
Copyright © 2014 Tech Science Press CMES, vol.97, no.4, pp.323-357, 2014

An Incremental Kriging Method for Sequential Optimal
Experimental Design

Yaohui Li1,2, Yizhong Wu1,3 and Zhengdong Huang1

Abstract: Kriging model, which provides an exact interpolation and minimizes
the error estimates, is a highly-precise global approximation model in contrast with
other traditional response surfaces. Therefore, sequential exploratory experimental
design (SEED) with Kriging model is crucial for globally approximating a com-
plex black-box function. However, the more sampling points are, the longer time
it would take to update the Kriging model during sequential exploratory design.
This paper, therefore, proposes a new construction method called incremental K-
riging method (IKM) to improve the constructing efficiency with just a little and
controllable loss of accuracy for Kriging model. The IKM, based on the matrix
segmentation theory, is under the premise that the correlated parameter θ remain-
s unchanged. Meantime, it utilizes the original model and incremental sampling
data to quickly obtain an updated Kriging model. Fortunately, a large number of
numerical tests showed that the stability of parameter θ would become better and
better with the continual increase of the new sampling points in most instances.
Even if there is a slight change for value θ , there is not obvious effect on the ac-
curacy of Kriging model. Then, a new sequential incremental experimental design
(SIED) algorithm based on IKM is presented to construct Kriging model steadily
and effectively. At each sampling step, the SIED method finds an optimal sampling
point which maximizes the mean square error of the current model. Meantime, it
judges whether the θ should be changed according to the updating criterion. K-
riging model will be updated by IKM when θ remains unchanged, or recreates the
model with all the sampling points, otherwise. Finally, seven numerical tests and
three engineering examples are given to illustrate the applicability, effectiveness
and superiority of the proposed methods.
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1 Introduction

Global approximation has been widely using in many engineering problems. First-
ly, it is very effective and applicable to approximately substitute a complex “black-
box” function under some special occasions such as parametric experiments design,
real-time simulation and hardware in the loop. On the other hand, global approx-
imation can greatly improve the design efficiency of complex analytical models.
Furthermore, some complex engineering problems can be simplified by experi-
ments design [Wang and Shan (2007)], which is helpful for engineers and design-
ers to gradually understand the characteristics of original model by parametric tests,
sensibility analysis and visualization of functional relationship. Last but not least,
different from the optimization process of some average response surface methods,
a global approximation process needs more sampling points so as to achieve global
search through the entire design space.

Kriging model, which can provide an exact interpolation and minimize the error
estimates (best linear unbiased predictor) in the spatial distribution [Van Beers and
Kleijnen (2004)], is one of the widely used global approximation models. Kriging
was firstly presented by [Krige (1951)]. And it was further developed by Matheron
(1963); Cressie (1992) and Stein (1999). Kriging approximation for deterministic
computer models were researched and used by Jones, Schonlau, Welch (1998);
Sacks, Welch, Mitchell, Wynn (1989); Santner, Williams, Notz, (2003); Mar-
tin, Simpson (2005) and Shahsavani, Grimvall (2009). And real-time simulation
models were studied and applied by Panda, Manohar (2008); De Munck, Moens,
Desmet, Vandepitte (2009); Han, Görtz, Zimmermann (2012) and Jia, Taflanidis
(2013). However, creating Kriging model will be expensive for a large number of
experiment data. Hence, fast construction should be researched so as to generate
an approximation model at a low cost. Sakata, Ashida, Zako (2004) proposed a fast
Kriging algorithm, which efficiently realizes Kriging approximation and optimiza-
tion with large-scale sampling data. Hartman, Hössjer (2008) presented a Gaus-
sian Markov random field, which can accelerate calculations and decrease memory
overhead for Kriging model with large data set.

In addition, a good experimental design method is also essential for fast Kriging
modeling. One-off experimental design is relatively straightforward, but it is in-
appropriate for the construction of Kriging model. It is time-consuming due to
large number of simulation evaluations, and it may result in the abnormal use of
the model when large-scale data needs to be sampled. Furthermore, it is difficult to
determine an appropriate sampling method because information or characteristic of
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original model can’t be obtained. Therefore, sequential experimental design may
be a good choice.

Li, Luo, Rong, Zhang (2013) established an adaptive Kriging model to improve the
computational efficiency and numerical accuracy in the approximation of design
functions. Zhao, Liu, Li, Yang, Chen (2013) employed moving Kriging interpo-
lation to improve the accuracy of the reliability analysis with a reasonable com-
putational cost. Boukouvala, Ierapetritou (2012) used Kriging model to analyze a
black-box process and developed an adaptive sampling strategy. Jin, Chen, Sud-
jianto, (2005) stated the sequential sampling, which allows engineers to control the
sampling process and is more robust and efficient than one-off sampling. Beers,
Kleijnen (2005) presented the customized sequential design for random simula-
tion experiments. Lin (2004) proposed a sequential exploratory experiment design
(SEED) method, which can generate new sampling data for Kriging model at each
step. The simplified and improved flowchart of SEED method is shown in Fig. 1.

For SEED method, Space-filling sampling (such as Latin Hypercube designs (L-
HD)) is used to generate initial sampling data and corresponding function evalua-
tion. The initial Kriging model will be created by DACE (Design and Analysis of
Computer Experiments) method [Søren N Lophaven, Hans Bruun Nielsen, Jacob
Søndergaard (2002)]. With the increase of sample obtained by error analysis, Krig-
ing model will be continuously updated till the model validation condition (sample
size or model accuracy) is met.

