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On the (Meshless Local Petrov-Galerkin) MLPG-Eshelby
Method in Computational Finite Deformation Solid

Mechanics - Part II

Z. D. Han1 and S. N. Atluri2,3

Abstract: This paper presents a new method for the computational mechanics
of large strain deformations of solids, as a fundamental departure from the cur-
rently popular finite element methods (FEM). The currently widely popular primal
FEM: (1) uses element-based interpolations for displacements as the trial func-
tions, and element-based interpolations of displacement-like quantities as the test
functions; (2) uses the same type and class of trial & test functions, leading to a
Galerkin approach; (3) uses the trial and test functions which are most often con-
tinuous at the inter-element boundaries; (4) leads to sparsely populated symmetric
tangent stiffness matrices; (5) computes piecewise-linear predictor solutions based
on the global weak-forms of the Newtonian Momentum Balance Laws for a La-
grangean Stress tensor, such as the symmetric Second Piola-Kirchhoff Stress ten-
sor S [≡ JF−1 ·σσσ ·F−t , where σσσ is the Cauchy Stress tensor and F the deformation
gradient] in the initial or any other known reference configuration; and (6) com-
putes a corrector solution, using Newton-Raphson or other Jacobian-inversion-free
iterations, based on the global weak-forms of the Newtonian Momentum Balance
Laws for the symmetric Cauchy Stress tensor σσσ in the current configuration. In
a radical departure, the present approach blends the Energy-Conservation Laws of
Noether and Eshelby, and the Meshless Local Petrov Galerkin (MLPG) Methods
of Atluri, and is designated herein as the MLPG-Eshelby Method. In the MLPG-
Eshelby Method, we: (1) use meshless node-based functions δX, for configura-
tional changes of the undeformed configuration, as the trial functions; (2) meshless
node-based functions δx, for configurational changes of the deformed configura-
tion, as the test functions; (3) the trial functions δX and the test functions δx are
necessarily different and belong to different classes of functions, thus naturally

1 Livermore Software Technology Corporation, Livermore, CA, 94551, USA.
2 International Collaboratory for Fundamental Studies in Engineering and the Sciences, 4131 Engi-

neering Gateway, University of California, Irvine, Irvine, CA, 92697, USA.
3 Fellow & Eminent Scholar, Texas Institute for Advanced Study, TAMU-3474, College Station, TX

77843, USA.



200 Copyright © 2014 Tech Science Press CMES, vol.97, no.3, pp.199-237, 2014

leading to a Petrov-Galerkin approach; (4) leads to sparsely populated unsymmet-
ric tangent stiffness matrices; (5) the trial functions δX, as well as the test functions
δx, may either be continuous or be discontinuous in their respective configurations;
(6) generate piecewise-linear predictor solutions based on the local weak-forms of
the Noether/Eshelby Energy Conservation Laws for the Lagrangean unsymmetric
Eshelby Stress tensor T in the undeformed configuration [T = W I−P ·F; where
P = JF−1 ·σσσ is the first Piola-Kirchhoff Stress tensor, and W is the stress-work
density per unit initial volume of the solid] and (7) generate corrector solutions,
based on Newton-Raphson or Jacobian-inversion-free iterations, using the local
weak-forms of the Noether/Eshelby Energy Conservation Laws in the current con-
figuration, for a newly introduced Eulerean symmetric Stress tensor S̃ [which is the
counter part of T] in the current configuration [S̃ = (W/J)I−σσσ , often called by
chemists as the Chemical Potential Tensor]. It is shown in the present paper that
the present MLPG-Eshelby Method, based on the meshless local weak-forms of the
Noether/Eshelby Energy Conservation Laws, converges much faster and leads to
much better accuracies than the currently popular FEM based on the global weak-
forms of the Newtonian Momentum Balance Laws. The present paper is limited
to hyperelasticity, while large strains of inelastic solids will be considered in our
forthcoming papers.

1 Introduction

In our earlier Part I of this paper [Han and Atluri (2014)], we have introduced the
Eshelby Stress Tensor [a Lagrangean unsymmetric tensor entirely in the known
undeformed configuration] T = [W I−P ·F], where W is the strain energy density
per unit undeformed volume of the finitely deformed hyperelastic anisotropic solid,
P is the first Piola-Kirchhoff Stress tensor, and F is the deformation gradient. In
Han and Atluri (2014) we have presented: (i) the balance laws for T; (ii) a variety
of (and an arbitrary number of) conservation laws of the Noether/Eshelby type,
and the attendant “path-independent” integrals, for T , in a defective hyperelastic
anisotropic solid undergoing finite deformation and (iii) the beginning description
of the (Meshless Local Petrov Galerkin) MLPG-Eshelby approach, based on the
local weak-forms of the balance laws for T, for a linear elastic solid.

In a radical departure from the currently popular finite element approaches [which
are embedded in many widely used off-the-shelf software] for analyzing large strain
and large rotation deformation of solids, we present in this paper an entirely dif-
ferent approach, which blends the energy conservation laws of Noether (1918) and
Eshelby (1951,1975) and the (Meshless Local Petrov Galerkin) MLPG Methods
of Atluri (1998, 2004). We designate this new approach as the MLPG-Eshelby
Method for finite deformation solid mechanics. In the MLPG-Eshelby method, we:
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(1) use the meshless node-based local functions δX, for the configurational changes
of the undeformed configuration, as the trial functions; (2) meshless node-based lo-
cal functions δx, for the configurational changes of the deformed configuration, as
the test functions; (3) the local trial functions δX and the local test functions δx
are necessarily different and belong to different classes of functions, thus naturally
leading to a Local Petrov-Galerkin approach; (4) the trial function δX, as well as
the test function δx, may either be continuous or discontinuous in their respec-
tive configurations; (5) generate piecewise-linear predictor solutions based on the
local weak-forms of the Noether/Eshelby conservation laws for the Lagrangian un-
symmetric Eshelby Stress tensor T; and (6) generate corrector solutions, based on
Newton-Raphson or Jacobian-inversion-free iteration, using the local weak-forms
of the Noether/Eshelby conservation Laws in the current configuration, using an
Eulerean symmetric stress tensor S̃ [which is the Eulerean counterpart of T] in the
current configuration [S̃ = (W/J)I−σσσ , where σσσ is the Cauchy Stress tensor]. The
present MLPG-Eshelby Method leads to sparsely populated unsymmetric tangent
stiffness matrices for a finitely deforming solid.

In Section 2 of this paper, we present Newtonian momentum balance laws for P
[the first Piola-Kirchhoff Stress tensor], S [the second Piola-Kirchhoff Stress ten-
sor], and σσσ [the Cauchy Stress tensor]. We then present the Noether/Eshelby type
energy conservation laws for the Lagrangean Eshelby Stress tensor T, and their
newly introduced Eulerean counterparts [S̃ = (W/J)I−σσσ ; τ̃ττ = S̃ · (F ·Ft)], and a
two-point tensor P̃ = τ̃ττ ·F−t . In Section 2, we also present the tangent stiffness ma-
terial coefficients, for anisotropic hyperelasticity, for use in the Newton Momentum
Balance Laws and the Noether/Eshelby Energy Conservation Laws, respectively.

In Section 3, we present Meshless Local Petrov Galerkin weak-forms of the New-
tonian Momentum Balance Laws, and the Noether/Eshelby Energy Conservation
Laws, respectively. First, we present meshless local interpolations for the trial
functions δX (configuraitonal changes of the undeformed configuration) and the
test functions δx (configurational changes of the deformed configuration), respec-
tively. We present the details of the piecewise-linear predictor solutions based on
the local weak-form of the balance laws for the Lagrangean Eshelby tensor T.
We then present details of the corrector iterations using the local weak-forms of
the Noether/Eshelby conservation laws, based on the Eulerean tensor S̃. We also
present a succinct summary in a Table, which shows the key differences between
the popular Galerkin FEM methods, and the present MLPG-Eshelby methods, for
finite deformation (large strains and large rotations) solid mechanics.

In Section 4, we present the MLPG-Eshelby methods for several linear elasto-static
analyses. In Section 5, we present the numerical details of the MLPG-Eshelby
methods for finite deformation analyses of a hyperelastic solid. In Section 6 we
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present some conclusions.

