11)

(AAA+EEE)xxx = bbb+ rrr (12)

Substituting (11) into (10) we have

EEE =−2rrrxxxT (13)

Combining (12) with (13) we can conclude

rrr = AAAxxx−bbb
‖xxx‖2+1

, EEE =− (AAAxxx−bbb)xxxT

‖xxx‖2+1

Finally, by substituting rrr and EEE into the objective function of the problem (8), then
regularized problem becomes

min
xxx∈Rn×1

f (xxx) :=
‖AAAxxx−bbb‖2

1+‖xxx‖2 +λ ‖LLLxxx‖2 (14)
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It can be observed that the Eq. (14) is an unconstrained optimization problem,
which is not known to be convex or concave in general. Beck and Ebn-Tal (2006)
computed a value and a derivative of the problem (14) consists of solving a se-
quence of trust region subproblems. The suggested TRTLSG algorithm converges
to the global minimum when the function f (x) is unimodal. If, for some reason, the
function f (x) is not unimodal, the TRTLSG algorithm doesn’t necessarily converge
to global minimum and more sophisticated one dimensional global solver should
be employed.

The classical Newton iterative method has been used to tackle the unconstrained
optimization problem (14) in [Maziar and Hossein (2009)], which is an extremely
powerful technique—in general the convergence is quadratic. The Newton itera-
tive method requires that the gradient and hessian of the objective function can be
calculated directly. However, an analytical expression for the derivative may not
be easily obtainable and may be expensive to evaluate. For situations where the
method fails to converge, it is because the assumption such as the second deriva-
tive of the positive definite made in the proof is not met. Lampe and Voss (2013)
proposed an iterative projection method which was an efficient method for solving
large-scale TLS problem. This algorithm requires a suitable starting basis called
orthogonal basis of the Krylov space, which has a great influence on the compu-
tational efficiency and is hard to be determined. The main computational cost is
again building up the search space, in general, which is not a Krylov subspace. In
particular, the new space basis vector cannot be computed with a short recurrence
relation.

The nonlinear conjugate gradient (CG) methods[Liu, Hong and Atluri (2010)] are
one of the most popular approaches for solving unconstrained minimum optimiza-
tion problem (14) due to the simplicity of iteration formula and the lower memory
requirements. A CG method can generate a sequence {xxxl}, starting from an initial
point xxx0 ∈ Rn×1, the iterative formula is given by

xxxk+1 = xxxk + α̃kdddk k = 0,1, · · ·,

where xxxk is the current iteration value, α̃k > 0 is a step length which is determined
by kinds of line search methods, dddk is the search direction generated by the rule

dddk =

{
−gggk, if k = 0,
−gggk +βkdddk−1, if k > 0.

here βk is a scalar which determines the different conjugate gradient methods, and
gggk = ∇ f (xxxk) is the gradient of f (xxx).

The aim of this section is to propose a CG method to solve the Tikhonov RTLS
problem (14). The main difficulty associated with problem (14) is its nonconvex-
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ity. This deficiency may result in a non-convergent sequence i.e., cannot get the
global optimal solutions, and make the CG algorithm ineffective or difficult imple-
mentation. Nevertheless, we will propose in this section several creative schemes to
solve the unconstrained optimization problem (14) efficiently and stably. The par-
tial recovery solution xxxk−1 from every step of the iterative process, without losing
premise of the generality, can be used as the prior knowledge of computing the next
value xxxk in the iterative formula. Therefore, substituting xxxk−1 into the denominator
of the problem (14) in kth iteration we can conclude

f (xxxk) :=
‖AAAxxxk−bbb‖2

1+‖xxxk−1‖2 +λ ‖LLLixxxk‖2 (15)

It is obviously that the iteration Eq. (15) has adaptive characteristics which are able
to fully reflect the continuity of recovery process. More importantly, the original
Eq. (14) with a nonconvex function is transformed into a convex function, which
can facilitate the optimization problem greatly and improve the computational effi-
ciency significantly.