SEED is a stable and exact sequential experimental design. However, too much
time may be consumed in the sequential model construction process because Krig-
ing model should be rebuilt by all the sampling points in each update.

This paper, therefore, first puts forward a new method named IKM to fast update
a new Kriging model for global approximation. Furthermore, the SIED algorith-
m based on IKM is proposed to ensure the stability and effectiveness of Kriging
model. In the SIED algorithm, the optimal sampling data can be found by the valid
information of prior model. In the meantime, whether the parameter θ should be
recalculated can be determined in accordance with the update criterion. Once pa-
rameter θ remains unchanged, Kriging model will be updated by the IKM, or else,
the model should be recreated by DACE with all sampling data. Therefore, the key
idea of our proposed methods is that the IKM and the sequential experiment design
method are used to improve modeling efficiency and robustness at the cost of a
small loss of precision. These methods will be discussed in detail in the following
sections.

In this paper, at first, Kriging method and the derivation process of IKM are given
in Section 2. Next, the SIED method and some key issues are described in Section
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Figure 1: The flowchart of the SEED method.

3. Additionally, seven numerical tests and three engineering applications are used
to discuss the feasibility analysis of IKM, modeling efficiency and model accuracy
of the SIED method in Section 4 and 5. At last, conclusions are given in Section 6.

2 Incremental Kriging method (IKM)

2.1 Kriging model

Given a set of m design points X = [x1, ...,xm]
T with X ∈ ℜm×n and responses

Y = [y1, ...,ym]
T with Y ∈ ℜm×1, Kriging model is a combination of a polynomial

model and random process [Sasena (2002); Martin (2009)]:

Y (x) = Fβββ +Z(x), (1)

where vector Y (x) is the estimated function of interest. The matrix F (F ∈ ℜm×p)
is composed of regression function f (x) at the mknown observations. Weighting
coefficient βββ of the regression functions is a p-dimension vector. Characteristic of
the random process Z(x) can be described by:

E [Z(x)] = 0 and (2)

E [Z(x)Z(w)] = σ
2R(θθθ ,ωωω ,x), (3)

where σ2 is a process variance, θθθ is a correlation coefficient vector. R(θθθ , ωωω , x) is
a spatial correlation function model, which can be obtained by calculating Eq. (4)

R(θθθ ,ωωω,x) =
n

∏
i=1

Ri(θi,ωi− xi). (4)
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The smoothness of Kriging model, the differentiability of the surface and the im-
pact of nearby points can be controlled by R (θθθ , ωωω , x) after determining the corre-
lation of two observations. Søren N Lophaven et al. (2002) offer seven correlation
function models. Among them, the Gaussian correlation model has been widely
used because it can yield a continuous and smooth curve for two or more design
variables.

According to the analysis of Eqs. (1) ∼ (4), correlation matrix R (symmetric and
positive definite) and the design matrix F can be formulated by:

Rm×m =

 R(x1,x1), · · · R(x1,xm)
...

. . .
...

R(xm,x1), · · ·R(xm,xm)

 and Fm×p =

 f1(x1), · · · fp(x1)
...

. . .
...

f1(xm), · · · fp(xm)

 (5)

On the basis of the unbiased estimator theory, the regression problem Fβββ ≈ Y has
a generalized least squares solution [Cressie (1992)]

β̂ββ = (FT R−1F)−1FT R−1Y (6)

and a variance estimation

σ
2 =

1
m
(Y −Fβ̂ββ )T R−1(Y −Fβ̂ββ ). (7)

In the light of Eq. (4), the matrix R and thereby β̂ββ and σ2 are all dependent on
parameter θθθ , which is obtained by an unconstrained optimization [Søren Nymand
Lophaven, Hans Bruun Nielsen, Jacob Søndergaard (2002)] problem based on max-
imum likelihood estimation (MLE) theory, i.e., optimal value θθθ can be determined
by the maximization of

−(m lnσ
2 + ln |R|)/2. (8)

As a matter of fact, the best approximate curve may not be generated by the optimal
θθθ , in other words, as long as θθθ approaches the minimum, the approximation will
be well behaved. This is the reason why Hooke-Jeeves method (a local exploratory
algorithm) instead of those global exploratory algorithms is used for the optimal
process of θθθ .

Since the correlation matrix R is symmetric and positive definite, Cholesky factor-
ization of R should be introduced by

R = CCT , (9)

where C is a Cholesky factor. Let

F̃ = C−1F, Ỹ = C−1Y, (10)
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then Eq. (6) can be transformed into

β̂ββ = (F̃T F)−1F̃T Ỹ . (11)

Furthermore, in order to prevent an ill-condition R, “thin” QR factorization [Golub
and Van Loan (2012)] of F̃ is introduced by

F̃ = QGT . (12)

According to Eqs. (7), (11) and (12), one can finally get

GT
β̂ = Q

T
Ỹ (13)

and the variance estimator

σ
2 =

1
m

∥∥∥Ỹ − F̃β̂

∥∥∥2
. (14)

2.2 Incremental updating for Kriging model

Parameter set of Kriging model is mainly composed of parameters θθθ , βββ and σ2

[Søren Nymand Lophaven et al. (2002)]. In general cases, Kriging model can be
constructed as long as value θ and observations can be obtained by optimization
and sampling. However, computational cost of the optimization process should be
considered for Kriging modeling. Thus, the IKM is used to efficiently reduce the
frequency of using the optimization process by employing constant parameter θ .
Advantages of the method will be better showed with the continuous increase of
new data points. The specific derivation process of IKM can be stated as follows.