2 Newtonian Momentum Balance Laws & Noether/Eshelby Energy Conser-
vation Laws, Respectively, for a Variety of Stress Tensors in the Initial and
Current Configurations of a Finitely Deforming Solid

2.1 Definitions of Various Stress Tensors in Initial & Current Configurations

We consider the finite deformation of a solid, wherein a material particle initially
at X, moves to a location x. We use a fixed Cartesian coordinate system with base
vectors ei, such that (X = XIei and x = xiei). The displacement of the material
particle is defined in the initial configuration, as

u(X) = x(X)−X or ui = (xi−XI)ei (1)

and the inverse displacement from the current deformation is defined as,

v(x) = X(x)−x =−u(X(x)) or vI = (XI− xi)ei (2)

Thus the deformation gradient tensor, F(X), which is a two-point tensor with the
first leg in the current configuration and the second in the initial configuration, can
be written as,

dx = F ·dX

FiJ =
∂xi

∂XJ
≡ xi,J = ui,J +δiJ

(3)

and the inverse deformation gradient tensor, F−1(x), which is a two-point tensor,
with the first leg in the initial configuration and the second in the current configu-
ration, can be written as

dX = F−1 ·dx

F−1
I j =

∂XI

∂x j
≡ XI, j = vI, j +δI j

(4)

There are infinitely many possible definitions of a stress-tensor in a finitely de-
formed solid, referred to both the initial and current configurations or many other
intermediate configurations which involve stretches and/or rotations [see, for in-
stance Atluri(1984)]. Among the more commonly used ones are: the Cauchy stress
tensor σσσ in the current configuration; the two-point first Piola-Kirchhoff stress ten-
sor P (with the first leg in the initial configuration, and the second in the current);
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and the second Piola-Kirchhoff stress S in the initial configuration. These are re-
lated to each other, thus [see Atluri (1984)]:

P(X) = J F−1 ·σσσ = S ·Ft (5)

S(X) = J F−1 ·σσσ ·F−t = P ·F−t (6)

where J(X) is ‖F(X)‖, and ( )t denotes a transpose.

One may also define the “Eshelby Stress tensor” T entirely in the initial configura-
tion, [as in Han and Atluri (2014)], as:

T =W I−P ·F =W I−S ·C (7)

where C = Ft ·F is the right Cauchy-Green deformation tensor.

It can be shown from purely geometric considerations, that, in a finite deformation,

(dAN) =
1
J
(dan) ·F and (dan) = J(dAN) ·F−1 (Nansen’s law) (8)

where dAN is an oriented differential area in the initial configuration, and dan is
an oriented differential area in the current configuration.

2.2 The material constitutive relations for use in Newtonian Momentum Bal-
ance Laws, and Noether/ Eshelby Energy Conservation Laws, Respectively
& Definitions of Several Other Stress Tensors of Use in the MLPG-Eshelby
Method

Considering a general anisotropic hyperelastic solid, with the strain energy per unit
initial volume being denoted as W , the constitutive relation for P may be written as
[see Atluri (1984)]:

P =
∂W
∂Ft (9)

If W is a frame-indifferent function of F in the initial configuration, it should be a
function only of Ft ·F. Thus [see Atluri (1984)],

P =
∂W
∂Ft =

∂W
∂E

∂E
∂Ft = S ·Ft (10)

and

S =
∂W
∂E

= 2
∂W
∂C

or SIJ =
∂W
∂EIJ

= 2
∂W
∂CIJ

(11)
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where

E =
1
2
(Ft ·F− I) =

1
2
(C− I); C = Ft ·F = 2E+ I (12)

E is the Green-Lagrange Strain tensor.

Let W̃ , the strain energy per unit deformed configuration, be defined in terms of the
strain energy density in the initial configuration, as

W̃ (x) =W (X)/J (13)

One may re-write Eq. (9) as,

PI j =
∂W
∂FjI

=
∂W

∂F−1
Mn

∂F−1
Mn

∂FjI
=− ∂W

∂F−1
Mn

F−1
M j F−1

In (14)a

or

P =−F−1 · ∂W
∂F−t ·F

−1 (14)b

in which the following identity is used,

∂F−1
Mn

∂FjI
=−F−1

M j F−1
In (15)

One may note that

∂W

∂F−1
Mn

=
∂ (JW̃ )

∂F−1
Mn

= J
∂W̃

∂F−1
Mn

+W̃
∂J

∂F−1
Mn

= J
∂W̃

∂F−1
Mn

−W̃J FnM = J
∂W̃

∂F−1
Mn

−W FnM

(16)

With Eq. (14), one may define,

P̃nM ≡
∂W̃

∂F−1
Mn

=
1
J
(W FnM +

∂W

∂F−1
Mn

) =
1
J
(W FnM−FnI

∂W
∂FjI

FjM) (17)a

or

P̃ =
∂W̃

∂F−t =
1
J
(W F−F · ∂W

∂Ft ·F) =
1
J
(W F−F ·P ·F) = 1

J
F ·T (17)b

which defines the constitutive relation for P̃, which is a two-point tensor (with the
first leg in the current configuration and the second in the undeformed configura-
tion).
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Comparing Eqs. (14)&(17), one may have

−F ·P = P̃ ·F−1 =
1
J
(W I−F ·P) = W̃ I−σσσ =

1
J

F ·T ·F−1 ≡ S̃ (18)

in which S̃ is an Eulerean symmetric (and also called as “chemical potential ten-
sor”), since the Cauchy stress tensor σσσ is symmetric, and it is entirely in the current
configuration. With Eqs. (4) & (8), the weak-forms of the path-independent inte-
grals for the Eshelby stress tensor may be written in terms of S̃, in the current
configuration, using the identity∫

∂Ω

(dAN) ·T ·δX =
∫

∂ Ω̃

(dan) · S̃ ·δx for ∀Ω (19)

in which δX = F−1 ·δx, by definition.

Let B̃ be the left Cauchy-Green deformation tensor of the inverse deformation,
defined as

B̃ = F−1 ·F−t = C−1 (20)

Eq. (17) may be also rewritten as

P̃ =
∂W̃

∂F−t =
∂W̃

∂ B̃

∂ B̃
∂F−t = 2F−1 · ∂W̃

∂ B̃
·Ft ·F−t ≡ τ̃ττ ·F−t (21)

by definition, the newly-defined stress tensor τ̃ττ is a function of B̃, as

τ̃ττ = 2F−1 · ∂W̃

∂ B̃
·Ft = P̃ ·Ft (22)

With Eqs. (18) & (21), one may have,

τ̃ττ = S̃ · (F ·Ft) = S̃ ·B or S̃ = τ̃ττ · (F−t ·F−1) (23)

where B = F · Ft is the left Cauchy-Green deformation tensor. It can be seen
that the stress tensor τ̃ττ is not symmetric in the current configuration for a general
anisotropic material. Let j(x) be the Jacobian determinant of the inverse deforma-
tion tensor, defined as

j(x) =
∥∥F−1(x)

∥∥= 1/J(X(x)) (24)

By their definitions, we may write the relations between the various stress tensors,
as

P̃ = jF ·T = τ̃ττ ·F−t = S̃ ·F (25)a
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τ̃ττ = jF ·T ·Ft = P̃ ·Ft = S̃ ·F ·Ft (25)b

T = JF−1 · P̃ = JF−1 · τ̃ττ ·F−t = JF−1 · S̃ ·F (25)c

which give the duality between the stress tensors defined for forward problems
{S; P; σσσ}, and for inverse problems {τ̃ττ; P̃; T}.
The stress tensors{S; P; σσσ} are commonly used in the Newtonian Momentum Bal-
ance Laws, while the stress tensors {τ̃ττ; P̃; T} are used in this paper to write the
Noether/ Ehelby Energy Conservation Laws.