In above technique, it is important to choose an optimal regularization parameter.
For the determination of regularization parameters in LS-based problems there are
several well-known methods [Hansen (2007)]. At present, the main methods for de-
termining regularization parameter of TLS problem are original from the LS-based
methods. However, it is hard to obtain effective regularization parameter since the
complexity of Tikhonov RTLS problem. In [Lampe J (2010)] the L-curve method
has been applied to the Tikhonov RTLS problem to determine a suitable regular-
ization parameter λ . The L-curve method derives from the characteristic shape of
this curve, for RTLS case, which is plot—for all valid regularization parameters—
of the regularization solution ‖LLLixxxλ‖2versus the size of the corresponding residual
‖AAAxxxλ −bbb‖2

/
1+‖xxxλ‖2. We choose the optimal parameter which is the closest to

the L-shape left bottom corner as a regularization parameter λ . The parameter λ

controls the trade-off between a good fit of regularization solution and a smoothness
requirement. The L-curve criterion has its limitations is that the repeated solutions
of the corresponding RTLS problem are required for many values of the regulariza-
tion parameter λ , a potentially very costly task. However, the L-curve method has
been proved to be better than other methods for tackling RTLS problem in many
real-world applications if no previous knowledge about its error is available.

Oraintara, Karl, Castanon, and Nguyen (2000) have proposed an algebraic condi-
tion for choosing the optimal regularization parameter of regularized LS. The main
idea is to identify the corner of the L-curve as the point of tangency between a
straight line of arbitrary slope and the L-curve. The main restrictions are that the
object function should be differentiable, non-negative and convex scalar function
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of their vector arguments. Owing to these restrictions, the algebraic method cannot
be used to acquire regularization parameter for RTLS optimization problem (14).
Fortunately, for the modified optimization problem (15) with the properties of a
convex function, the algebraic method can be extended to obtain the regularization
parameter of Tikhonov RTLS. That is also an important way to make the conjugate
gradient method converge to a global minimum point.

For convenience in what follows, the function of the parameterλ is

ξ (λ ) =
βϕ(b,xλ )

φ(xλ )
(16)

with ϕ(bbb,xxxk,λ ) =
‖AAAxxxk−bbb‖2

1+‖xxxk−1‖2 , ϕ(xxxk,λ ) = ‖LLLxxxk‖2, β is a scalar.

As a consequence, we demonstrate that extreme points of ξ (λ ) are fixed points of
a related function, and a fixed point iterative algorithm for computing the optimal
parameter λ is as follows

λk+1 = ζ (λk) =
βϕ(bbb,xxxk,λ )

φ(xxxk,λ )
(17)

In particular, if λk converges, it is guaranteed to converge to the L-corner. The
formula is able to choose the regularization parameter adaptively and get higher
efficiency attributed to the convex properties of the problem (15).

To solve the minimum optimization problem (15) efficiently, we apply a state-of-
the-art nonlinear CG methods established by Zhang, Zhou and Li (2006), which is
a CG algorithm of the modified PRP. The attractive properties of this modified CG
method are that the search direction is always a descent direction for the minimum
optimization problem (15) i.e. dddT

k gggk = −‖gggk‖
2 < 0, and this new technique is

globally convergent for convex optimization problem if the search satisfies Armijo-
type condition.

Therefore, we propose three creative schemes in this section in order to solve
Tikhonov RTLS problem. Firstly, the modified minimum optimization problem
(15) characterized by the properties of a convex function is established. Second-
ly, the adaptive strategy for selecting regularization parameter is given, which gets
better quality of the result in view of the former one. Finally, a state-of-the-art CG
method is used to solve the unconstrained optimization problem (15). More pre-
cisely, this iterative RTLS method based on conjugate gradient (called CGRTLS
method) can be described as follows

Algorithm 3 (The CGRTLS algorithm)

1) set the outer iteration terminate tolerance ε , 0< ε� 1, and the largest admissible
number of outer iteration kmax
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2) set the inner iteration terminate tolerance ξ , 0 < ξ � 1, and the largest admissi-
ble number of inner iteration lmax