The data sets of new Kriging model are given by

X =[X0∆∆∆XXX ]T , Y=[Y0∆Y ]T , F =[F0∆∆∆FFF ]T , (15)

where, X0, Y0 and F0 are the data sets of prior Krigng model, and ∆∆∆X, ∆Y and ∆∆∆F
are the new ones obtained by adding new design points. It is necessary to ensure
that the increased data sets only have a slight impact on the changing of parameter
θθθ (it is deemed to be a fixed value, or else, IKM is invalid).

Furthermore, Cholesky factorization of new correlation matrix R is given by

R =

[
R0 L
LT ∆R

]
= CCT =

[
C1 0
C2 C3

][
CT

1 CT
2

0 CT
3

]
=

[
C1CT

1 C1CT
2

C2CT
1 C2CT

2 +C3CT
3

]
, (16)

where correlation matrix L and ∆R can be calculated by Eq. (4). R0 =C0CT
0 and

Eq. (16) are used to determine C1, C2 and C3 of R:
C1 = C0

C2 = LT C−T
0

C3 = ∆C
, (17)
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where ∆C is Cholesky factor of (∆R−C2CT
2 ), then the inverse of lower triangular

matrix C for Eq. (16) is easily obtained by

C−1 =

[
C−1

0 0
N ∆∆∆C−1

]
, N =−∆∆∆C−1C2C−1

0 . (18)

In addition, by using Eq. (10), the matrix F̃ and Ỹ are expressed as

Ỹ = C−1Y =

[
C−1

0 0
N ∆C−1

][
Y0
∆Y

]
=

[
Ỹ0
∆Ỹ

]
, ∆Ỹ = NY0 +∆C−1

∆Y (19)

and

F̃ = C−1F =

[
C−1

0 0
N ∆C−1

][
F0
∆F

]
=

[
F̃0

∆F̃

]
, ∆F̃ = NF0 +∆C−1

∆F. (20)

The “thin” (or “economy size”) QR factorization of F̃ can be computed by

F̃ =

[
F̃0
∆F̃

]
= QGT =

[
Q1
Q2

]
GT . (21)

In accordance with Eq. (21), F̃0 and ∆F̃ are expressed as

F̃0 = Q1GT , ∆F̃ = Q2GT , (22)

one can get GT =GT
0 and Q1=Q0 because of the uniqueness of QR factorization.

The corresponding Q can be described as

Q =

[
Q0
∆Q

]
, (23)

where ∆Q is QR factorization of ∆F̃:

∆F̃ = ∆QGT
0 . (24)

Thus, the estimator of parameter βββ is equivalent to the solution of

GT
0 β̂ββ = QT Ỹ = [QT

0 ∆QT ]

[
Ỹ0
∆Ỹ

]
= QT

0 Ỹ0 +∆QT
∆Ỹ = GT

0 β̂ββ 0 +GT
0 ∆β̂ββ . (25)

Arrangement for Eq. (25) is shown as

β̂ββ = β̂ββ 0 +∆β̂ββ . (26)
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In Eq. (26), β̂ββ is generalized least squares estimate of regression coefficient for a
new model. Meanwhile, MLE of the variance σ2 is calculated from Eq. (14) and
Eq. (26):

σ
2 =

1
m

∥∥∥Ỹ − F̃(β̂ββ 0 +∆β̂ββ )
∥∥∥2

. (27)

There is no need for IKM to obtain a new Cholesky factor by decomposing new cor-
relation matrix R because it can be gained from Eq. (16). When we only introduce
a new sampling point each time, Eq. (16) should be simplified into

R =

[
R0 r(θθθ ,ω,x)

rT (θθθ ,ω,x) 1

]
, (28)

where vector r(θθθ , ω , x) is acquired from Eq. (4). According to Eq. (16) and Eq.
(28), C1, C2 and C3 of R can be easily expressed as

C1 = C0

C2 = rT C−T
0

C3 = 1− rT R0r
. (29)

Constant parameter θθθ is a prerequisite for us to finish the solution of relative pa-
rameters. Fortunately, computational time of IKM can be almost ignored when we
only add one point to the last sampling data. How to obtain an optimal sampling
point and when to use IKM will be discussed in Section 3.

3 Sequential Incremental Experimental Design (SIED) algorithm

3.1 SIED flow

We present a new method named sequential increment experimental design algo-
rithm (SIED), which mainly integrates the IKM, sampling criterion and update cri-
terion. The flowchart of SIED method is shown in Fig. 2. Specific steps are
described as follows.

Step 1: Initial experiment design. LHD (a space-filling experiment design) is
adopted to obtain initial sampling points, and the corresponding responses are e-
valuated by some function or real-time simulation. In order to ensure the stability
and uniformity of the spatial distribution, we will employ a reasonable number of
sampling points to create an initial Kriging model.

