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Differential Quadrature and Cubature Methods for
Steady-State Space-Fractional Advection-Diffusion

Equations

Guofei Pang1, Wen Chen1,2 and K.Y. Sze3

Abstract: Space-fractional advection-diffusion equation is a promising tool to
describe the solute anomalous transport in underground water, and it has been ex-
tended to multi-dimensions with the help of weighted, fractional directional diffu-
sion operator [Benson, Wheatcraft and Meerschaert (2000)]. Due to the nonlocal
property of the space-fractional derivative, it is always a challenge to develop an
efficient numerical solution method. The present paper extends the polynomial-
based differential quadrature and cubature methods to the solution of steady-state
spatial fractional advection-diffusion equations on a rectangular domain. An im-
proved differential cubature method is proposed which accelerates the solution pro-
cess considerably. Owing to the global interpolation nature these methods are more
accurate and efficient than the finite element method. Numerical convergence is in-
vestigated thru one- and two- dimensional benchmark problems. The convergence
can be improved after well-organized explicit formulas for weighting coefficients
are obtained.

Keywords: space-fractional, differential quadrature and cubature, advection-
diffusion, finite element.

1 Introduction

Replacement of the second order derivative in the conventional advection-diffusion
equation (ADE) by a derivative of order α ∈ (1,2) yields the fractional diffu-
sion term and thus a fractional advection-diffusion equation (FADE). The super-
diffusive flow feature of FADE is suitable for describing contaminant transport
in groundwater [Benson, Wheatcraft and Meerschaert (2000); Benson, Schumer,
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Meerschaert and Wheatcraft (2001); Zhang, Benson and Reeves (2009)]. For 2D
and 3D FADE, Meerschaert et al [Meerschaert, Benson and Baumer (1999)] in-
troduced a directionally-weighted fractional diffusion operator Dα

M which is an ex-
tension of the well-known fractional Laplacian with M designating a directional
probability measure [Chen and Holm (2004); Pang, Chen, and Sze (2013); Duan
(2005); Yang, Liu and Turner (2010); Katzav and Adda-bedia (2008)]. The inac-
cessibility of closed-form analytical solutions of FADE fosters the development of
the relevant numerical solution techniques.

Although numerical methods for time-fractional derivative equations are extensive-
ly investigated [Zeng, Li, Liu and Turner (2013); Li, Chen and Ye (2011); Wang,
Meng, Ma and Wu (2013); Chen, Sun, Li and Fu (2013)], numerical solution of
space-fractional derivative equations, especially in high-dimensional case, is less
reported. Finite difference method (FDM) [Yang, Liu, and Turner (2010)], finite
element method (FEM) [Huang, Huang and Zhan (2008); Zheng, Li and Zhao
(2010)], finite volume method [Zhang, Crawford, Deeks, Stutter, Bengough and
Young (2005)], matrix transform technique (MTT) [Ilic, Liu, rner and Anh (2005);
Ilic, Liu, Turner and Anh (2006)] and spectral methods [Hanert (2010);Li and Xu
(2010)] have been employed to solve 1D FADE. In solving FADEs in high spa-
tial dimensions, FDMs [Meerschaert, Scheffler and Tadjeran (2006); Tadjeran and
Meerschaert (2007); Wang and Wang (2011)] are commonly used. Unfortunate-
ly, they are limited to the fractional differential operators in coordinate directions
whilst the generalized operator Dα

M involves the fractional derivative along all di-
rections.

To the best of our knowledge, FEM [Roop (2006)], vector Grünwald formula
(VGF) [Meerschaert and Mortenson (2004)] and MTT [Yang, Turner, Liu, and Ilic
(2011)] are the available methods for approximating Dα

M Based on the variational
statements in [Ervin and Roop (2006)], Roop presented a finite element scheme
for fractional advection-diffusion equation with Dα