3) set the iteration vector xxxk−1 = xxxk ∈ Rn×1 and the regularization parameter λ0,
k = 1

4) begin outer iteration

4.1) given function f (xxxk) and the gradient ∇ f (xxxk) of the function f (xxxk)

4.2) inner iteration processes

(a) set xxx(0)k = xxxk−1, compute g0 = ∇ f (xxx(0)k ) when l = 0

(b) if ‖gggl‖ ≤ ξ or l > lmax, then stop inner iteration processes, and output xxx∗k ≈ xxx(l)k

(c) else go step (d)

(d) compute search orientation dddl:

dddl =

{
−gggl, l = 0
−gggl + β̃ PRP

l−1 dddl−1−θlyl−1, l ≥ 1

β̃
PRP
l =

gggH
l yyyl−1

gggT
l−1gggl−1

, θl =
gggT

l dddl−1∥∥gggl−1
∥∥2 , yyyl−1 = (gggk−gggk−1)

(e) determine a step α̃l = ρ j( j = 0,1,2, · · ·) satisfying Armijo-type condition

f (xxx(l)k + α̃ldddl)< f (xxx(l)k )−µα̃
2
2 ‖dddl‖2

with the scalar ρ , µ ∈ (0,1)

(f) set xxx(l+1)
k := xxx(l)k + α̃ldddl , and compute gggl+1 = ∇ f (xxx(l+1)

k )

(g) set l := l +1, go to (b)

4.3) update λk =
βϕ(bbb,xxxk)

φ(xxxk)
by Eq. (17)

4.4) η = ‖xxxk− xxxk−1‖2
/
‖xxxk−1‖2

4.5) k := k+1

4.6) until the convergence condition η < ε or k > kmax, execute step 5

5) end outer iteration

To improve convergence performance of the CG algorithm, xxxk−1 is chosen as the
initial vector for inner CG iteration at kth outer iteration. Here, we set the parameter
ρ = 0.5, µ = 0.6.

3 Numerical examples

To evaluate the effectiveness of the Algorithm 2 and 3, we consider the one and
two-dimensional Fredholm integral equations of the first kind, which are known to



Novel Iterative Algorithms 113

be severely ill-posed problems. We compare the solutions computed by two novel
algorithms with the solutions obtained from several typical methods, i.e., Tikhonov
regularization LS (RLS) [Hansen (2007)], Lanczos TTLS (L-TTLS) established
in[Sima and Huffel (2007)] and RTLSQEP introduced in [Lampe and Voss (2012)].
All algorithms are carried out by MATLAB software. Firstly, we discuss how to
efficiently execute these algorithms for solving the ill-posed inverse problems.

· Tikhonov regularization LS (RLS): we determinate regularization parameter us-
ing L-curve method withλ in the range(10−10,102), and then, chose regularization
matrixLwhich equals to the approximate first derivative operator i.e.,

LLL =


−1 1

−1 1
· · ·

−1 1
−1 1

 ∈ (n−1)×n

·Lanczos TTLS (L-TTLS): the maximal truncate indexkmax = 15, the truncate index
is acquired by L-curve method.

· RTLSQEP algorithm: the quadratic constraint δ is obtained by L-curve method,
to create a suitable L-curve scenario, r = 60 RTLS problems with 0 ≤ δ1 < · · · <
δr ≤ ‖LLLxxxT LS‖, i.e., regularization parameter rang δ ∈ [0,‖LLLxxxT LS‖].
· I-LTTLS’s truncate parameter is determined by an modified generalized cross
validation (GCV) in Eq.(7), terminate tolerance ε = 10−6.

· CGRTLS: the tolerance parameters ε = 10−6 and ξ = 10−6, we also select iter-
ation starting vector xxx0 = 0n×1, the regularization parameter λ0 = 10−2, and the
maximal iteration number kmax = 500, lmax = 5000.