Step 2: Initial modeling. Initial Kriging model will be created by the DACE
method.
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Step 3: Model validation. If the validation condition is met, the modeling process
will be terminated, otherwise, the next step will be executed. In general, we hope
the model accuracy can be chosen as a validation method. However, in order to
reasonably account for the effect and advantage of the presented method, a suit-
able sample number will be selected as the stopping criterion through synthetically
considering model dimensionality, accuracy, running time and computer power.

Step 4: Optimal sampling. One of the aims in this paper is to employ an efficient
optimal sampling criterion, in which MSE information from the prior Kriging mod-
el is used as a guide to identify a new sampling point. Specific description will be
discussed in Section 3.2.1.

Figure 2: The flowchart of the SIED algorithm.

Step 5: Update criterion. Update criterion can decide which method (the IKM or
DACE method) will be used to recreate Kriging model. Specific definition and
expression will be shown in Section 3.2.2.

Step 6: DACE modeling. If the update criterion is met, the DACE method will be



332 Copyright © 2014 Tech Science Press CMES, vol.97, no.4, pp.323-357, 2014

used to rebuild Kriging model, and then go back Step 3.

Step 7: IKM Modeling. If the rule can’t be satisfied, the IKM will be used to
reconstruct Kriging model with the current parameter θ . Specific process has been
discussed in Section 2.2. And then go back Step 3.

Next, some key points of the SIED algorithm will be discussed in details.

3.2 Key issues of the SIED algorithm

3.2.1 Optimal sampling criterion based DIRECT

In optimal sampling process, the allocation of new data points is affected by two
factors: one is to make the points “spread over” the design space as evenly as pos-
sible, and the other is to locate the points in regions with large prediction errors.
Therefore, three methods may be adopted to obtain new sampling data for Kriging
model in sequential optimal sampling. Maximum entropy principle proposed by
Currin, Mitchell, Morris and Ylvisaker (1991) is used to develop computer experi-
ment designs. Similarly, Maximum MSE design and integral MSE (IMSE) design
are applied to some deterministic computer experiments by Sacks et al. (1989).

For maximum entropy sampling, the designers tend to add new points which are as
far away from current points as possible, but information of the response values is
not taken into account in the decision-making process. To this extent, the method is
not flexible because it does not affiliate to specific simulations or function. We ex-
pect a sampling method may locate one or more new data that are believed to yield
maximum potential information from prior observations or Kriging model. Maybe,
both maximum MSE and minimum IMSE are good choices. Their optimization
procedures are similar except that IMSE increases a weight function and an inte-
gral process. Therefore, the maximum MSE design is finally chosen as optimal
sampling criterion by overall consideration.

For Kriging model, definition of the estimated MSE [Martin and Simpson (2005)]
is written as

ϕ(x) = MSE[Y (x)] = σ
2
{

1− [f(x)T r(x)T ]

[
0 FT

F R

][
f(x)
r(x)

]}
. (30)

The corresponding sampling criterion can be expressed by

find x
maximize ϕ(x) , (31)

where, ϕ(x) is the estimated MSE at point x. More potential and useful information
can be gathered from the prior Kriging model by seeking Maximum MSE. Further-
more, correlation function r(x) of Eq. (30) is relevant with the distance between
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the new sampling point and the prior sampling data. Therefore, the new sampling
point will be uniformly distributed in the whole design space.

Optimal sampling process is a sequential exploring process until the optimal sam-
pling point is found. To make the MSE have a global and rapid convergence, DI-
RECT algorithm (an efficient global optimization algorithm) discussed by Jones
(2001) will be used to obtain global optimal value. DIRECT method will be ter-
minated once the constraint |ϕ(i)- ϕ(i−1)| < 0.001 is met in the process of five
consecutive iterations.

There are two merits associated with this sampling strategy:

(1) Each of new sampling data may be the best choice for model accuracy;

(2) With the continuous increase of new sampling points, the accuracy will go
downhill quickly.

3.2.2 Update criterion

In initial phase of modeling, the addition of a new sampling point with maximum
MSE may have a big impact on parameter θθθ . However, with the continuous in-
crease of the new sampling points, the stability of parameter θθθ will become better
and better. When the number of samples is up to a certain extent, parameter θθθ tends
to keep a relatively steady state. In this case, even if there is a slight change for the
value of θθθ , there is only a small effect on Kriging model accuracy. Therefore, how
to introduce a suitable update criterion in the SIED algorithm to determine whether
parameter θθθ need an updating is the problem we are going to solve.

The six sigma principle is considered as an evaluation strategy that employs con-
tinuous probabilistic methods and statistical techniques to judge and improve pro-
duction quality. Jones et al. (1998) used the criteria to implement leave-one-out
cross-validation for Kriging. It is believed that the Kriging model was approxi-
mately 99.7% confident if the target value lies in the confidence interval using the
mean prediction to add and subtract triple standard error. Therefore, the evaluation
principle will be adopted as the update criteria of SIED algorithm.

The purpose of using the update criterion is to use the current Kriging model to
effectively guide or judge whether the next real response value will lie in the confi-
dence interval (using the mean prediction to add and subtract triple standard error)
or not. If the response value lies in the interval, keep θθθ unchanged, otherwise,
update θθθ .