M and the convergence rate was
proven to be equal to or exceed two, i.e., O(hd) where d ≥2 and h is the grid or
element size. Despite the relatively high accuracy, the spatial nonlocality of space-
fractional derivative leads to element stiffness matrices which couple all nodal dof.
Accordingly, the global stiffness matrix is non-sparse even though the trial func-
tions are local. These significantly increase the assembling and solution time of
FEM. The VGF is actually the multi-variate extension of the standard one-variate
Grünwald-Letnikov formula [Yang, Liu and Turner (2010)] for fractional derivative
and the method has the first-order accuracy, i.e., O(h). MTT is widely employed
for approximating fractional Laplacian (-∆)α/2 but may not be a good choice for
approximating Dα

M as they have different forms of definitions: the former is defined
by the spectral decomposition while the latter is defined by a vector integral.
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Pitfalls of the three afore-mentioned methods motivate us to seek more accurate and
efficient alternatives Differential quadrature method (DQM) [Shu (2000); Chen,
Zhong and Shu (1998)] is well-known for its high accuracy and low computation-
al effort. In the current literature, DQM has only been applied to 1D diffusion
equations with time fractional derivative and the DQ formula was confined to ap-
proximating the spatial integer-order derivatives [Mokhtazri (2011)]. In this paper
we consider the 1D FADE with space-fractional derivative and apply DQ formulas
to both spatial integer-order and fractional derivatives. Furthermore we shall ap-
ply the differential cubature method (DCM) to solve 2D FADE and go further in
developing an improved DCM with better efficiency.

In the integration quadrature method, a weighted sum of the integrands at the
quadrature points is taken to approximate an integral. Similarly, in the DQM, the
derivative of a given function at each sampling point in a coordinate direction is
expressed in terms of a weighted sum of the functional values of all the sampling
points along the same direction [Bert and Malik (1996)]. Lagrange interpolants
are most commonly used as the test functions of DQM to derive the weighting
coefficients yet the Fourier and radial basis functions can also be employed [Shu,
Ding and Yeo (2003); Shu and Chew (1997)]. This paper only considers the poly-
nomial test functions. The distribution of sampling points and the accuracy of
weighting coefficients computed are critical in the accuracy of the DQM. When the
sampling points are Gauss-Chebyshev or Gauss-Legendre-Lobatto points, DQM is
equivalent to Chebyshev or Legendre collocation method [Lui (2011)]. Though
explicit expressions of the DQ weighting coefficients for integer-order derivatives
are available [Quan and Chang (1989); Shu and Richards (1992)], those for frac-
tional derivatives are difficult, if not impossible, to derive. Here, they are obtained
numerically by matrix inversion. For a large number of sampling points, the matrix
becomes ill-conditioned and the accuracy as well as the convergence of the DQM
may be adversely affected It will be seen, however, from the numerical tests that
matrix inversion remains to be an acceptable expedient.

Unlike DQM which employs only the sampling points along a coordinate direction,
DCM uses the weighted sum of functional values at the sampling points in both co-
ordinate and non-coordinate directions to approximate the derivatives. This method
is originally developed for numerical quadrature of multi-dimensional functions
and subsequently used to solve high-dimensional differential equations. A com-
parative study of DQM and DCM for solving conventional advection-diffusion-
reaction problems can be found in [Malik and Civan (1995)].

The rest of paper is organized as follows. In Section 2, the DQ, DC and improved
DC formulas for fractional directional derivatives are presented. Note that a weight-
ed sum of fractional directional derivatives constitutes the directionally-weighted
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fractional diffusion operator Dα
M (see Section 3 below). Section 3 briefly reviews

the definition of Dα
M, followed by Dα

M’s DQ and DC approximations. Section 4
presents some preliminary numerical results for steady-state 1D and 2D FADEs.
Section 5 gives some conclusions

2 Approximation for fractional derivatives in a given direction

In this section, DQ and DC formulas are employed to approximate fractional direc-
tional derivatives of one- and two-variate functions, respectively. An improved DC
formula is developed for a fast computation of weighting coefficients of DCM

2.1 DQ formula

In DQ formula for integer-order derivative, the n-th order derivative is approximat-
ed by a linear weighted sum of functional values at sampling points, i.e.