We want to compare the optimal solutions that can be attained by any of the above
methods. To do this, for each algorithm we define relative error γ between the
optimal regularized solution xxxT LS and the exact solution. For example, for CGRTLS

γ =
‖xxxtrue− xxxCRGT LS‖

‖xxxtrue‖
(18)

Then we add perturbations EEE and rrr in Eq. (3), and the perturbations satisfy a
Gaussian distribution with zero mean and unit variance, which is put in relation to
the norm of true system matrix AAAture and true right-hand side bbbture respectively. We
refer to the quotient

ρ =
‖rrr‖2
‖bbbtrue‖2

=
‖EEE‖F
‖AAAtrue‖F

as the noise level. In the tests we select the noise levels ρ1 = 1× 10−3 and ρ2 =
1×10−2.
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3.1 One-dimensional Fredholm integral equation of the first kind

Firstly, we consider one-dimensional Fredholm integral equation of the first kind,
which is a classical ill-posed problem. The Fredholm integral equation with a
square integrate kernel is of the form∫ b

a
K(s, t) f (t)dt = T (s) s ∈ [c,d] (19)

in which the kernel K represents a known model for the physical phenomenon, the
right-hand side T is a given date function, and f is a function to be determined.

To solve (19) numerically, it is necessary to make the variables discrete and replace
the integral equation by a set of finite linear equations. Firstly, let us discretize the
intervals of [a,b] and [c,d] into m1 and m2 equally. The integral equation can then
be replaced by a set of numerical equations

T (si) =
∫ b

a
K(si, t) f (t)dt ≈

m1

∑
j=1

w jK(si, t j) f (t j) (20)

where i = 1,2, · · ·,m2, and w j are the weighting coefficients for the quadrature
formula. Through a trapezoidal rule, Eq . (20) can be rewritten as

K(si, t1) f (t1)w1+K(si, t2) f (t2)w2+···+K(si, tm1) f (tm1)wm1 =T (si)i= 1,2, ···,m2

The above equations may be abbreviated as

AAAxxx = bbb (21)

where AAA(i, j)=w jK(si, t j) is a rectangular matrix with dimensions m2×m1, vectors
xxx = f (t j), bbb = T (si) is m1× 1 and m2× 1 column vector respectively. Then the
regularized TLS algorithms can be used to solve the TLS algebraic equation (21)
when not only the right-hand side bbb but the system matrix AAA is also contaminated
by some noises.

We examine our TLS approaches by considering the numerical solution of the fol-
lowing one-dimensional Fredholm integral equations of the first kind.

Example. 1: the one problem is the discretization of the inverse Laplace transfor-
mation by means of Gauss-Laguerre quadrature. The kernel K is given by

K(s, t) = e−st

and both integration interval [a,b] and [c,d] are [0,∞).

The right-hand side T (s) = 1
s+1/2 , and the exact solution f (t) = e−t/2 is a function

to be determined.
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Example.2: other one is the famous one-dimensional Fredholm integral equation
of the first kind devised by Phillips [Hansen, P. C. (2007)], which is described as
follows:

K(s, t) = φ(s− t)

f (t) = φ(t)

T (s) = (6−|s|)(1+ 1
2

cos(
πs
3
))+

9
2π

sin(
π |s|

3
)

Both the integration intervals are [−6,6]. Where the function φ is

φ(x) =
{

1+ cos(πx
3 ), |x|< 3

0, |x| ≥ 3

Here, solving the function f (the same as xxx mentioned in Eq. (21)), arising from an
inverse problem, is usually prone to errors. These arise due to a combination of er-
rors in the measurement and the ill-conditioning of the system matrix to be inverted.
The most famous approach for measuring the ill-conditioning matrix is condition
number, which is defined as the ratio of the largest singular value versus the small-
est singular value. If the errors are significant and the condition numbers of the
system matrix are small then the errors simply propagate to the solution xxx without
much amplification. On the other hand, high condition numbers of the system ma-
trix AAA can result in small errors of bbb and AAA being magnified into large xxx errors. The
condition numbers of the matrix AAA of above examples are computed in different
matrix dimensions, which can be seen in Table 1.