The new stress tensor τ̃ττ is analogous to the second Piola-Kirchhoff stress tensor S.
For isotropic materials, τ̃ττ becomes symmetric because W̃ is a function only of the
right Cauchy-Green deformation tensor of the inverse deformation, C̃ = F−t ·F−1,
as

P̃ =
∂W̃

∂F−t =
∂W̃

∂ C̃

∂ C̃
∂F−t = 2

∂W̃

∂ C̃
·F−t (26)

Thus, for isotropic materials,

τ̃ττ = 2
∂W̃

∂ C̃
(27)

2.3 The Newtonian Momentum Balance Laws for Finite Deformations , in
terms of the stress tensors{S; P; σσσ}

The Newtonian equations of Linear Momentum Balance (LMB) and Angular Mo-
mentum Balance (AMB) can be written equivalently in terms of σσσ , P, and S [see
Atluri (1984)], as:

σi j,i +ρ f j = 0 (LMB); σσσ = σσσ
t (AMB) (28)a

PI j,I +ρ0 f j = 0 (LMB); F ·P = Pt ·Ft (AMB) (28)b

[SIKFjK ],I +ρ0 f j = 0 (LMB); S = St (AMB) (28)c

where ρ0 is the mass density (per unit initial volume). For a homogeneous solid, ρ0

is not a function of X, but is a constant. As discussed in [Han and Atluri (2014)],
the equivalence of Eqs. (28)a and (28)b needs to be guaranteed by the satisfaction
of the geometric identity for any finite deformation, that:

∂

∂XI

(
J

∂XI

∂xk

)
= 0 (29)

If such an equivalence is not assured in any computational solution, then, proper
numerical corrections (iterations) need to be introduced.
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2.4 The Noether/Eshelby Energy Conservation Laws for Finite Deformations
of Anisotropic Solids, in terms of {τ̃ττ; P̃; T}:

We now consider the “configuration invariance of the energy” type conservation
laws arising out of Noether’s (1918) Theorem. The strong form balance laws for
the Eshelby Stress tensor T, and for the stress tensors P̃, S̃, and τ̃ττ may be derived,
following the procedures given in [Han and Atluri (2014)], as

TIJ,I−ρ0bJ =−(PIk,I +ρ0 fk)FkJ = 0 (30)a

P̃iJ,i−ρ bJ = 0 (30)b

[JF−1
Ik S̃klFlJ],I−ρ0 bJ = 0 (30)c

[τ̃ikF−1
Jk ],i−ρ bJ = 0 (30)d

where, by definition [Han and Atluri (2014)]

bJ ≡
1
ρ0

W,J
∣∣exp . + fkFkJ (31)

Again, the equivalence of Eqs. (30)a and (30)b needs to be guaranteed by the
satisfaction of the geometric identity for any finite deformation, that:

∂

∂xi

(
j

∂xi

∂XK

)
= 0 (32)

The symmetry of the Eshelby stress tensor with respect to the strain tensor C is
mandatory, as

C ·T = Tt ·C (33)a

Ft · P̃ = P̃t ·F (33)b

Ft · τ̃ττ ·F−t = F−1 · τ̃ττ ·F (33)c

S̃ = S̃t (33)d

2.5 The Tangential Material Stiffness Coefficients for Anisotropic Hyperelas-
ticity, for use in Piecewise Linear Weak Forms of the Newtonian Momen-
tum Balance & Noether/ Eshelby Energy Conservation Laws, Respectively:

We now consider the “incremental” variables, as may be suitable for computational
analyses of quasi-static finite deformations of solids. Let ∆u be the incremental
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displacement of a material particle from the current configuration, C(N), to the next
configuration C(N+1). To this end, we define incremental variables in C(N),

∆L =
∂∆u
∂x

= ∆D+∆W or ∆Li j =
∂∆ui

∂x j
= ∆Di j +∆Wi j (34)a

∆D =
1
2
(∆L+∆Lt) or ∆Di j =

1
2
(∆Li j +∆L ji) (34)b

∆W =
1
2
(∆L−∆Lt) or ∆Wi j =

1
2
(∆Li j−∆L ji) (34)c

The incremental deformation gradient tensor can be computed, by definition, as

∆FiJ =
∂∆ui

∂XJ
=

∂∆ui

∂x j
FjJ = ∆Li jFjJ and ∆Li j = ∆FiJF−1

J j (35)

∆EKL =
1
2
(FkK∆LlkFlL +FkK∆LklFlL) = FkK∆DklFlL (36)

Thus, for a general anisotropic hyperelastic solid, the constitutive relation in Eq.
(11) gives the stress increment in the undeformed configuration, C(0), as:

∆SIJ =
∂ 2W

∂EIJ∂EKL
FkK∆DklFlL =

∂ 2W
∂EIJ∂EKL

FkKFlL∆Dkl (37)

which defines the forth-order tangential material stiffness tensor. Eq. (37) is often
used in the piecewise linear weak forms of the Newtonian Momentum Balance
Laws.

To apply the Noether/ Eshelby energy conservation laws, we first let ṽ(X) be the
configurational changes in the undeformed configuration of the solid, C(0), and we
define the incremental displacements in the current configuration, C(N), induced
due to ṽ(X) , be written as,

∆u = F · ṽ or ∆ui = FiJ ṽJ (38)

We note that:

∆Li j =
∂∆ui

∂x j
= FiK

∂ ṽK

∂x j
= FiK

∂ ṽK

∂XL
F−1

L j ≡ FiKF−1
L j ∆L∗KL or ∆L = F ·∆L∗ ·F−1

(39)a

and, with Eq. (34)b,

∆Di j =
1
2
[FiKF−1

L j ∆L∗KL +F−1
Li FjK∆L∗KL] =

1
2
[FiKF−1

L j +F−1
Li FjK ]∆L∗KL (39)b
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in which, by definition, ∆L∗ is the gradient of ṽ(X) as

∆L∗ =
∂∆ṽ
∂X

or ∆L∗KL =
∂ ṽK

∂XL
(40)

Substituting Eq. (39)b into Eq. (37), the tangential material stiffness relations, for
use in the piecewise linear weak forms of the Noether/Eshelby energy conservation
laws, may be written as,

∆SIJ =
1
2

∂ 2W
∂EIJ∂EMN

FkMFlN [FkKF−1
Ll +F−1

Lk FlK ]∆L∗KL ≡C∗IJKL∆L∗KL (41)

Eq. (41) are the incremental constitutive laws, in the context of the present Energy-
Conservation Laws of Noether and Eshelby, wherein the configurational changes
ṽ(X), and the corresponding gradients ∆L∗ are considered. ∆S and ∆L∗ may be
considered as a conjugate pair in postulating a piecewise linear constitutive relation
in the present context of the Noether/Eshelby energy conservation laws. On other
hand, the material constitutive laws may be postulated in the current configuration
in terms of Jaumann rate of the Kirchhoff stress σσσ∗ = (Jσσσ), or any of the infinitely
many other objective stress-rates, for either hyperelastic or hypoelastic materials
Atluri (1975, 1980, 1982, 1983, 1984). The corresponding constitutive relation for
use in the Noether/Eshelby energy conservation laws is formulated in terms of ∆L∗

in Appendix A.

3 Meshless Local MLPG (Meshless Local Petrov-Galerkin) Weak-forms of
the Newtonian Momentum Balance Laws & the Noether/Eshelby Energy
Conservation Laws, Respectively:

3.1 Meshless interpolations of trial and test functions: Various Primal & Mixed
MLPG-Eshelby Methods:

As mentioned earlier, the local trial functions in the presently proposed MLPG-
Eshelby method are δX, the configurational changes in the undeformed configu-
ration; and the local test functions are δx, the configurational changes in the de-
formed configuration. Below, we give the details of these local trial and test func-
tions, based on the Meshless Local Petrov Galerkin (MLPG) approach developed
by Atluri (1998, 2004).

Among the many meshless approximation schemes, the moving least squares
(MLS) is generally considered to be one of the best methods to interpolate ran-
dom data with a reasonable accuracy, because of its locality, completeness, robust-
ness and continuity. The MLS has been widely used in constructing trial functions
in many types of MLPG meshless methods [Atluri (2004)], and also for the test
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)(IX

)(I�  )(K�  
)(KX

Figure 1: A meshless local interpolation in a local sub-domain near node I at point
X(I) ∈Ω(I) in the undeformed configuration

functions in the Galerkin methods. Various MLPG methods however employ may
different types of test functions [Atluri (2004)]. In the present paper, the MLS
approximation is used to construct the trial functions ṽ(X) based on the fictitious
nodal value v̂(K) [Atluri (2004)], as

ṽMLS(X) =
n

∑
K=1

Φ
(K)(X)v̂(K)

∆L∗MLS(X) =
∂ ṽMLS

∂X
(X)

for ∀X ∈Ω
(I) (42)

where the gradients ∆L∗(X) are derived from ṽ(X) through direct differentiation.
The continuity of the trial functions ṽMLS is dependent on that of the weight func-
tions w(K) in the MLS interpolation [Atluri (2004)]. In the present study, we choose
the fourth-order spline function as the weight function, which leads to a continuous
trial function in the local domain.