Dnu(x) |x=xi =
Nx

∑
k=1

A(n)
ik uk, i = 1, ...,Nx,x ∈ [a,b],n = 1,2, ... (1)

where xi is the sampling point, uk = u(xk) and A(n)
ik is the weighting coefficient. The

sampling points can be equally or unequally spaced [Bert and Malik (1996)]:

xi =


a+

i−1
Nx−1

(b−a) (equal)

b+a
2
− (b−a)cos [(i−1)π/(Nx−1)]

2
(unequal)

. (2)

Now, consider the fractional-order counterpart of (1), i.e., for α∈ (n-1,n] and
x ∈[ab],

∗Dα
θ u(x) |x=xi =

Nx

∑
k=1

A(α,θ)
ik uk, i = 1,2, ...Nx,θ=0 or π (3)

In particular, θ = 0 and θ = π define respectively the left and right Caputo fractional
differential operators [Podlubny (1999); Samko, Kilbas and Marichey (1993)], i.e.

∗Dα
0 u(x) =

1
Γ(n−α)

x−a∫
0

ς
n−α−1 dnu(τ)

dτn

∣∣
τ=x−ς dς ,

∗Dα
π u(x) =

1
Γ(n−α)

b−x∫
0

ς
n−α−1 dnu(τ)

dτn

∣∣
τ=x+ς dς .

(4)
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It is trivial that ∗Dn
0 = ∂ n/∂xn, ∗Dn

π = (−1)n∂ n/∂xn [Kilbas, Srivastava and Trujillo
(2006)] and A(n,0)

ik = A(n)
ik . In compliance with the fractional differential order in

FADE, α falls into the interval (1, 2]. There are two common approaches to derive
A(n)

ik in (1):

• Numerical approach — numerically solve a Vandermonde system of linear
equations formed by replacing u in (1) with monomials;

• Analytical approach — use the Lagrange interpolation of u to derive the ex-
plicit formulas.

Using the former approach, the convergence of the DQM is adversely affected
by the inherently ill-conditioned Vandermonde matrix as the number of sampling
points goes up. The latter approach does not suffer the same pitfall and therefore
is always employed for deriving A(n)

ik where n is an integer To obtain A(α,θ)
ik for

fractional-order α in (3), we first consider the analytical approach. The Lagrange
interpolation of u gives

û(x) =
Nx

∑
k=1

uklk(x) (5)

where

lk(x) =

Nx

∏
j=1, j 6=k

(x− x j)

Nx

∏
j=1, j 6=k

(xk− x j)

(6)

Differentiation of (5) leads to

∗Dα
θ û |x=xi =

Nx

∑
k=1

uk
∗Dα

θ lk(x) |x=xi , i = 1,2...,Nx,α ∈ (1,2] (7)

Comparison of (7) and (3) gives the explicit form of the weighting coefficients:

A(α,θ)
ik = ∗Dα

θ lk(x) |x=xi (8)

For the trivial case α = 2 and θ = 0, the explicit expression of (8) has been giv-
en in [Shu and Richards (1992)]. Since the fractional Leibniz differential rule is
complicated [Podlubny (1999)], the deduction of (8) for α∈(1,2) is cumbersome.
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A seemingly alternative for determining (8) is the termwise differentiation on lk(x)
which reads

∗Dα
θ lk(x) =

Nx

∑
p=1

c(k)p
∗Dα

θ xp−1 (9)

where c(k)p is the coefficient before the monomial xp−1 in the expansion of lk(x) . As
∗Dα

θ
xp−1 can be determined easily, the remaining work is to derive the coefficients

c(k)p . This can be done by the Matlab function poly() which returns the coefficients
of a polynomial with zeros {xi}. Despite this convenience, our numerical results
on 1D problems show that the solution accuracy of DQM based on (9) drops sub-
stantially when the number of equispaced sampling points grows, i.e. Nx exceeds
18 (or larger). The convergence is deteriorated by the numerical difficulty of a very
large c(k)p times a very small xp−1 for a large Nx in (9).