Table 1: The condition numbers of different matrix dimensions in two examples.
m1 = m2 20 40 100 200 300 600
Eg1-cond(A) 1.026×1030 1.880×1032 1.499×1032 1.233×1033 7.203×1032 Inf
Eg2-cond(A) 3.958×103 6.604×104 2.638×106 4.228×107 2.412×108 2.423×109

It is known that the condition numbers of two types of system matrices are high,
which indicate that the system matrices are much stronger ill-condition, especially
in the first example. And the condition numbers of the system matrices grow as
the m1 and m2 increase. Therefore, a small perturbation of the given date will
be amplified greatly, such that the solution xxx in Eq. (21) may be contaminated
seriously by some measurement errors.

Test 1. This test was carried out with matrix dimensions m1 = m2 = 20 and m1 =
m2 = 100 in Example.1, the noise level ρ1 = 1×10−3. For one thing, we consider
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the distribution of singular values of the augmented matrix (AAA,bbb) with degressive
ratio of neighboring eigenvalues. In Fig.1 we have plotted the declining ratio of
neighboring eigenvalues i.e., plot

(
i,σi
/

σi+1
)
, i is the number of singular value

of the matrix (AAA,bbb). For case of m1 = m2 = 20, the computed results obtained
from the plots on the left of the Fig.1 show that there is a great declining ratio of
eigenvalues when the number of singular value i = 12, hence, existing larger gap
in the eigenvalues spectrum. On the contrary, the plot on the right-hand side of this
figure shows that the ratio of eigenvalues changes slowly i.e., the singular values of
(AAA,bbb) decay gradually to zero.

Figure 1: The declining ratio of neighboring eigenvalues

Fig.2 and Fig.3 show histograms of the relative errors γ for all five regularization
methods in different matrix dimensions, respectively. And our results are obtained
in the solution over 1000 independent simulations of the same example. It can be
readily observed that the RLS method produces a worse solution than other RTLS
algorithms. It is probably because the RLS cannot consider the errors of the system
matrix efficiently. It is obvious that the I-LTTLS, CGRTLS and RTLSQEP meth-
ods are able to generate more accurate solutions than the classical regularization
methods L-TTLS. Here, the effects of random noise on L-TTLS may reduce the
accuracy of the solutions and increase dispersion of the solutions greatly, which
is apt to obtain the unstable solutions. Furthermore, the I-LTTLS, CGRTLS and
RTLSQEP methods possess lower noise sensitivity. Especially, the robustness of
the I-LTTLS algorithm perfects best of these methods. The accuracy of the state-
of-the-art RTLSQEP algorithm and CGRTLS algorithm is somewhere in between,
where the latter one yields more accurate approximations. The RTLSQEP and L-
TTLS algorithms are suitable when some knowledge about the characteristic of the
exact solution or noise condition is known a priori, however, it is difficult to be
obtained in some cases.
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Figure 2: Histograms present the optimal relative errors of 1000 test problems
solved by five different regularization methods for Example.1, with matrix dimen-
sions m1 = m2 = 20, noise levels ρ1 = 1×10−3
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Figure 3: Histograms present the optimal relative errors of 1000 test problems
solved by five different regularization methods for Example.1, with matrix dimen-
sions m1 = m2 = 100, noise levels ρ1 = 1×10−3
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The I-LTLLS algorithm outperforms CGRTLS, L-TTLS, RTLSQEP, RLS in Fig.2.
This is no surprise that there is a larger gap in the eigenvalue spectrum when the
matrix dimensions satisfy m1 = m2 = 20. This feature denotes that it is easy to
cut off a certain number of terms in the SVD of the coefficient matrix. And these
certain terms can be considered as noises far away from the singular subspaces of
true system energy. In this case, Tikhonov regularization method may be difficult to
regularize both reliable and noise parts efficiently. In Fig.3, the CGRTLS algorithm
is clearly superior to the other three methods since the singular values of matrix
decay gradually to zero when the matrix dimensions satisfy m1 = m2 = 100. At this
time, it is difficult to determine an appropriate truncation level for truncated TLS.
And the smaller singular values which are truncated may be useful information.
Therefore, distribution of singular values has a great impact on solving ill-posed
problems when we employ regularization algorithms.