Secondly, a mixed-type of interpolation may also be used for constructing the trial
functions ṽ(X) and their gradients ∆L∗(X) based on the fictitious nodal value v̂(K)

[Atluri, Han and Rajendran (2004)] over each local sub-domain, as

∆L∗(I) ≡ ∆L∗MLS(X(I)) =
∂ ṽMLS

∂X
(X(I))

∆L∗MIX(X) =
n

∑
K=1

Ψ
(K)(X)∆L∗(K)

ṽMIX(X) = ṽMIX (
∆L∗MIX(X),X

)
for ∀X ∈Ω

(I) (43)
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In the interpolation for ∆L∗(X) in Eq. (43), Ψ(K) are independent from the inter-
polation for ṽ(X) in Eq. (42), Φ(K). In the present study, ∆L∗(X) is assumed to be
constant within each sub-domain, as

∆L∗MIX(X) = ∆L∗(I)

ṽMIX(X) = ∆L∗MIX ·
(

X−X(I)
) for ∀X ∈Ω

(I) (44)

It is clear that the trial functions ṽMIX(X) and ∆L∗MIX(X) are piece-wise continu-
ous, but are discontinuous at the boundaries of each local sub-domain ∂Ω(I). It also
implies that the local sub-domains need to be non-overlapping in the global solu-
tion domain, as shown in Fig. 1. Thus, the trial functions become unique for each
unique material point X, except for the discontinuities at the boundaries between
the non-overlapping local sub-domains. In the present study, a non-overlapping
partition of the global domain is constructed with the use of the Delaunay tessella-
tion of a given set of nodes for 2D or 3D problems. The quality of the virtual-mesh
of 2D Delaunay triangulation and 3D Delaunay tetrahedralization is not important,
as the virtual-mesh is simply used to partition the solution domain, instead of us-
ing such a virtual-mesh for interpolating the solution variables as is done in many
mesh-based FEM. Each triangle may be sub-divided into three parts by three seg-
ments connecting its centroid to the middle points of the sides of the triangle, as
shown in Fig. 2. A local sub-domain for a node is created by merging the parts of
all its neighboring triangles, as a non-convex partition. Each tetrahedron may also
be partitioned for 3D problems accordingly.

)(I�
)(IX

Figure 2: A partition of a triangle.

In the present study, the mixed-type interpolation is also applied to the stress vari-
ables, such as σσσ(ςςς), based on the corresponding nodal values computed in Eq.
(42). The linear shape functions N(M)(ςςς) for 2D triangles or 3D tetrahedrons may
be adopted to interpolate the stress variables, by replacing Ψ(K) in Eq. (43), as,

σσσ
MIX(ςςς) = ∑

M

N(M)(ςςς)σσσ
(M) (45)
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)(IX  
)(I�  )(K�  

)(KX  

Figure 3: A non-overlapping local sub-domain (the darkly shaded polygon) defined
for node I based on the Delaunay tessellation.

Thus, the trial functions for stresses are continuous and piece-wise flat, without
any gaps. The corresponding domain integrals become constant during finite defor-
mation, resulting in a constant global matrix transferring the corresponding stress
variables into the internal forces.

In general, the MLS shape function does not have the Dirac Delta property. Many
other approximation methods are also available for evaluating the nodal coefficients
based on the true nodal coordinates, including the compact radius basis function
(cRBF) methods. A revised MLS interpolation possessing the Dirac Delta property
will be also proposed in our forthcoming papers for explicit dynamic problems, for
computational efficiency.

3.2 The Meshless Test Functions

In the MLPG Eshelby methods, the test functions are the configurational changes
of the deformed configuration. They can be chosen independently, to make it more
suitable for the numerical implementation. In the present study, we define two types
of these test functions. In the first method, Heaviside functions are chosen to be the
test functions within each local test sub-domain, as

δxFV M(X) = δx(I) = constant for ∀X ∈Ω
(I) (46)

in which δx(I) are the variations of the vertex nodes. These test functions corre-
spond to the imaginary operations of “cutting stresses” in [Eshelby (1975)]. The
constant test functions make the MLPG Eshelby methods computationally very ef-
ficient, because all domain integrals vanish for piece-wise linear materials. When
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Heaviside test functions are used, we call the resultant methods as the Finite Vol-
ume MLPG-Eshelby Methods

)(I� )(~ I�

Figure 4: A partition of a triangle.

Alternatively linear shape functions for 2D triangles or 3D tetrahedrons may be
adopted to be the test functions within triangles or tetrahedrons, as

δxFEM(ςςς) = ∑
M

N(M)(ςςς)δx(M) (47)

We call the resultant methods as Linear Test Function MLPG-Eshelby Methods.

3.3 Local Weakforms of the Newtonian Momentum Balance Laws in the Mesh-
less MLPG Method

It is well known that the Newtonian momentum balance laws for the Cauchy stress
tensor in Eq. (28)a are not convenient for writing the weakforms in the initial
configuration. It is more convenient to write the Newtonian Momentum Balance
Laws of the first or the second Piola-Kirchhoff stress tensors as in Eq. (28)b in the
initial configuration.

Let u(X) be the trial functions for displacements, and we satisfy Eq. (9) in terms
of F(X). Let δu(X) be the test functions which are used to satisfy the momentum
balance laws of P in Eq. (28)b in a weak form for a finitely deformed solid. Many
MLPG weakforms can be written within any local sub-domain Ω(I) in a solid Ω, i.e.
Ω(I) ⊂Ω, through the Meshless Local Petrov Galerkin approach [Atluri (2004)].

A local scalar weak form of Eq. (28)c can then be written in the initial configura-
tion for each sub-domain, as,∫

Ω(I)
(SIMFj,M),Iδu jdΩ+

∫
Ω(I)

ρ0 f jδu jdΩ = 0 (48)a
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or∫
∂Ω(I)

NI(SIMFj,M)δu jdS−
∫

Ω(I)
(SIMFj,M)δu j,IdΩ+

∫
Ω(I)

ρ0 f jδu jdΩ = 0 (48)b

We may also write a local vector weak form of Eq. (28)c by using the gradients of
the test functions, δui,L, if the geometric identity in Eq. (28)d is not satisfied [Han
and Atluri (2003)], as :∫

Ω(I)
(SIMFj,M),Iδu j,LdΩ+

∫
Ω(I)

ρ0 f jδu j,KdΩ = 0 (49)a

or∫
∂Ω(I)

eILk(SIMFj,M)Dkδu jdS−
∫

Ω(I)
(SIMFj,M),Lδu j,IdΩ+

∫
Ω(I)

ρ0 f jδu j,LdΩ = 0

(49)b

where the surface tangential operator Dt is defined as,

Dt = NR eRSt
∂

∂XS
(50)

With the various local weakforms in Eqs. (48) & (49), and various choices of local
trial and test functions as described in the previous Section, the MLPG approach
provides many choices in developing Primal, and Mixed MLPG methods, as has
been well documented in [Atluri (2004)].

3.4 Local Weakforms of the Noether/ Eshelby Energy Conservation Laws for
Various MLPG-Eshelby Methods, for Generating Picewise-Linear Predic-
tor Solutions for Finite Deformations:

The Eshelby stress tensor T is defined in the initial configuration, and it is a non-
linear function of F even for small-strain linear elastic material behavior. The local
weakforms of the energy conservation laws in Eq. (30) are now written for fi-
nite deformations, and are linearized using the tangential material stiffness in its
incremental form, to develop piece-wise linear predictor solutions, based on the
MLPG-Eshelby methods.

We refer the solution variables (displacements, deformation gradient, and stresses)
in the state C(N+1) to the configuration of the body in the immediately preceding
state, denoted as C(N), which is presumed to be known, including the variables in
C(N), such as u, F, σσσ and T, with the initial configuration C(0) being the reference
configuration, as shown in Fig. 5. The solution variables in the preceding state
C(N) may also be the Mth trial solution during the iteration process, which may not
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Figure 5: Three configurations during a finite deformation.

satisfy the balance laws. Let X and x be the Cartesian spatial coordinates of a parti-
cle in the initial configuration c and the deformed configuration C(N), respectively.
Let ṽ(X) be the configurational changes of the initial configuration which are the
trial functions in the present MLPG-Eshelby approach, and let the corresponding
changes to the displacements in C(N) as given in Eq. (38), be ∆u(X). We now
solve for the corresponding stress increments from C(N) to C(N+1). By first taking
δX as the test functions, one may write the MLPG-Eshelby local weakforms of the
energy conservation laws in Eq. (30)a for each local sub-domain Ω(I) in the initial
configuration C(0), for the variables in the deformed configuration C(N+1), as,∫

Ω(I)
T (N+1)

IJ,I δXJdΩ =
∫

Ω(I)
ρ0b(N+1)

J δXJdΩ (51)a

If all trial solution variables are continuous within each local sub-domain Ω(I), an
alternate weakform may be written for each local sub-domain, from Eq. (30)b, as,∫