Noting the limitation of the direct analytical approach, we consider the numerical
approach The weighting coefficients are determined by the following linear systems
(α∈(1,2))

∗Dα
0 (x−a)p−1 |x=xi =

Nx

∑
q=1

A(α,0)
iq (xq−a)p−1, i, p = 1,2, ...,Nx (10)

∗Dα
π (b− x)p−1 |x=xi =

Nx

∑
q=1

A(α,π)
iq (b− xq)

p−1, i, p = 1,2, ...,Nx (11)

Using the basic properties of Caputo fractional derivative the lefthand side of the
above equations can be explicitly determined as follows [Podlubny (1999)]

∗Dα
0 (x−a)p−1 |x=xi =

{
0, p = 1,2

Γ(p)
Γ(p−α)(x

−
i a)p−α−1, p≥ 3

, (12)

∗Dα
π (b− x)p−1 |x=xi =

{
0, p = 1,2

Γ(p)
Γ(p−α)(b− xi)

p−α−1, p≥ 3
. (13)

From our numerical tests, the weighting coefficients of (3) obtained by solving the
linear systems lead to higher convergence than evaluating (9) directly. Thus, the
numerical approach will be adopted in the rest of the paper to solve the weighting
coefficients.
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2.2 DC formula

To consider a rectangular domain Ω=[a,b]×[c,e], (4) is extended to two dimensions
as:

∗Dα
θ u(x,y) = I2−α

θ
D2

θ u(x,y),α ∈ (1,2),θ ∈ [0,2π) (14)

in which the fractional directional integral is defined as [Samko, Kilbas, and-
Marichey (1993); Pang, Chen, and Sze (2013)], for σ ∈(0,1),

Iσ

θ v(x,y) =
1

Γ(σ)

d∫
0

ς
σ−1v(x−ς cosθ ,y− ς sinθ)dς . (15)

Here, D2
θ
= (cosθ · ∂x + sinθ · ∂y)

2 is the second-order directional derivative. The
upper integration limit of the integral in (15), i.e. d, is the “backward distance”
of internal node (x,y) to the boundary of the problem domain Ω (see Fig.1). This
quantity is determined by the node location (xy), the direction vector θ , and the
shape of the computational domain.

 

d 

Ω 

(x,y) 

x 

y 

θ= {cosθ,sinθ }
T
 

 
θ 

Figure 1: The “backward distance” d of the internal node (x,y) to the boundary of
domain Ω in the direction θ .

The DC formula of fractional directional derivative can be written as

∗Dα
θ u(x,y) |x=xi,y=yi =

NxNy

∑
j=1

C(α,θ)
i j u j, i = 1,2, ...NxNy,

(x,y) ∈ [a,b]× [c,e],θ ∈ [0,2π),

(16)
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and the corresponding DC weighting coefficients are determined through solving
the following linear system: for θ∈(0,2π),

∗Dα
θ xv−1yµ−1 |x=xi,y=yi =

NxNy

∑
j=1

C(α,θ)
i j xv−1

j yµ−1
j ,

i = 1,2, ...,NxNy;v = 1,2, ...,Nx; µ = 1,2, ...,Ny

(17)

The subscripts i, j in (16) and (17) are both global subscripts which correspond to
a list of grid (or sampling) points (xkyk) sorted by a given order. The lefthand side
of (17) can be computed by the Gauss-Lobatto-type quadrature rules discussed in
our previous work [Pang, Chen and Sze (2013)].

2.3 Improved DC formula

To obtain the weighting coefficients C(α,θ)
i j in (17), one needs to solve NxNy linear

systems of dimension NxNy. Here, we introduce a more efficient procedure which
only needs to solve one linear system of dimension Nx or Ny .