Given the current Kriging model obtained by k sampled points, a new sampling
point (xk+1,yk+1) with maximum MSE S2(xk+1) gained by the optimal sampling
criterion, and the current model predictionŷkcalculated by Eq. (1), then the update
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criterion is described as following according to the six sigma evaluation criteria:

URk+1 =

∣∣∣∣yk+1− ŷk

S(xk+1)

∣∣∣∣> 3. (32)

If the inequality (32) is met, it means that URk+1 does not lie in the interval [-3,
+3], i.e., (xk+1,yk+1) is invalid and unsuitable for the current model, then we should
reconstruct Kriging model by DACE method. Or else, we only need rebuild this
model by IKM.

This update criterion has some randomness. After a great deal of experiments,
the probability that the update criterion lying in the interval [-3, +3] is quite low
in the initial stage. But there still exists some sampling points which can meet the
required criterion. When total sample achieves a certain number, URk+1 probability
lied in [-3, +3] is almost one hundred percent, but the sampling data which can’t
be met still exist in some cases. In summary, the influence of parameter θθθ is nearly
ignored with increasing the new sampling data, which will save more modeling
time because of greater use of IKM.

4 Numerical tests

In section 3, The SIED method has been discussed. But its feasibility, time spent
and accuracy need be further checked and tested for different dimensions of prob-
lems. The validation and comparison process for every test function or engineering
application and can be simply stated as follow.

1. Initial sampling points obtained by LHD (Latin Hypercube Design) are used
to build initial Kriging model.

2. New sampling point will introduced to sampling data set by optimal sampling
criterion and updated rule of SIED or SEED one by one till total sample
reaches a certain amount.

3. Visualization of functional relationship between the number of new sampling
points and the norm of parameter θθθ obtained by SEED method is built to
illustrate the feasibility of IKM in SIED.

4. Accumulated time spent (unit of time: second) on SIED and SEED can be
got from executive program and will be compared to illustrate the advantage
of SIED method.

5. Accuracy (RMSE) of the approximate models obtained by SIED method will
be compared with those of LHD (only for engineering application) and the
SEED method under the same conditions.



An Incremental Kriging Method for Sequential Optimal Experimental Design 335

All tests are performed in Matlab 2011a by a Dell machine with i3-2120 3.3GHz
CPU and 2GB RAM. It is noted that changing trends of each element in θ is almost
the same as that of its norm after a great deal of experiments. So we will no longer
discuss the trend of each element in θθθ .

4.1 One-dimensional problems

As a simplest test problem, the function which is multi-peaked, continuous and
smooth is chosen as follow:

f (x) = sin(0.02x)× cos(0.2(x+25))× cos(0.1(x+50)), x ∈ [0,100]

Four points are sampled by LHD to build initial Kriging model, and new sampling
points will be continually added till total sample number reaches 1,000 for SIED
and SEED.

Figure 3: Functional relationship between the number of new sampling points and
the norm of θθθ for the one-dimensional problem in SEED.

Using SEED method, Fig. 3 shows the functional relationship between the number
of new sampling points (excluding initial sampling points) and norm of θθθ . In the
beginning, change of the norm is drastic, but it gradually becomes slow and ap-
pears many constant values in big sampling intervals. It reasonably describes the
feasibility of IKM in SIED.
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Figure 4: Results on accumulated time spent of the SIED algorithm and the SEED
method for the one-dimensional problem.

Figure 5: Results on model accuracy of the sequential sampling based on LHD, the
SIED algorithm and the SEED method for the one-dimensional problem.
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Computational time of the SIED algorithm and the SEED method is shown in Fig.
4. Firstly, initial time spent based on initial LHD is equal for SIED and SEED. Next,
accumulated time spent of SIED is compared with that of SEED when accumulat-
ed total number of sampling points (including initial sampling point) respectively
reaches 50, 100, 300, 500 and 1,000. It is obvious that computing time of SIED is
far less than that of SEED, especially for the later stage, time spent of the SIED has
been significantly reduced by approximately ninety percent. It has commendably
validated the modeling efficiency of SIED.

Results of models accuracy (natural logarithm of RMSE) on the sequential sam-
pling based on LHD, the SEED method and the SIED algorithm are showed in
Fig. 5. It is unnecessary to describe initial model accuracy based on initial LHD
because they are equal for SIED, SEED and the sequential sampling based on L-
HD. Therefore, the same accumulated sampling-point numbers (i.e., 50, 100, 300,
500 and 1,000) are chosen to have on accuracy comparison. It is clear that the
changing trends of precision are gradually decreasing and slowing. At the 1,000th

sampling point, the accuracy (6.8000e-009) of the SEED method is the highest, and
that (8.0496e-009) of LHD is the lowest. But the model accuracy (6.8206e-009) of
the SIED algorithm is quite close to that of the SEED method, which means that
it only has a little accuracy loss for the SIED algorithm. It is worth noting that
different modeling method will not produce too much precision variation for one-
dimensional problem with a large number of observations.

4.2 Two-dimensional problems

Four test functions: Goldstein and Price function, Schaffer function, Six-hump
camel-back function and Himmelblau function are chosen as follows.