Ω(I)
P(N+1)

I j,I F(N+1)
jK δXKdΩ+

∫
Ω(I)

ρ0 f (N+1)
j F(N+1)

jK δXKdΩ = 0 (51)b

As the test functions may be assumed independently, one may replace δX with
some other test functions, denoted as δx, within each sub-domain Ω(I), in which
F(N+1) are continuous, as

δx j = F(N+1)
jK δXK (52)

Thus the weakform in Eq. (51)b may be re-written as,∫
Ω(I)

P(N+1)
I j,I δx jdΩ+

∫
Ω(I)

ρ0 f (N+1)
j δx jdΩ = 0 (51)c

With Eq. (5), the above weakform may be also written in terms of the Cauchy stress
in the configuration C(N+1), as∫

Ω
(I)
N+1

σ
(N+1)
i j,i δx jdΩ+

∫
Ω

(I)
N+1

ρ f (N+1)
j δx jdΩ = 0 (51)d
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As the configuration C(N+1) is yet unknown, the solution variables may be lin-
earized from their values in the immediately preceding state [i.e. the configuration
C(N)], as∫

Ω
(I)
N

[(
S(N+1)
(N)

)
IJ

(
F(N+1)
(N)

)
jJ

]
,I

δx jdΩ+
∫

Ω
(I)
N

ρN

[
f (N)

j +∆ f j

]
δx jdΩ = 0 (51)e

where
(
•(N+1)
(N)

)
denotes a variable in configuration C(N+1) with the configuration

C(N) as the reference configuration.

The first integrand in Eq. (51)e may be linearized in the incremental forms, as[(
S(N+1)
(N)

)
IJ

(
F(N+1)
(N)

)
jJ

]
,I
=

[(
σ
(N)
IJ +

(
∆S(N+1)

(N)

)
IJ

)(
δ jJ +

(
∆F(N+1)

(N)

)
jJ

)]
,I

=

[
σ
(N)
IJ +

(
∆S(N+1)

(N)

)
IJ
+σ

(N)
IJ

(
∆F(N+1)

(N)

)
jJ

]
,I

(53)

One may notice that

σσσ
(N+1) =

1

J(N+1)

(
F(N+1)
(0)

)
·
(

S(N+1)
(0)

)
·
(

F(N+1)
(0)

)t

=
J(N)

J(N+1)

(
F(N+1)
(N)

)
·
(

S(N+1)
(N)

)
·
(

F(N+1)
(N)

)t
(54)

Thus,(
S(N+1)
(N)

)
=

1

J(N)

(
F(N)
(0)

)
·
(

S(N+1)
(0)

)
·
(

F(N)
(0)

)t
(55)

By definition, one may have

S(N+1)
(N) = σσσ

(N)+∆S(N+1)
(N)

S(N+1)
(0) = S(N)

(0) +∆S(0)

σσσ
(N) =

1

J(N)

(
F(N)
(0)

)
·
(

S(N)
(0)

)
·
(

F(N)
(0)

)t

(56)

Substituting Eq. (56) into Eq. (55), the tangential material stiffness for ∆S(N+1)
(N)

can be written as,

∆S(N+1)
(N) =

1

J(N)

(
F(N)
(0)

)
·
(
∆S(0)

)
·
(

F(N)
(0)

)t
(57)
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With the tangential material stiffness for ∆S(0) in the initial configuration as in

Eq. (41), one may have the spatial tangential material stiffness for ∆S(N+1)
(N) in the

configuration C(N), as(
∆S(N+1)

(N)

)
i j
=

1

J(N)

(
F(N)
(0)

)
iM
· (C∗MNKL∆L∗KL) ·

(
F(N)
(0)

)
jN
≡ c∗i jKL∆L∗KL (58)

With Eqs. (58) & (39)a, the incremental stress in Eq. (53) can be linearized with
respect to ∆L∗ as,(

∆S(N+1)
(N)

)
IJ
+σ

(N)
IM

(
∆F(N+1)

(N)

)
jM

= c∗i jKL∆L∗KL+σ
(N)
IM FjKF−1

LM ∆L∗KL ≡ ctangent
i jKL ∆L∗KL

(59)

Substituting Eqs. (59)&(53) into Eq. (51)e, one may have the local weakforms
of the energy conservation laws, by applying the divergence theorem to the first
integrand in Eq. (51)e, as,∫

∂Ω
(I)
N

ni

[
σ
(N)
i j + ctangent

i jKL ∆L∗KL

]
δx jdS−

∫
Ω

(I)
N

[
σ
(N)
i j + ctangent

i jKL ∆L∗KL

]
δx j,idΩ

+
∫

Ω
(I)
N

ρN

[
f (N)

j +∆ f j

]
δx jdΩ = 0

(60)

or{∫
∂Ω

(I)
N

nic
tangent
i jKL ∆L∗KLδx jdS−

∫
Ω

(I)
N

ctangent
i jKL ∆L∗KLδx j,idΩ

}
+

{∫
Ω

(I)
N

ρN∆ f jδx jdΩ

}
+

{∫
∂Ω

(I)
N

niσ
(N)
i j δx jdS−

∫
Ω

(I)
N

σ
(N)
i j δx j,idΩ+

∫
Ω

(I)
N

ρN f (N)
j δx jdΩ

}
= 0

(61)a

in which the first term corresponds to the tangential stiffness matrix of the local
solid domain; the second term to the load increments; and the last term to the
residual forces. All variables are defined in the configuration C(N) within a local
sub-domain.

If the configurational changes ṽ (meshless local trial functions) in the intial con-
figuration, and the configurational changes δx (meshless local test functions) in
the current configuration, are both continuous between the non-overlapping sub-
domains, Eq. (61)a is equivalent to the weakform of the Eshelby stress tensor in
Eq. (51)a if the geometric identity is satisfied. However, it is very hard to construct
the trial functions ṽ, as well as the corresponding displacement variation ∆u, to
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be continuous and satisfy the geometric identity globally. In the present study, the
trial functions ṽ are constructed to be continuous and satisfy the geometric iden-
tify within each local sub-domain only, and are allowed be discontinuous between
the non-overlapping sub-domains. One may introduce an additional term in the
integral over the boundaries of the non-overlapping subdomains, of Eq. (51)a into
Eq. (61)a, by assuming that any variable A(ζ ) is linear across the inter-subdomain
boundary between local non-overlapping subdomains, along the direction normal
to the boundary, as,

A(ζ ) = (1−ζ )A(I)+ζ A(J) (62)

where ∂Ω(IJ) is the boundary-segment between the non-overlapping local sub-
domains Ω(I) and Ω(J) with the parameter ζ being as shown in Fig. 6.

)(I�

)(J�)(IJ��

10 ���

N

Figure 6: A shared boundary between two local sub-domains.

One may write this additional term separately for the preceding solution u(X) and
the solution ṽ(X) for the configurational changes in the initial configuration, in a
similar manner, as{∫

∂Ω
(IJ)
N

ni

[(
ctangent

i jKL ∆L∗KLδx j

)(J)
−
(

ctangent
i jKL ∆L∗KLδx j

)(I)]
dS

− 1
2

∫
∂Ω

(IJ)
N

[(
ctangent

i jKL ∆L∗KL

)(J)
+
(

ctangent
i jKL ∆L∗KL

)(I)](
δx(J)j −δx(I)j

)
dS

}
+

{∫
∂Ω

(IJ)
N

ni

[(
σ
(N)
i j δx j

)(J)
−
(

σ
(N)
i j δx j

)(I)]
dS

− 1
2

∫
∂Ω

(IJ)
N

[(
σ
(N)
i j

)(J)
+
(

σ
(N)
i j

)(I)](
δx(J)j −δx(I)j

)
dS

}
(63)

which needs to be added into Eq. (61)a to form the global stiffness equations if
discontinuous trial and test functions are used. Thus the local weakforms of the
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energy conservation laws can be written as,{∫
Ω
(I)
N

ctangent
i jKL ∆L∗KLδx j,idΩ+

∫
∂Ω

(IJ)
N

1
2

[(
ctangent

i jKL ∆L∗KL

)(J)
+
(
ctangent

i jKL ∆L∗KL

)(I)](
δx(J)j −δx(I)j

)
dS

}
=

{∫
Ω
(I)
N

ρN∆ f jδx jdΩ

}
+

{∫
Ω
(I)
N

ρN f (N)
j δx jdΩ−

∫
Ω
(I)
N

σ
(N)
i j δx j,idΩ−

∫
∂Ω

(IJ)
N

1
2

[(
σ
(N)
i j

)(J)
+
(
σ
(N)
i j

)(I)](
δx(J)j −δx(I)j

)
dS

}
(61)b

With a constant test function δx over each local sub-domain, the domain integrals
vanish and the local weak forms of the energy conservation laws may be further
simplified as,{∫

∂Ω
(IJ)
N

1
2

[(
ctangent

i jKL ∆L∗KL

)(J)
+
(

ctangent
i jKL ∆L∗KL

)(I)](
δx(J)j −δx(I)j

)
dS

}
=

{∫
Ω

(I)
N

ρN∆ f jδx jdΩ

}
+

{∫
Ω

(I)
N

ρN f (N)
j δx jdΩ−

∫
∂Ω

(IJ)
N

1
2

[(
σ
(N)
i j

)(J)
+
(

σ
(N)
i j

)(I)](
δx(J)j −δx(I)j

)
dS

}
(61)c

This method is computationally extremely efficient, since: i) no domain integrals
are involved except when the body forces exist; ii) all derivatives are evaluated at
nodal points only; iii) one point integral per one shared boundary segment may be
used.