 

P 
θ 

 

E 

x 

y 

Figure 2: The DQ sampling points (“•”) contributing to the approximation of frac-
tional directional derivative evaluated at point P

For simplicity, we consider a rectangular domain modeled by a 4×4 grid as shown
in Fig.2 and the backward distance of point P starts from the point E on the lower
boundary in direction θ . Along EP, there are NDQ sampling points (x̄k, ȳk)s which
will be termed as the DQ sampling points. The fractional directional derivative at
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point P is first approximated by a weighted linear sum of functional values ūks at
the DQ sampling points:

∗Dα
θ uP =

NDQ

∑
k=1

B(α,θ)
k ūk , (18)

where B(α,θ)
k is the DQ weighting coefficients. Using Lagrange interpolation for

a Nx×Ny grid, the highest order monomial term is xNx−1yNy−1. Along a straight
line such as EP, x and y are linearly related and the highest order term can be
expressed as xNx+Ny−2 or yNx+Ny−2 which can be exactly interpolated at Nx +Ny-1
DQ sampling points. It thus requires NDQ = 7 for the grid as shown in Fig.2 where
Nx = Ny = 4. B(α,θ)

k can be obtained by B(α,θ)
k = l−α

θ
Ã(α,θ)

k where lθ = |EP| and
the reference DQ weighting coefficient Ã(α,θ)

k is solved from (10) by letting a= 0,
Nx = NDQ and introducing the normalized coordinate x̃k ∈ [0,1] for the reference
sampling points. The ordinates of the reference DQ sampling points along EP are
related to the normalized coordinate x̃k ∈ [0,1] through ȳk = yE +(yP−yE)x̃i where
yE and yP are the ordinates of point E and point P, respectively, as seen in Fig.3.

 

P θ 

 

E 

x 

y 

  

  

  

  

  

  

  

Figure 3: Auxiliary points “2” onto which the DQ weighting coefficients are dis-
tributed. “•” denotes the reference sampling point.

Conventionally, one can relate the values of u at the DQ sampling points to those
at the grid points by the 2D Lagrange interpolation which involves NxNy terms.
A more efficient procedure proposed here is to use a two-step 1D interpolation.
Considering the i-th DQ sampling point with ordinate ȳi in Fig.3 as an example,
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the auxiliary points are the points with the same ordinate ȳi on the Nx vertical grid
lines. In the first step, the values of the u at auxiliary points are first obtained
from those at the Ny grid points on the same vertical grid line by the 1D Ny-point
Lagrange interpolation. In the second step, the values of u at the Nx auxiliary points
are interpolated to the i-th DQ sampling point using the 1D Nx-point Lagrange
interpolation.

Finally, the DQ weighting coefficients at sampling points on the line PE are dis-
tributed onto all the grid points thru the two-step Lagrange interpolation, thus lead-
ing to the modified DC weighting coefficients C̄(α,θ)

i j which are similar to C(α,θ)
i j in

(16). In fact, because C(α,θ)
i j and C̄(α,θ)

i j can both be represented in terms of the frac-
tional directional derivative of Lagrange interpolation li(x)l j(y), these two types of
weighting coefficients are identical in theory, and therefore the quadrature solution-
s of DCM and improved DCM should have been completely identical. However,
numerical errors enter differently to C̄(α,θ)

i j and C(α,θ)
i j , the pertinent quadrature so-

lutions are different especially when the number of grid points is large. This point
will be illustrated in Section/Example 4.2.

Fig.4 shows the auxiliary points when the starting point of the backward distance
is on different portion of the domain boundary. In subsequent descriptions, the
improved DCM will be abbreviated as iDCM.

 
  

 

θ θ θ 

Figure 4: Selections of auxiliary points for other cases of θ∈[0,2π)

3 DQ (-DC) formulas for fractional diffusion term

The 2D steady-state FADE can be written as [Meerschaert, Benson and Baumer
(1999); Roop (2006); Pang, Chen and Sze (2013)]

− cDα
Mu(x,y)+b ·∇u(x,y) = f (x,y), (x,y) ∈Ω,

u(x,y) |∂Ω = ub(x,y),(x,y) ∈ ∂Ω
(19)
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with fractional diffusion operator Dα
M, constant diffusion factor c, constant medium

velocity b, source term f and the rectangular domain Ω. Dα
M in R2 is defined as

[Meerschaert, Benson and Baumer (1999)]