Figure 4: Histograms present the optimal relative errors of 1000 test problems
solved by four different regularization methods for Example.2, with matrix dimen-
sions m1 = 60,m2 = 50, noise levels ρ1 = 1×10−3
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Figure 5: Histograms present the optimal relative errors of 1000 test problems
solved by four different regularization methods for Example.2, with matrix dimen-
sions m1 = 60,m2 = 50, noise levels ρ2 = 1×10−2

Test 2. Our second test problem is generated by considering the Example.2. We
consider the rectangle matrix with dimensions m1 = 60,m2 = 50, whose singular
values decay gradually to zero and the condition number is 6.529× 1016. There-
fore it is a typically ill-condition matrix. Our test is presented as histograms of
the relative error, in the solution over 1000 independent simulations of the same
example. Seeing numerical relative errors γ of all four TLS-based algorithms in
the histograms Fig. 4 and Fig.5, where the noise levels are ρ1 = 1× 10−3 and
ρ2 = 1×10−2, respectively. It is obvious that for smaller noise level σ1 = 1×10−3,
the solutions of all four algorithms are not expected much difference. However, in
Fig.5, the relative errors of all algorithms grow as noise level increases, and the
I-LTTLS, CGRTLS and RTLSQEP algorithms increase lower than L-TTLS algo-
rithms when the noise level increases to σ1 = 1× 10−2. The CGRTLS algorithm
with adaptive selection of regularization parameter is turned out to be slightly su-
perior to other TLS algorithms. We can also conclude that the results of relative
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error indicate that the I-LTTLS is not very sensitive to the random noises.

Next, several starting regularization parameters are used to initialize the CGRTL-
S algorithm, and the results average over 100 random simulations. The average
regularization parameter λ̄ and average relative error γ̄ for various starting regu-
larization parameters λ0 are computed in Table.2. As we can see, the CGRTLS
algorithm has low sensitivity to initial regularization parameter since the γ̄ and λ̄

are almost same at different initial parameter values. As a result, rather than using
the parameter selection principles described in some of previous works, an adaptive
principle of selecting regularization parameter can be applied to determine the op-
timum regularization parameters, which has a stronger robustness, higher accuracy
and convergent rate.

Table 2: The average relative error γ̄ and average regularization parameter λ̄ for
various λ0

λ0 0 1×10−6 1×10−4 1×10−2 1×100 1×101

γ̄ 0.0312 0.0356 0.0385 0.0301 0.0290 0.0328
λ̄ 0.0156 0.0173 0.0157 0.0167 0.0151 0.0149

Example.3: Now we apply the two novel methods of TLS regularization to tackle
inverse heat conduction problem. The one-dimensional heat conduction problem is
described as

∂u
∂ t

= D2 ∂ 2u
∂x2 ,(0 < x < L, t > 0) (22)

ux(0, t) = ux(L, t) = 0

u(x,0) = f (x)

where u(x,t) denotes temperature, x is spatial variable and t is time variable. f (x)
is initial condition, D denotes heat transfer coefficient.

The temperature distribution u(x,t) of the heat conduction problem for a given ini-
tial condition is explicitly obtained using separation of variables

u(x, t) =
a0

2
+

+∞

∑
n=1

ane−(
nπD

L )2t cos
nπx

L
(23)

where

an =
2
L

∫ L

0
f (y)cos

nπy
L

dy
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Then we can change Eq.(23) into the Fredholm integral equation of the first kind

u(x, t) =
∫ L

0
K(x,y, t) f (y)dy (24)

where the integral operator K(x,y, t) = 1
2 +

+∞

∑
n=1

cos nπy
L cos nπx

L e−(
nπD

L )2t

Thus the initial temperature f (x) can be obtained by solving the inverse problem
(24). As we know, the first step is to discretize the quadrature formula (24), and the
interval[0,L]can be divided into equal intervals of width ∆L = L