(1) Goldstein and Price Function

f (x1,x2) =
(
1+(x1 + x2 +1)2(19−14x1 +3x2

1−14x2 +6x1x2 +3x2
2)
)

×
(
(30+(2x1−3x2)

2(18−32x1 +12x2
1 +48x2−36x1x2 +27x2

2)
)
, x1,2 ∈ [−2,2]

(2) Schaffer Function

f (x1,x2) = 0.5+
sin2

(√
x2

1 + x2
2

)
−0.5(

1+0.001
(
x2

1 + x2
2

)) , x1,2 ∈ [−2,2]

(3)Six-hump Camel-Back Function

f (x1,x2) = 4x2
1−2.1x4

1 +
1
3

x6
1 + x1x2−4x2

2 +4x4
2, x1,2 ∈ [−2,2]
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(4)Himmelblau function

f (x1,x2) = (x2
1 + x2−11)2 +(x1 + x2

2−7)2, x1,2 ∈ [−6,6]

To illustrate these test problems, ten sampling points respectively obtained by LHD
will be employed to build initial Kriging model. SIED and SEED will be terminated
when the total number of sample arrive at 2,000 points. Hence, 1,990 vector θθθ will
be obtained by the SEED method, the specific changing conditions of their norm
for each of the test functions have been shown in Fig. 6 and Fig. 7. The oscillation
processes are terminated soon and quickly converge to relatively fixed values. So
the use of IKM in SIED will be adaptive to enhance modeling efficiency since there
are many constant intervals for θθθ .

Accumulated time consumptions of the SIED algorithm and the SEED method
for the four functions are plotted in Fig. 8. Schaffer function spends the most
time (about 5.2453e+4 s), and other three functions (Goldstein and Price func-
tion, Six-hump camel-back function and Himmelblau function) cost relatively less
time (about 2.5561e+04 s, 2.6046e+04 s and 2.4116e+04 s) in the SEED. But in
the SIED, Schaffer function and other three functions only spend about 8034.6e
s, 3431.5 s, 3389.5 s and 2691.3, respectively. Percentage rates for time spent
are respectively 84.75%, 86.58%, 86.99% and 88.84% descent. And the rates will
be further increased with the argument of sampling data. There is no doubt that
the SIED algorithm economizes more modeling time in contrast with the SEED
method.

Results of model accuracy on the SEED method, the SIED algorithm and LHD
based on the sequential sampling are shown in Fig. 9. Model accuracy based on
the LHD is visibly less than these of the SEED and the SIED. Average decline
rates of accuracy for the SIED are respectively 4.87%, 3.22%, 3.11% and 8.99% in
comparison with that of the SEED. It illustrates that loss of accuracy in the SIED
algorithm is acceptable.

4.3 Multi-dimension problems

A slice function and a nine-dimensional function are shown as follows.

f (x1,x2,x3) = x1e−(x
2
1+x2

2+x2
3) , x1,x2,x3 ∈ [−2,2]

f (x) =−0.5(x1x4− x2x3 + x3x9− x5x9 + x5x8− x6x7)
xi ∈ [−10,10] (i = 1, ...,8) and x9 ∈ [0,20]

Twenty-one and sixty-five sampling points are obtained to build initial Kriging
models for slice and the 9-D function. For SIED and SEED, new sampling points
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Figure 6: Functional relationship between the number of new sampling points and
the norm of θθθ for the four the Goldstein Price and Six-hump Camel-Back function
in SEED.

Figure 7: Functional relationship between the number of new sampling points and
the norm of θθθ for Schaffer function and Himmelblau function in SEED.
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Figure 8: Results on accumulated time spent of the SIED algorithm and the SEED
method for the four functions.

will be introduced till total numbers respectively reach 2,000 and 1,000. In this
case, variation tendency for norm of θθθ in SEED are displayed in Fig. 10 and
Fig.11. The changing trends in Fig. 10 are from quick to slow, and finally converge
to a fixed value. There is only a drastic change for θθθ between 550 and 610 new
sampling points in Fig. 11. So employing the IKM of SIED for multi-dimension
problem is more suitable for global approximation.

For the two functions, results on accumulated time spent and model accuracy of the
SIED, the SEED and LHD are shown in Fig. 12, Fig. 13, Fig. 14 and Fig. 15. It
is clear that computational time and model accuracy are both applicable for SIED,
i.e., the accuracy obtained by the SIED algorithm is close to the one obtained by the
SEED method, but its computing time is far less than that of SEED. Unfortunately,
convergence speeds of the accuracy for the multi-dimension functions, especially
for the 9-D function, are comparatively slow.
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Figure 9: Results on model accuracy of the sequential sampling based on LHD, the
SIED algorithm and the SEED method for the four test functions.

5 Engineering applications

5.1 two-bar truss

Model of the symmetric two-bar truss shown in Figure 16 has been approximately
built by Balling and Clark (1992). The aim is to minimize the weight of truss
system. Here we mainly consider the model approximation problem based some
constraints. Given the load P = 33,000 lbs, the distance B = 30 in between the
supports, the cross section wall thickness t = 0.1 in, Young’s modulus E = 3e7
psi, density ρ= 0.3 lbs/in3, and yield stress σy= 60,000 psi. There are two design
variables—mean tube diameterx1 (D) and height x2 (H) of the truss.

The problem can be stated as

f (x1,x2) = 0.1885x1

√
900+ x2

2,
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Figure 10: Functional relationship between the number of new sampling points and
the norm of θθθ for slice function in SEED.

Figure 11: Functional relationship between the number of new sampling points and
the norm of θθθ for the nine-dimensional function in SEED.
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Figure 12: Results on accumulated time spent of the SIED algorithm and the SEED
method for slice function.