Dα
M(·) =

2π∫
0

Dα
θ (·)M(dθ)(1 < α < 2) (20)

with the probability measure M(dθ ) which can be discrete or continuous [Roop
(2006); Pang, Chen and Sze (2013)]:

Dα
M (·) = ∑

i
Dα

θi
(·)mi , 1 < α < 2, ∑

i
mi = 1 (21)

Dα
M (·) =

2π∫
0

Dα
θ (·)m(θ)dθ , 1 < α < 2,

2π∫
0

m(θ)dθ = 1. (22)

The directional differential operator Dα
θ

:= D2
θ

I2−α

θ
here belongs to the Riemann-

Liouville type. For computational convenience, we consider its Caputo counterpart
∗Dα

θ
:= I2−α

θ
D2

θ
. Accordingly, we replace the fractional diffusion operator in (19)

with the following operator

∗Dα
M(·) =

2π∫
0

∗Dα
θ (·)M(dθ)(1 < α < 2). (23)

For a one-dimensional operator, (21) reduces to

∗Dα
Mu(x) = (m1

∗Dα
0 +(1−m1)

∗Dα
π )u(x),m1 ∈ [0,1], (24)

and from (3) its DQ formula is given by

∗Dα
Mu(x) |x=xi =

Nx

∑
k=1

(m1A(α,0)
ik +(1−m1)A

(α,π)
ik ) uk,

i = 1,2, ...,Nx

. (25)

For a two-dimensional continuous operator in (22), numerical quadrature can be
used to approximate (23), i.e.

∗Dα
Mu(x,y) =

N−1

∑
k=0

wkm(θk)
∗Dα

θk
u(x,y) (26)
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where θ k and wk are the quadrature point and weight, respectively. The correspond-
ing DC and improved DC formulas are

∗Dα
Mu(x,y) |x=xi,y=yi =



N−1

∑
k=0

wkm(θk)
NxNy

∑
j=1

C(α,θk)
i j u j

N−1

∑
k=0

wkm(θk)
NxNy

∑
j=1

C̄(α,θk)
i j u j

(27)

where i=1,2,. . . NxNy. Similar formulas can also be found for discrete operator in
(21). For convenience, we use compound trapezoidal rule here by letting wk =2π/N
and θ k= 2kπ/N where N is the number of integration intervals with respect to θ

4 Numerical results and discussions

4.1 One-dimensional advection-diffusion problem

−∗D1.5
M u(x)+

du(x)
dx

= f (x),x ∈ [0,1], (28)

with exact solution

(a) u(x) = x8x5+3x2+5 ;

(b) u(x) = excos(x)+ x3

Here, ∗D1.5
M is prescribed to be 0.5(∗D1.5

0 +∗D1.5
π ) and the Dirichlet boundary condi-

tion is taken; the source term f (x) is obtained by the 10-point Gauss-Jacobi-Lobatto
quadrature as given in [Pang, Chen and Sze (2013)]. The first-order derivative in
(28) is approximated by conventional DQ formula, i. e.

du(x)
dx
|x=xi =

Nx

∑
i=1

A(1,0)
ik uk (29)

where the weighting coefficients are given by [Shu and Richards (1992)] :

A(1,0)
ik =

Nx

∏
v=1,v 6=i

(xi− xv)

(xi− xk)
Nx

∏
v=1,v 6=k

(xk− xv)

f or i,k = 1,2, ...,Nx and k 6= i (off-diagonal),

A(1,0)
ii =−

Nx

∑
v=1,v 6=i

A(1,0)
iv for i = 1,2, ...,Nx (diagonal).

(30)



Steady-State Space-Fractional Advection-Diffusion Equations 311

We use DQ formula (25) to approximate ∗D1.5
M u(x) choose five test points

z=0.1,0.3,0.5,0.7 and 0.9, and define the normalized error as

Err =

√
5
∑

t=1
(ũi−u(zi))

2

√
5
∑

t=1
u(zi)2

(31)

where the approximant ũi at zi is determined by Lagrange interpolation, i.e. (5).
Two types of sampling points (i=1,2,. . . , Nx) are considered in the present example:

(1) Equally spaced points xi =
i−1

Nx−1 ;

(2) The unequally spaced Gauss-Chebyshev-Lobatto points xi=
1
2−

1
2 cos

(
i−1

Nx−1 π

)
.