N (N=60). Finally,
the Eq.(24) can be rewritten as Ax=b, and the explicit discretization process is
described in section 3.1. Here we set a finite number of expansion terms 100 for
the operator K which guarantees the convergence of the series. The initial exact
temperature is

f (x) =
{

6x, 0≤ x < 0.5
6(1− x), 0.5≤ x≤ 1

To estimate the initial temperature, the temperature u(x,t1) can be firstly obtained
by Eq.(24) at time t1. We set t1=1, D=0.06 and both the A and b are contaminated
by random noises whose noise levels are ρ1 = 1× 10−3 and ρ2 = 1× 10−2. The
condition number of the matrix AAA ∈ R60×60 is 4.571× 1017, and consequently the
inverse problem of heat conduction is an seriously ill-posed linear problem.

The initial temperature distribution computed by LS method, compared with exact
initial temperature distribution, is given in figure 6. It is obvious that there is a
great error when the LS method is used to estimate the initial temperature. The
constructed solutions of the I-LTTLS and CGRTLS algorithms apprehended from
Fig.7 and Fig.8 are in good agreement with the exact solution. Therefore, the two
novel methods of TLS regularization are efficient and accurate to solve backward
heat conduction problem, even when both the measurement items u(x,t1) and the
integral operator K are contaminated by some random noises. As we can see, the
solution of CGRTLS algorithm is slightly superior to I-LTTLS algorithm. It is prob-
ably because the singular values of system matrix decay gradually to zero. Next, the
initial temperature constructed by CGRTLS algorithm for several different starting
regularization parameters are shown in Fig. 9, and we can still concluded that the
CGRTLS algorithm has low sensitivity to starting regularization parameters.

3.2 two-dimensional Fredholm integral equation of the first kind

Consider the following two-dimensional Fredholm integral equations of the first
kind

T (u,v) =
∫ b

a

∫ d

c
K(u,v,s, t) f (s, t)dsdt (25)
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Figure 6: Comparison between the exact and the LS algorithm results

Figure 7: Comparison between the exact and the TLS algorithm results at ρ1 =
1×10−3
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Figure 8: Comparison between the exact and TLS algorithm results at ρ1 = 1×
10−2

Figure 9: The constructed initial temperature for various λ0
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whose exact solution is f (s, t) = s+ t

with the kernel

K(u,v,s, t) =
u

1+
√

(s−u)2 +(t− v)2

where s, t ∈Ω1⊂R2, u,v∈Ω2⊂R2, we set Ω1 =Ω2 =Ω= [−5,5]× [−5,5], let us
discretize the intervals Ω1 and Ω2 into m1×n1 and m2×n2 respectively. The two-
dimensional Fredholm integral Eq. (25) can then be replaced by a set of numerical
equations

T (up,vq) =
∫ b

a

∫ d

c
K(up,vq,s, t) f (s, t)dsdt

≈
n1

∑
j=1

m1

∑
i=1

K(up,vq,si, t j)wiw
′
j

where p = 1,2, · · ·,m2, q = 1,2, · · ·,n2, the above equations may be scattered con-
cretely as

K(up,vq,s1, t1) f (s1, t1)w1w
′
1 +K(up,vq,s2, t1) f (s2, t1)w2w

′
1

+ · · ·+K(up,vq,sm1 , t1) f (sm1 , t1)wm1w
′
1 +K(up,vq,s1, t2) f (s1, t2)w1w

′
2

+ · · ·+K(up,vq,s2, t2) f (s2, t2)w2w
′
2 +K(up,vq,sm1 , t2) f (sm1 , t2)wm1w

′
2

+ · · ·+K(up,vq,sm1 , tn1) f (sm1 , tn1)wm1w
′
n1

(26)

Eq. (26) can be rewritten as

AAAxxx = bbb

where AAA(m2 ·(q−1)+ p,m1 ·( j−1)+ i) = K(up,vq,si, t j)wiw
′
j is a rectangular ma-

trix with dimensions (m2 ·n2)×(m1 ·n1), vectors xxx= f (si, t j), bbb=AAAxxx is respectively
(m1 · n1)× 1 and (m2 · n2)× 1 column vector, with i = 1,2, · · ·,m1, j = 1,2, · · ·,n1
and p = 1,2, · · ·,m2, q = 1,2, · · ·,n2.