Once the trial functions ṽ(X) (configurational changes in the initial configuration)
are solved through Eq. (61), corresponding to either the unbalanced force or to
the incremental loading, the corresponding displacements can be obtained through
Eq. (38) (i.e. ∆u = F · ṽ). It is clear that Eq. (61) can be applied in both To-
tal Lagrangian formulation or an Updated Lagrangian formulation, by setting the
displacements u(X) of the preceding solution accordingly.

3.5 Corrector Iterations Based on the Local Weak Forms of the Noether/Es-
helby Energy Conservation Laws in the Current Configuration:

Eq. (61) represents the linearized weak forms of the Noether/ Eshelby energy con-
servation laws based on the configurational changes in the initial configuration , to
compute the predictor solution. An iteration process is necessary to correct the trial
solution in configuration C(N+1) , if it does not satisfy the solution exactly. The
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third term of the residual forces in Eq. (61) has a physical meaning as the rate of
work done by the unbalanced forces of the C(N) trial solutions in the configuration
C(N). It has the form, before applying the divergence theorem, as,(

δe(N+1)
(N)

)residual (I)

=
∫

Ω
(I)
N

(
σ
(N)
i j,i +ρN f (N)

j

)
δx jdΩ (64)

This term is used essentially to enforce the Newtonian momentum balance laws
in terms of the Cauchy stress in the deformed configuration. It implies that the
present MLPG-Eshelby method enforces both the momentum balance laws through
the predictor iteration process, as well as the energy conservation laws through the
corrector iteration process. The MLPG-Eshelby method -based predictor allows
for the discontinuity within the trial function, as shown in above.

On other hand, the predictor, along with its iterations, is based on the known con-
figuration, and may not be valid if “defects” are developed in the solid during the
current increment of deformation. Thus, corrector iterations may also be performed
based on the path-independent integrals for the Eulerean Eshelby stress tensor in
the current configuration, namely the stress tensor S̃. With Eq. (18), one may
compute S̃ in the configuration C(N+1) as,

S̃(N+1) = W̃ (N+1) I−σσσ
(N+1) (65)

The corresponding corrector iterations are performed, based on the local weak
forms of the Noether/Eshelby energy conservation laws in the current configura-
tion C(N+1) shown in Fig. 5, with the use of Eq. (30)c, as,(

δe(N+1)
(0)

)
=
∫

Ω

[JF−1
Ik S̃(N+1)

kl FlJ],IδXJdΩ−
∫

Ω

ρ0 bJδXJdΩ

=
∫

∂ΩN+1

niS̃
(N+1)
i j δx jdS−

∫
ΩN+1

S̃(N+1)
i j δx j,idΩ−

∫
ΩN+1

ρ b jδx jdΩ = 0
for ∀ΩN+1

(66)a

One may choose constant test functions δx over the subdomain and re-write Eq.
(66)a as,(

δe(N+1)
(0)

)
=
∫

∂ΩN+1

ni(W̃
(N+1)

δi j−σ
(N+1)
i j )δx jdS−

∫
ΩN+1

ρ b jδx jdΩ = 0 for ∀ΩN+1

(66)b

which is in general the weak form of the Noether/Eshelby energy conservation law
in the current configuration [ Han and Atluri (2014)].
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It thus follows that both the Newtonian momentum balance laws as well as the
Noether/ Eshelby the energy conservation laws need to be satisfied to ensure that
the trial functions are the true solutions. In the present MLPG-Eshelby Methods,
the Newtonian momentum balance laws are enforced directly through the iteration
process, regardless of the continuity of the trial function. For elastic materials, it
can be verified that Eq. (66) is always satisfied within in each local sub-domain if
the trial function is so chosen that the strong form of the momentum equilibrium is
satisfied, which implies that no energy is lost within a local sub-domain. Thus, the
energy conservation laws are enforced across the inter-subdomain boundaries and
lead to the predictor in Eq. (61) which ensures that the inter-subdomain boundary
remains “unruptured” during finite deformation. On other hand, one may predefine

 

)( I

Figure 7: A closed path across the inter-sub-domain boundary.

an enclosed path, as shown in Fig. 7, and track the energy portion of the weak form
in Eq. (66)b, as∫

∂ΩN+1

W̃ (N+1)niδxidS (67)

while the stress portion may be evaluated based on the Cauchy Stress in the de-
formed configuration. By assuming the possible development of defects or rupture
between two local subdomains, the forces on the defects can be computed through
Eq. (66) during the iteration process. If the development of a crack is assumed,
the corresponding integral becomes the criterion to initiate and control the damage
development processes, especially the crack development [Nikishkov and Atluri
(1987), Nishioka and Atluri (1983,1989), Han and Atluri (2003)]. This will be ex-
plored in detail in our forthcoming papers for the development of ruptures in the
solid during finite deformations.
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3.6 Galerkin FEM vs the MLPG Eshelby methods

The Galerkin FEM The MLPG Eshelby Methods

Basic
principle

The Newtonian momentum
balance laws

The Noether/Eshelby energy con-
servation laws

The strong
form

The Cauchy stress tensor in
the current configuration:
σi j,i +ρ f j = 0

The Eshelby stress tensor in the
initial configuration:
TIJ,I = ρ0bJ

The
transformed

two-leg tensor
form

The first Piola-Kirchhoff stess
tensor of the forward defor-
mation:
PI j,I +ρ0 f j = 0

The first Piola-Kirchhoff stress
tensor of the inverse deformation:
P̃iJ,i−ρ bJ = 0

The alternate
strong form
based on the
“weighted”
transformed

form

The “weighted” first Piola-
Kirchhoff stress tensor of the
inverse deformation(
P̃iK,i−ρ bK

)
F−1

K j = 0

The “weighted” first Piola-
Kirchhoff stress tensor of the
forward deformation(
PIk,I +ρ0 fk

)
FkJ = 0

Trial
functions

Forward displacements
ui(XI) = xi−XI

Configurational changes of the
initial configuration, and the in-
duced displacement: ṽI(XI)

Test functions Variation of displacement
δui(XI)

Configurational changes of the
deformed configuration
δxi = FiJδXJ

Weakform for
Piecewise

Linear
Predictor
Solutions

Global weakforms∫
Ω
(SIMFj,M),Iδu j,LdΩ

+
∫

Ω
ρ0 f jδu j,KdΩ = 0

Local weakforms over subdo-
mains∫

V TIJ,IδXJdΩ

=
∫

V ρ0bJδXJdΩ
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The Galerkin FEM The MLPG Eshelby Methods

Corrector
Iteration

The momentum balance laws
of the Cauchy stess tensor in
the current configuration
σi j,i +ρ f j = 0

The momentum balance laws of
the Cauchy stress tensor in the
current configuration:
σi j,i +ρ f j = 0

Weighted path-independent in-
tegrals of the energy conserva-
tion laws of the Eshelby stress
tensor in the current configura-
tion:
[JF−1

Ik S̃klFlJ],I−ρ0 bJ = 0

Type of
Method

Mostly Galerkin FEM, lead-
ing to symmetric and sparse
tangent stiffness matrics

Necessarily Petrov-Galerkin
Approaches
MLPG-Eshelby Approaches
lead to unsymmetric and sparse
tangent stiffness matrices

Continuity
requirement

ui : C0 continuity
δui : C0 continuity

ṽI : piece-wise continuous; dis-
continuous at local subdomain-
boundaries
δxi: piece-wise continuity; dis-
continuous at local subdomain-
boundaries