Figs.5 and 6 plot the errors for cases (a) and (b), respectively.
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Figure 5: Convergence of the DQ solutions of the Example 4.1 (a)

Same as in integer-order derivative problems, it can be seen that DQM can achieve
the spectral accuracy for fractional derivative problem and unequally spaced sam-
pling points can delay the numerical errors. This is because the Vandermenda ma-
trix system for determining DQ weighting coefficients generated by non-uniform
sampling points is less ill-conditioned than that generated by uniform sampling
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Figure 6: Convergence of the DQ solutions of Example 4.1 (b)

points. Despite this advantage, the machine precision ∼10−15 for double precision
starts to lose at Nx ≈ 25. On the other hand, for a numerical solution method having
spectral accuracy, a less dense grid is often adequate for most problems..

4.2 Two-dimensional homogenous diffusion problem

− 1
2π

2π∫
0

∗D1.5
θ u(x,y)dθ = f (x,y),(x,y) ∈Ω = [0,1]2 (32)

with exact solution

(a) u(xy)=x2(1-x)2y2(1-y)2

(b) u(xy)=x3cos(x2 + y2)+ ex+2y

and source term (v = D2
θ

u)

f (x,y) =− 1
2π

2π∫
0

 1
Γ(0.5)

d∫
0

ς
−0.5v(x− ς cosθ ,y− ς sinθ)dς

dθ (33)

The Dirichlet boundary condition is taken. To compute the value of f at each grid
point, integration quadrature is implemented. The backward distance d in (33) can
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be derived by [Roop (2006)]:

d(x,y,θ) =


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(
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[
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(
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(
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,

x
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,θ ∈
[

2π + arctan
(

y−1
x

)
,2π

)
.

(34)

The integral with respect to θ is partitioned into five sub-integrals according to
(34). High-order Gauss-Jacobi-type quadrature rules [Pang, Chen and Sze (2013)]
are used to evaluate each sub-integral for a highly accurate source term f .

Here, 81 test points with coordinates (xiy j)=(i/10, j/10), i, j=1,2,. . . ,9 are employed
to quantify the normalized error which is defined as

Err =

√
9
∑

t=1

9
∑
j=1

(ũi j−u(xi,y j))
2

√
9
∑

t=1

9
∑
j=1

u(xi,y j)2

(35)

where the approximant ũi j are derived by 2D Lagrange interpolation at the gird
points.

We first consider the case (a) with exact solution x2(1-x)2y2(1-y)2. Roop’s FEM
in [Roop (2006)] is taken as a comparison. Four-node rectangular elements and
uniformly spaced nodes are employed In iDCM, if the grid points are equally (un-
equally) distributed, the DQ sampling points would also be equally (unequally)
distributed. Other combinations of grid point and DQ sampling point distributions
are possible but the numerical solutions are plagued by numerical errors more read-
ily as the grid density increases. Fig.7 compares the accuracy of FEM, DCM and
iDCM. Let N=64 in (26) for DCM and iDCM. Fig.8 compares the CPU time (using
an Intel i5 dual-core CPU and 2G RAM) for computing the weighting coefficient
matrix of (improved) DCM with the CPU time for generating the global stiffness
matrix in FEM. Here, Nx = Ny = M which vary from 4 to 20. Note that the inherent
ill-conditioning of the system matrix in (17) simply allows a less dense grid (i.e., a
small Nx and Ny) when one needs acceptable solution accuracy.
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It can be seen from Fig.7 that DCM and iDCM at small N possess the spectral
convergence which is much higher than that of FEM. Moreover, the non-uniform
grid yields more stable solutions. As discussed in Section 2.3, for small Nx or Ny,
DCM and iDCM yield identical solutions; while for large Nx or Ny, their solutions
exhibit obvious distinction. The computational efficiency of the improved DCM
over DCM can be seen in Fig.8

It has been discussed in Section 2.3 that for a Nx×Ny grid, the number of DQ sam-
pling points, i.e., NDQ, in the iDCM is sensible to take Nx +Ny-1 based on the in-
terpolation consideration. On the other hand, if NDQ is too large, the Vandermenda
matrix may be ill-conditioned and adversely affect the accuracy and convergence.
With reference to Example 4.2(a), the exact solution can be exactly interpolated by
a 5×5 grid when NDQ ≥ 9. This can be seen by an obvious increase of the accuracy
for Nx (= Ny)≥ 5 and NDQ ≥ 9 as shown in Fig.9.