Test 3. Fix matrix dimensions m1 = n1 = m2 = n2 = 20. The noise level is ρ1 =
1×10−3, and average results for 500 random simulations. The condition number of
the matrix AAA∈R400×400 is 3.804×103, and consequently the Eq.(26) is an ill-posed
linear problem. The singular values of the matrix (AAA,bbb) decay gradually to zero.
In the histograms Fig.10, we compare the relative errors obtained by the L-TTLS,
I-LTTLS, CGRTLS and RTLSQEP algorithms. We can conclude that the results of
the CGRTLS method outperforms other three algorithms i.e., the higher accuracy
is obtained, and moreover, the robustness of the I-LTTLS algorithm perfects best
of these methods.
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Figure 10: The four histograms illustrate the statistical distribution of relative error
for two-dimensional Fredholm integral equation with m1 = n1 = m2 = n2 = 20 and
a noise level ρ1 = 1×10−3

Finally, a sample solution of two-dimensional Fredholm integral equations com-
puted by the CGRTLS, I-LTTLS and RLS schemes is compared with the exact
solutions apprehended from Fig.11. The constructed solutions of the I-LTTLS and
CGRTLS schemes perform better than RLS scheme. This is due to the fact that the
errors in both the system matrix and the right-hand side may produce large errors
in the computed results. Consequently, the constructed solutions by the regularized
TLS schemes which can consider both errors are much accurate than LS-based
methods. It can be seen that the constructed solution using the CGRTLS algorithm
is slightly superior to the solutions computed by the I-LTTLS algorithm i.e., the for-
mer solution match the exact solution well. Therefore, we prove that the CGRTLS
algorithm generate more accurate solutions than the I-LTTLS algorithm when the
singular values decay gradually to zero yet again.
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Figure 11: Approximated solution for different regularization solvers i.e., RLS,
I-LTTLS and CGRTLS

4 Conclusions

We have proposed two novel iterative algorithms to incorporation of regulariza-
tion and stabilization into the TLS setting. The two algorithms named I-LTTLS
and CGRTLS are analogous to the truncated SVD and Tikhonov regularization
approaches based on LS, respectively. The I-LTTLS algorithm overcomes the de-
ficiencies of the Lanczos-TTLS algorithm which are difficult to obtain the truncate
index k and get maximal truncate index kmax regarded as a critical precondition.
The CGRTLS algorithm is able to choose the regularization parameter adaptively
which gets higher efficiency than other famous methods, and moreover, converge
to a global minimum point. Both algorithms aren’t necessary to obtain any priori
knowledge about noise level and exact solution.

We have demonstrated that the two novel algorithms are highly suitable for tack-
ling Fredholm integral equations of the first kind which are known to be typically
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ill-posed problems. The I-LTLLS algorithm outperforms the CGRTLS algorithm
slightly when the eigenvalues spectrum of the augmented matrix (AAA,bbb) has a larg-
er gap. It is because we can easily cut off a certain number of terms in the SVD
which are considered as noises far away from the singular subspaces of true system
energy. In this case, Tikhonov regularization may be difficult to regularize both
reliable and noise parts efficiently. However, the CGRTLS algorithm is clearly su-
perior to the I-LTTLS when the singular values decay gradually to zero. Because
it is difficult to determine an appropriate truncation level for truncated TLS, and
the smaller singular values which are truncated may be useful information. In all
tests, the CGRTLS algorithm with adaptive selection of regularization parameter is
turned out to be slightly superior to other TLS algorithms such as Lanczos TTLS
and the state-of-the-art RTLSQEP algorithms. The results of relative error indicate
that the I-LTTLS is not very sensitive to the random noise. We can also present that
the TLS-based regularization algorithms under certain noise level are able to yield
more accurate regularized solutions than LS-based method.
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