3.7 Some remarks On the MLPG Eshelby Methods

i) No continuity requirement across local subdomains, for the trial functions. The
trial functions within a local sub-domain can be so constructed as to satisfy the geo-
metric identities in Eqs. (29) and (32), [i.e. (J XI,k),I = 0 and ( j xi,K),i = 0] exactly.
This improves the numerical solution, its accuracy and its rate of convergence.

ii) Because no inter-subdomain continuity is required, discontinuities may be nat-
urally introduced based on the energy conservation criteria. In the present MLPG
Eshelby approach, surface-type discontinuities may also be introduced between lo-
cal sub-domains, to form explicit cracks.

iii) Iteration based on the energy conservation laws provides additional corrections
to other non-elastic processes and if multi-physics are also involved.
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The key for the use of the weakforms of the Noether/ Eshelby energy conservation
laws is to construct the invertible mapping relationships between the variables in all
configurations, which also need to be compatible to satisfy the geometric identities
in Eqs. (29) and (32). It is not possible to define such a mapping relation between
the configurations in a global domain. In contrast, the local linearized invertible
and compatible relations between the configurations may be easily achieved by
constructing a proper local deformation field with the use of invertible closed form
functions. The invertible and compatible relationships can be defined in terms of
the constant coefficients of the closed form functions, and thus leads to local mesh-
less methods, and the MLPG method of Atluri (1998,2004), in a very natural way.

The trial functions ṽ are the configurational changes of the initial configuration.
In the present study, the trial functions ṽ are employed in the weakforms directly,
instead of the resulting displacements in the deformed configuration [i.e. the dis-
placements ∆u]. The trial functions ṽ need to be admissible movements within the
local neighboring domains because the resulting displacements (i.e. ∆u = F · ṽ)
need to satisfy the boundary conditions. The test functions δx have a physical
meaning of configurational changes in the current configuration. It is convenient
to choose the test functions δx to be linear within each test domain, such as rigid
body motion and rotation or simple uniform deformations which have been used in
writing the weakforms of the energy conservation laws in Section 3 of our previous
paper [Han and Atluri (2014)]. It is clear that the test functions need to be kept
completely independent from the trial functions . Hence, it becomes very natu-
ral that the (Meshless Local Petrov-Galerkin) MLPG Eshelby approach is essential
for developing numerical methods for preserving the energy conservation laws, by
properly choosing trial and test functions over non-overlapping sub-domains.

3.8 Numerical implementation

In the present study, the first MLPG-Eshelby method is formulated by choosing
ṽMLS as the trial functions, and δxFEM as the test functions. We call this the “Primal
MLPG-Eshelby Method”. The domain integrals in Eq. (61)a are performed over
the local subdomain domain without any discontinuities.

The second MLPG-Eshelby method is formulated by choosing ṽMIX as the trial
functions and δxFV M as the test functions, and labeled as the “Mixed MLPG Es-
helby method”. Only boundary integrals in Eq. (61)c are performed over the
boundaries between local sub-domains.

The third MLPG-Eshelby method is formulated by choosing σσσMIX as the trial func-
tions and δxFEM as the test functions, and labeled as the “Mixed Stress MLPG Es-
helby method”. The domain integrals in Eq. (61)a are performed over the solution
domain without any discontinuities. This method becomes very simple as the do-
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main integral needs to be computed once for the system stiffness matrix as well as
residual forces.

4 Linear Elasto-Static Analysis

For a linear elastic body undergoing infinitesimal deformations, the system equa-
tions may be formed, using the piecewise linear predictor methodology presented
in the previous Section, by setting the preceding solution u(X) be zero and F(X) to
be an identity matrix.

4.1 Patch test

The first example is that of a standard patch test. The material parameters are taken
as Young’s Modulus E = 1.0, and Poisson Ratio ν = 0.25. Two nodal configura-
tions are used, a regular one and an irregular one, as shown in Fig. 8.

 (a) regular configuration      (b) irregular configuration 

Figure 8: Nodal configuration for patch test.

4.2 A problem with a Quadratic Solution: a Higher-Order Patch Test

A second order analytical solution is used for patch test with the same nodal con-
figurations in Fig. 9, as

u = {x2− y2,−2xy} (68)
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(a) regular configuration   (b) irregular configuration 
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Figure 9: Normalized displacement error of a patch under uniform tension.

(a) regular configuration   (b) irregular configuration 
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Figure 10: Normalized displacement error of a patch under second order nonlinear
deformation.

4.3 Cantilever beam

A cantilever beam under a transverse load, as shown in Fig. 11, for which the
following exact solution is given in Timoshenko and Goodier (1970):

ux =−
Py

6ĒI

[
3x(2L− x)+(2+ ῡ)(y2− c2)

]
uy =

P
6ĒI

[
x2(3L− x)+3ῡ(L− x)y2 +(4+5ῡ)c2x

] (69)
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where the moment of inertia I the beam is given as,

I =
c3

3
(70)

Two nodal configurations are created with 39 nodes and 125 nodes in Fig. 12 and
Fig. 15, respectively. The irregular configurations are also created by introducing
30% random variation from the regular configurations. The numerical results show
that the present MLPG Eshelby methods are very stable and mesh insensitive. A
convergence study is also performed as shown in 5.

 

P 

L 

2c x 

y 

 
Figure 11: A cantilever beam under an end load (L=24, c=2).

(a) regular configuration   (b) irregular configuration 

Figure 12: Nodal configuration for a cantilever beam (39 nodes).

5 Finite Deformation Nonlinear Analysis

For a hyperelastic body undergoing finite deformations, the Total Lagrangian for-
mulation is implemented for the Mixed MLPG Eshelby method in Eq. (61)c. The
outline of the complete solution algorithm is shown in Box 1, in which the system
matrix is updated only once during every load increment, instead of every iteration.
It may be changed to the Updated Lagrangian formulation by revising the displace-
ment updating and deformation gradient computing processes accordingly, as no
stress update process is necessary.
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(a) regular configuration   (b) irregular configuration 
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Figure 13: Normalized vertical displacement of a cantilever beam under an end
loading (39 nodes).

(a) regular configuration   (b) irregular configuration 
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Figure 14: Normalized displacement error of a cantilever beam under an end load-
ing (39 nodes).
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(a) regular configuration   (b) irregular configuration 

Figure 15: Nodal configuration for a cantilever beam (125 nodes).

(a) regular configuration   (b) irregular configuration 
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Figure 16: Normalized vertical displacement of a cantilever beam under an end
loading (125 nodes).

(a) regular configuration   (b) irregular configuration 
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Figure 17: Normalized displacement error of a cantilever beam under an end load-
ing (125 nodes).
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(a) regular configurations   (b) irregular configurations 
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Figure 18: Convergence rate in a cantilever beam under an end load (with 39 nodes,
125 nodes, 259 nodes, and 441 nodes respectively).

A generalized Neo-Hookean material model is adopted in the present paper with a
strain energy density function as given in [Bower (2009)],

W =
G
2
(Ī1−3)+

K
2
(J−1)2 (71)

where G and K are the shear modulus and bulk modulus; Ī1 is the first invariant of
the deviatoric part of the left Cauchy-Green deformation tensor B; J = det(F) is
the determine of the deformation gradient. The Cauchy stress is given as

σi j =
G

J5/3
(Bi j−

Bqq

3
δi j)+K(J−1)δi j (72)

and the tangential material stiffness,

ci jkl =
G

J2/3
[
1
2
(δikB jl +δ jlBik +Bilδ jk +B jkδil)−

2
3
(Bi jδkl +Bklδi j)

+
2
3

Bqq

3
δi jδkl]+K(2J−1)Jδi jδkl

(73)

In the present paper, the normalized shear modulus G = 1 and the bulk modulus
K = 10. The corresponding Poisson ratio is ν = 0.4516. The system matrix is
updated once every load increment with the tangential stiffness matrix defined in
Eq. (80) in Appendix A.
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Box 1:  T.L. formulation of the MLPG Mixed Eshelby method 

 INPUT model Information 
 RUN Delaunay algorithm to create local subdomains 
 INITIALIZE load ]0[f , displacements ]0[u , and the unbalanced force ]0[

]0[r  

 LOOP over load increments n 
o ASSEMBLE the system matrix tangent

n][K  over boundaries of all local 
sub-domains (l.h.s. of Eq. (61)c), with the tangent material stiffness in 
Eq. (59). 