Figure 13: Results on model accuracy of the sequential sampling based on LHD,
the SIED algorithm and the SEED method for slice function.
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Figure 14: Results on accumulated time spent of the SIED algorithm and the SEED
method for the nine-dimensional function.

Figure 15: Results on model accuracy of the sequential sampling based on LHD,
the SIED algorithm and the SEED method for the nine-dimensional function.
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Figure 16: A two-bar truss.

subject to

0.5 in≤ x1 ≤ 5 in

5 in≤ x2 ≤ 50 in

g1(x1,x2) =
2.9609×108(x2

1 +0.01)
7200+8x2

2
−

33000
√

900+ x2
2

0.3142x1x2
≤ 0

g2(x1,x2) = 60000−
33000

√
900+ x2

2

0.3142x1x2
≤ 0

.

Determination of initial sampling data is the same as Section 4.2. Total number
of sample is terminated at 2,000 observations for SIED and SEED. Fig. 17 shows
parameter θθθ has a big fluctuation only between 187th and 211th sampling points,
and a constant value is always kept in other sampling intervals in SEED. The ac-
cumulated computing time and RSME of the models are respectively compared in
Fig.18 and Fig. 19. All results prove the SIED algorithm is efficient and robust for
the global approximation of two-bar truss.



346 Copyright © 2014 Tech Science Press CMES, vol.97, no.4, pp.323-357, 2014

Figure 17: Functional relationship between the number of new sampling points and
the norm of θ for the two-bar truss problem in SEED.

Figure 18: Results on accumulated time spent of the SIED algorithm and the SEED
method for the two-bar truss problem.
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Figure 19: Results on model accuracy of the SIED algorithm and the SEED method
for the two-bar truss problem.

Figure 20: A five-bar planar truss.
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5.2 Five-bar planar truss

A five-bar planar truss shown in Figure 20 is a scaled-down version of the ten-bar
planar truss problem. It has been studied by Sobieszczanski-Sobieski, Barthelemyy
and Riley (1982). The aim is to minimize the weight of truss system subject to
constraints that the stress in each bar be less than σa. A load (P = 100 kips) is
applied at node (2). Five-bar lengths can be seen or calculated by L =360 in. Set
Young’s Modulus E =1.0E7 psi, density ρ=0.1 lbs/in3, and allowable stress σa =±
25,000 psi. Five design variables (x1, x2, x3, x4, x5) are the cross sectional areas of
each bar.

The problem is expressed as

f (xxx) = 36(x1 + x2 + x3 +
√

2(x4 + x5))

subject to

0.1 in2 ≤ x1,2,3,4,5 ≤ 10 in2 and −25000 psi≤ σi ≤ 25000 psi, i = 1, ...,5

Figure 21: Functional relationship between the number of new sampling points and
the norm of θ for the five-bar planar truss problem in SEED.

Thirty-three sampling data is chosen for initial model in SIED and SEED. Sequen-
tial construction of model is terminated at 2,000 observations. Fig. 21 shows that a
big fluctuation for θθθ is only appeared in initial 50 new data points in SEED. Results
on accumulated time consumption and RMSE are respectively appeared in Fig. 22
and Fig. 23. It turns out that the SIED algorithm is also applicable for five-bar
planar truss.
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Figure 22: Results on accumulated time spent of the SIED algorithm and the SEED
method for the five-bar planar truss problem.

Figure 23: Results on model accuracy of the SIED algorithm and the SEED method
for the five-bar planar truss problem.
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5.3 A black-box approximate model of cycloid gear pump

Cycloid gear pump [Fabiani et al. (1999)] is composed of the inner rotor and the
outer rotor, the front cover, the back cover and the shell. The sketch of cycloid
gear pump is shown in Fig. 24. W1 and W1’ are two symmetrical meshing points
between two sides of some tooth of the inner rotor and two teeth of the outer rotor
when the inner and outer rotors have the minimum area. W2 and W2’ are also two
meshing ones between the two teeth of the inner rotor and the two sides of the outer
rotor when the area is maximized. The four points are the theoretical reference po-
sitions, according to the tooth curves of cycloid gear pump and engagement theory,
theoretical value [Mao, Li, Hu, Liu and Wang (2005)] of the closed-line angles can
be calculated by

α0 = cot−1

cot
π

z2
+

e
Rsin( π

z2
)
[1− az1√

R2 +(ez2)2 +2ez2Rcos( π

z2
)−a

]


and

β0 = tan−1

Rsin
π

z2
/[Rcos

π

z2
+ e(

az1√
R2 +(ez2)2−2ez2R(cos π

z2
)−a

−1)]


where z1 and z2 are the number of teeth of inner and outer rotors; e is the center
distance of the inner and outer rotors; R is the addendum circle radius of outer rotor;
and a is tooth profile circle radius of the outer rotor. Theoretically, α1=α2=α0,
β 1=β 2=β 0, but the actual situation is not so because the inertia of the fluid must be
taken account.

In order to increase actual flow, for α0 side (having a big oil cavity), we should turn
off oil inlet cavity later so that more oil is entered (i.e., α0 >α1); considering that
throttling, we should turn on the oil outlet cavity in advance (α0 >α2). Likewise,
for β 0 side (having a small oil cavity), since the sealing zone is very small, the
width of the sealing zone should be increased, therefore, we expect opening size
(β 1) of the oil inlet cavity and closing size (β 2) of the oil outlet cavity are both
slightly larger than β 0. The actual flow will be directly affected by changing of the
four meshing angles.