Figure 9: Convergence of the improved DCM for different NDQ with unequally
spaced gird points in Example 4.2(a)

Next, we consider case (b) with exact solution x3cos(x2 + y2)+ ex+2y. Since the
finite element scheme for the 2D FADE (19) is only developed for a problem with
homogenous Dirichlet boundary condition [Roop (2006)], we will not consider the
FEM solution for (b) which does not vanish identically over the domain boundary.
The comparison of the solutions from the DCM and the iDCM (NDQ=12) for N=
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64 in (26) is given in Fig.10. It can be seen that accurate and stable solutions can
still be secured by the iDCM with a unequispaced grid.
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Figure 10: Convergence of the DCM and iDCM (NDQ=12) solutions of Example
4.2(b)

Now discuss the influence of NDQ on the solution accuracy of the iDCM. Fig.11
displays the variation of the normalized error of the iDCM with the NDQ. The
observations show that the influence of NDQ can only be clearly seen for a larger
Nx or Ny and an increasing NDQ will not obviously improve the solution accura-
cy. We conjecture that two factors, i.e., (a) the inherently ill-conditioning of the
linear system that determines the DQ weighting coefficients and (b) the numeri-
cal errors accumulated in the two-step 1D Lagrange interpolation deteriorate the
solution convergence. From the interpolation consideration in Section 2.3, a pos-
sible way to find an optimal NDQ is to let NDQ vary with the gird size, namely,
NDQ = Nx +Ny-1. The corresponding convergence curve is shown in Fig.12, from
which one can see the poor accuracy for a larger Nx or Ny. Comparison of Figs.
11 and 12, however, indicates that using a constant NDQ is usually more suitable
than using a variable one, but for a smaller Nx or Ny, both cases are available. Con-
sidering the influence of constant NDQ as shown in Fig.11, we suggest a constant
NDQ ∈[7 min{18,Nx +Ny-1}] for NxNy ≥4

It is worth noting that the integration quadrature accuracy in (26) also plays a cru-
cial role in the final solution accuracy. This will be true for both the case (a) and
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case (b). For instance, the variation of normalized error Err with the interval num-
ber N in compound trapezoidal rule for case (b) where Nx = Ny= 10 and NDQ=16 ∈
[7, 18] is illustrated in Fig.13. The solution accuracy will gradually increase with
the increasing N. Consideration of both the accuracy and the CPU time leads to an
intermediate but acceptable N. Here, we took N= 64 just as mentioned before

Thru numerical tests, it is interesting to find that using higher-order quadrature rules
such as compound Simpson and even the (piecewise) Gauss quadrature rules will
not obviously improve the convergence in Fig.13. The is also the reason why we
use compound trapezoidal rule instead of high-order rules to discretize the angle
integral in (26) and (27).
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Figure 13: Variation of the normalized error with the number of the integration
interval in compound trapezoidal rule using nonuniform grid for Example 4.2(b)

5 Conclusions

This paper presents differential quadrature and cubature methods for numerical
solution of steady-state advection-diffusion equations with directionally-weighted
fractional diffusion operator. The present methods feature spectral convergence
and enjoy lower computational effort compared to the finite element method. An
improved version of the original differential cubature method is proposed to reduce
the computational cost considerably On the other hand, the weighting coefficients
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derived from solving the inherently ill-conditioned linear system fail these methods
in large-scale problems. A partial antidote to this problem is to deduce explicit
expressions for DQ/DC weighting coefficients that take the similar form to (30),
which is under study now.
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