o FIND load increment ][nf  

o SET ][]1[][ nnn fff  

o SET ][
][
]1[

]0[
][ n

last
nn frr  

o DO iteration i  
 SOLVE system equations ]1[

][
][
][][

~ i
n

i
n

tangent
n rvK  

 COMPUTE displacement increment ][
][

]1[
][

][
][

~ i
n

i
n

i
n vFu  

 UPDATE displacements ][
][

]1[
][

][
][

i
n

i
n

i
n uuu  

 COMPUTE nodal deformation gradients ][
][

i
nF  

 COMPUTE nodal stresses ][
][

i
n  

 ASSEMBLE the residual force ][
][

i
nr  over boundaries of all local 

sub-domains (r.h.s. of Eq. (61)c) 

 COMPUTE the error as a function of ][
][

][
][][

][
][ ,,, i

n
i
nn

i
n uufr  

o WHILE ( tolerenceerror ) 
 ENDLOOP 

 

5.1 Patch test

The first example is that of a standard patch test. Two nodal configurations are
used, a regular one and an irregular one, as shown in Fig. 19 (same as Fig. 8). The
uniform tension is applied on one side. The total nominal stress of 3 is applied in
10 uniform increments. The numerical results in Fig. 20 and Fig. 21 show that the
Mixed MLPG Eshelby method passes the patch test.
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   (a) regular configuration          (b) irregular configuration 

Figure 19: Nodal configuration for hyperelastic patch test.

(a) regular configuration   (b) irregular configuration 
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Figure 20: Final deformed configuration of hyperelastic patch test.
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Figure 21: Load-displacement curve of hyperelastic patch test.
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5.2 Finite-strain analysis of a hyperelastic plate

A patch under a tension load with one fixed end, as shown in Fig. 22, is modeled.
The symmetric boundary condition is applied along the X-axis. Two nodal con-
figurations are also used, a regular one and an irregular one, as shown in Fig. 19.
The final deformed configurations are shown in Fig. 23, and the load-displacement
curves are shown in Fig. 24. It shows that the present Mixed MLPG Eshelby
method is not sensitive to the irregularity of the configurations.

P 

L 

x 

2c

y 

Figure 22: A clamped patch under tension (L=1, c=0.5).

 

(a) regular configuration   (b) irregular configuration 
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Figure 23: Final deformed configuration of a clamped hyperelastic patch.
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(a) regular configuration   (b) irregular configuration 
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Figure 24: Load-displacement curve of a clamped hyperelastic patch.

6 Conclusions

In the present MLPG-Eshelby approach, the use of local (and possibly discontin-
uous) meshless trial and test functions δX (configurational changes in the initial
configuration) and δx (configurational changes in the current configuration) , re-
spectively, which satisfy the geometric identities of Eqs. (29) and (32) possibly
identically in a local fashion, is radically different from the presently popular FEM
approach for finite deformation (large strain and large rotations) solid mechanics.
From the numerical solutions presented for hyperelastic solids, it is found that the
present MLPG-Eshelby Method which produces both piecewise linear predictor as
well as corrector solutions, based on the local weak-forms of the Noether/Eshelby
conservation laws in the deformed and undeformed configurations, respectively,
converges much faster and produces much better accuracies, than the currently pop-
ular FEM. While finite deformations of hyperelastic solids are only considered in
the present paper, plasticity and dynamic deformation will be considered in our
forthcoming papers.
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Appendix A: The rate-based tangential stiffness matrices

A.1 Linerarization

Let w(x) be the velocity of a material particle in the current configuration, C(N),
and let the velocity gradient, denoted here as L, be

L =
∂w
∂x

= D+W or Li j =
∂wi

∂x j
= Di j +Wi j (74)

where D is the strain rate and W is the spin rate, as

D =
1
2
(L+Lt); W =

1
2
(L−Lt) (75)

Let σ̇σσ
∗ is the Jaumann rate of the Kirchhoff stress σσσ∗ = (Jσσσ), which is given

through a rate potential [Atluri (1980)], as

σ̇σσ
∗ = c∗ : D (76)

where c is the tangent material stiffness tensor of 4th order.
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The corresponding rate of the second Piola-Kirchhoff stress tensor is given as
[Atluri (1980); Rubinstein and Atluri (1983); Atluri and Cazzani (1995)]:

Ṡ =
dS
dt

= σ̇σσ
∗−D ·σσσ −σσσ ·D (77)

Thus the tangential material stiffness for the energy conversation laws in Eq. (59)
can be written in the rate form, with Eqs. (76)&(77), as,

Ṡ+σσσ ·Lt = σ̇σσ
∗−D ·σσσ −σσσ ·W = c∗ : D−D ·σσσ −σσσ ·W≡ ctangent : Lt (78)

or in the incremental form, Eq. (59) can be re-written as,(
∆S(N+1)

(N)

)
IJ
+σ

(N)
IM

(
∆F(N+1)

(N)

)
jM

= ctangent
i jkl ∆Llk (79)

If ctangent
i jkl is linearized in C(0) with respect to ∆Llk, the third and forth indices needs

to be pulled back with F and F−1, respectively, as

ctangent
i jkl FkMF−1

Nl ∆Lnm = ctangent
i jkl ∆L∗KL (80)

in which Eq. (39)b is used. With the consideration of Eq. (19), it means that
∆Lt

(N) may be replaced by ∆L∗(0) for better prediction if the system equations are

linearized in the configuration C(0), rather than pulling-back the tangential material
stiffness matrix explicitly.

A.2 Numerical study

In the present paper, Eq. (80) is implemented for the hyperelastic material. The
convergence rate of the patch test example is compared between the present Mixed
MLPG Eshelby method and the classic FEM method [Bower (2009)] with a coarse
mesh as shown in Fig. 25. The numbers of iterations during each load increment
are listed in Table. 1. The displacement increments during iterations of the first and
second load increments are charted in Table. 2 and Table. 3, respectively. It shows
that the present MLPG method gives a better convergence rate. The diagonal ele-
ment of the system equation corresponding to the center node in Fig. 25 are listed
in Table. 4. The tangent material stiffness components ctangent

1111 and ctangent
2222 of the

present MLPG method are also listed in Table. 4. It confirms that the present Mixed
MLPG Eshelby method possesses a numerically stable tangent stiffness matrix.
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Figure 25: Nodal configuration for hyperelastic patch test.

Table 1: Number of Iterations

Load Step 1 2 3 4 5 6 7 8 9 10

FEM 8 8 11 17 28 35 29 20 15 11

MLPG 5 7 7 7 8 8 8 8 8 9

Table 2: Displacement during the first load increment

Iteration #
FEM MLPG

Displacement Error Displacement Error

1 0.082258 1.000000 0.089560 0.068840

2 0.089005 0.068283 0.092553 0.032221

3 0.092019 0.033329 0.092752 0.002030

4 0.092490 0.004589 0.092794 0.000465

5 0.092738 0.002763 0.092798 0.000038

6 0.092773 0.000337

7 0.092794 0.000239

8 0.092796 0.000025
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Table 3: Displacement during the second load increment

Iteration #
FEM MLPG

Displacement Error Displacement Error

1 0.197307 0.526424 0.195741 0.343258

2 0.205078 0.034832 0.205637 0.042298

3 0.210436 0.025966 0.211138 0.025414

4 0.210930 0.002529 0.211554 0.001870

5 0.211573 0.003202 0.211657 0.000483

6 0.211580 0.000321 0.211667 0.000045

7 0.211665 0.000437 0.211669 0.000008

8 0.211658 0.000071

Table 4: The tangent material stiffness for each load increment

Load Engng. FEM MLPG MLPG

Step Strain
(%) Kxx Kyy Kxx Kyy ctangent

1111 ctangent
2222

1 0.00 16.4444 16.4444 6.7524 6.7524 11.3333 11.3333

2 9.28 14.2647 19.4004 6.6043 7.5200 11.5940 11.7033

3 21.17 12.1236 23.6373 6.5089 8.5635 11.9115 12.1539

4 36.51 10.0976 29.8827 6.5385 10.0086 12.3114 12.7210

5 56.12 8.2874 39.1899 6.8167 12.0203 12.8266 13.4511

6 80.42 6.7775 52.8928 7.5209 14.7865 13.4917 14.3938

7 109.26 5.5931 72.4779 8.8626 18.4978 14.3345 15.5901

8 142.11 4.7006 99.4509 11.0678 23.3495 15.3732 17.0680

9 178.46 4.0356 135.4098 14.3771 29.5630 16.6190 18.8466

10 217.93 3.5348 182.1935 19.0611 37.4045 18.0809 20.9423