According to the above analysis, we should create such a model: α1 -α0 , α2 -α0 ,
β 1-β 0 and β 2-β 0 are defined as four input variables x1, x2, x3, x4. Meantime, actual
flow is defined as output variable yin the case of a fixed rotation speed (3000r/min).
In actual simulation, the four input variables only have small changes. When x1,
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Figure 24: The sketch of cycloid gear pump.

x2 >0˚ and x3, x4 <0˚, it is unrealistic for a counterclockwise rotation pump to
improve volumetric efficiency; when x1, x2 <-1.5˚ and x3, x4 >1˚, it is also inap-
propriate to enhance it because this will cause the oil chamber at α0 side have a
poor sealing, which makes oil from the high pressure zone directly leak to a low
pressure area, or reduces the total amount of inlet and outlet oil at β 0 side. So
domains of the four input variables are given: x1, x2 ∈[-1.5˚, 0˚], x3, x4 ∈[0˚, 1˚].

For the SIED algorithm, twenty-nine initial input variables with LHD are firstly
obtained; and then, according to the inner flow field model (Fig. 25) of a cycloid
gear pump, objective evaluations (actual flow) are obtained by using PumpLinx
simulation. Initial Kriging model in SIED and SEED will be constructed by DACE
method. Finally, model global construction processes are terminated at the 2000th

sampling point.

Fig. 26 shows that parameter θθθ is tending towards stability when the number of new
sampling data reaches 875. The results on accumulated time spent and precision of
the SIED and the SEED are showed in Fig. 27 and Fig. 28, respectively.

An untried design point [x1, x2, x3, x4] = [-1.12˚, -0.63˚, 0.71˚, 0.34˚] is employed
to obtain actual flow y(y=2.6300 L) and estimate flow ŷ(ŷ=2.6287 L). So the RMSE
of yandŷ is 0.08268, which basically meet the realistic requirements. At the same
time, it illustrates the stability and effectiveness of the SIED algorithm. All results
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Figure 25: Inner flow field of a cycloid gear pump.

Figure 26: Functional relationship between the number of new sampling points and
the norm of θθθ for inner flow field model of the cycloid gear pump in SEED.
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showed it was appropriate to use SIED to improve actual flow of a cycloid gear
pump by slightly reducing α1, α2 or increasing β 1, β 2 in the case of constant
revolving speed.

Figure 27: Results on accumulated time spent of the SIED algorithm and the SEED
method for the inner flow field model of cycloid gear pump.

Figure 28: Results on model accuracy of the SIED algorithm and the SEED method
for the inner flow field model of the cycloid gear pump.
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6 Conclusions

This paper investigates and verifies the SIED algorithm for global Kriging approxi-
mation with. It is worth noting that the SIED method based on IKM is employed to
ensure efficiency, stability and accuracy of global Kriging model. In addition, the
feasibility of the presented methods is validated by seven test functions and three
engineering examples. From the results, we can draw the following conclusions.

Table 1: Modeling time of IKM and the DACE method by using different numbers
of sampled points for the five-bar planar truss problem

Add a sample Type Time IKM DACE
From 99 to100 Modeling Time (s) 0.004549 0.1286

From 299 to 300 Modeling Time (s) 0.008761 0.7437
From 499 to 500 Modeling Time (s) 0.02058 2.5281
From 999 to 1000 Modeling Time (s) 0.06038 10.1873
From 1999 to 2000 Modeling Time (s) 0.2046 46.0460

1. Time cost for construction of Kriging model in SIED is mainly affected by
Cholesky factorization of R. However, IKM can efficiently reduce the time
consuming because it is unnecessary to solve Cholesky factor again.

2. Compared with the DACE method, modeling time of IKM of SIED is al-
most ignored without considering the sequent sampling process. Such as the
five-bar planar truss problem, modeling time (only adding a new sampling
point) of IKM and the DACE method is compared in Table 1. When sample
number increases from 99 to 100, it costs 0.0148 s to build Kriging model
by DACE, but it takes only 0.0045 s to do it by IKM. The advantage may be
not obvious. However, DACE modeling time increase to 46.0406 s, and IKM
only increase to 0.2046 s when sample number increases from 1999 to 2000.
This is why IKM is used to enhance modeling efficiency in SIED.

3. Maximum MSE sampling criterion is more uniform and effective than LHD
in the whole domain. Seen from RMSE, convergence effect for maximum
MSE sampling criterion is better than LHD, and model accuracy is also high-
er than it.

4. Update criterion may be effective to weigh the update efficiency and model
precision in the early days of the SIED algorithm. However, parameter θθθ
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usually maintains a constant value when number of sample reaches a cer-
tain level, in this case, the effect of update criterion for model precision is
greatly diminished, which is why accuracy of the SIED algorithm is almost
equivalent to that of the SEED method in later period of sequential sampling.

As an additional discussion, the more effective algorithm based on IKM may be
researched by adding multiple sampling points each time in the SIED algorithm.
The computational cost may be further reduced, but it is inevitable to face the dif-
ficulties and complexity of these problems.
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