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Forced Vibrations of a System Consisting of a Pre-strained
Highly Elastic Plate under Compressible Viscous Fluid

Loading

S. D. Akbarov1,2 and M. I. Ismailov3

Abstract: The forced vibration of the system consisting of the pre-stretched
plate made of highly-elastic material and half-plane filled by barotropic compress-
ible Newtonian viscous fluid is considered. It is assumed that this forced vibration
is caused by the lineal located time-harmonic force acting on the free face plane
of the plate. The motion of the pre-stretched plate is written by utilizing of the
linearized exact equations of the theory of elastic waves in the initially stressed
bodies, but the motion of the compressible viscous fluid is described by the lin-
earized Navier-Stokes equations. The elastic relations of the plate material are
described with the use of the harmonic potential. Moreover, it is assumed that the
velocities and stresses of the constituents are continuous on the contact plane be-
tween the plate and fluid. The dimensionless parameters which characterize the
compressibility, viscosity of the fluid and elastic constants of the plate material are
introduced. The plane strain state in the plate is considered and the corresponding
boundary- and contact-value problem is solved by employing exponential Fouri-
er transformation with respect to the coordinate directed along the interface line
and the inverse of this transformation is determined numerically by employing the
Sommerfeld contour. Numerical results on the interface stresses and velocities and
the influence of the problem parameters such as initial strains and thickness of the
plate, the compressibility and viscosity of the plate, as well the magnitude of the
frequency of the external forces on these results are presented and discussed. Nu-
merical results are examined in the case where the fluid is Glycerin and the values
of the elastic constants which enter into the mentioned above harmonic potential
and the density of the plate material are taken as Lame’s constants and density of
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the Plexiglass (Lucite).

Keywords: initially strained plate, compressible viscous fluid, plate-fluid inter-
action, forced vibration.

1 Introduction

Investigations of problems related to the dynamics of plate-fluid interaction have
great significance in the theoretical and application sense in aerospace, nuclear,
naval, chemical and biological engineering. The first attempt in this field was made
by Lamb (1921) in which vibration of a circular elastic “baffled” plate in contact
with still water were considered. It was assumed that this plate is clamped all
around and placed in a matching circular aperture within an infinite rigid plane wall.
The investigations were made by the use of the so-called “non-dimensional added
virtual mass incremental” (NAVMI) method, according to which, it is assumed that
the modes of vibration of the plate in contact with still water are the same as those
in a vacuum, and the natural frequency is determined by the use of the Rayleigh
quotient. In this case it is supposed that the squares of the natural frequencies of
the plate are equal to the ratio between the maximum potential energy of the plate
and the sum of the kinetic energies of both the plate and the fluid. Later this method
was employed in many related investigations such as in papers by Kwak and Kim
(1991), Fu and Price (1987), Zhao and Yu (2012) and in many others listed in these
papers. Up to now there are also the investigations carried out without employing
the NAVMI method. For instance, in a paper by Tubaldi and Armabili (2013)
the vibration and stability of the rectangular plate immersed in axial liquid flow
was studied without employing the NAVMI method, and the Galerkin method was
applied to determine the expression of the flow perturbation potential. Then the
Rayleigh-Ritz method was used to discretize the system.

Investigations carried out in a paper by Charman and Sorokin (2005) and others list-
ed therein were also made without employing the NAVMI method. Note that in this
paper the forced bending vibration of an infinite plate in contact with compressible
(acoustic) inviscid fluid, where this fluid occupies a half-plane (half-space), was
considered. This paper gives asymptotic analyses of the sound and vibration in the
metal plate and compressible inviscid fluid system.

The other aspect of investigations related to the plate-fluid interaction regards wave
propagation problems. Investigations carried out in a paper by Sorokin and Chu-
binskij (2008) and others listed therein can be taken as examples of this. It should
be noted that before this paper the problems of time harmonic linear wave propa-
gation in elastic structure-fluid systems were investigated within the framework of
the theory of compressible inviscid fluid. A list of these studies and a review is
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given in the aforementioned paper by Sorokin and Chubinskij (2008). At the same
time, the role of fluid viscosity in wave propagation in the plate-fluid system was
first investigated in this paper. However, in this paper and all the papers indicated
above, the equations of motion of the plate were written within the scope of the
approximate plate theories by the use of various types of hypotheses such as the
Kirchhoff hypotheses for plates. Consequently, the use of the approximate plate
theories in these investigations decreases significantly the analyzed range of wave
modes and their corresponding dispersion curves. It is evident that in many cases
(for instance, in the cases where the wave length is less significant than the thick-
ness of the plate) more accurate results in the qualitative and quantitative sense, can
be obtained by employing the exact equations for describing plate motion. More-
over, in the foregoing investigations (except the paper by Zhao and Yu (2012)) the
initial strains (or stresses) in plates, which can be one of their characteristic par-
ticularities, are not taken into account. These two characteristics, namely the use
of the exact equations of plate motion and the existence of initial stresses in the
plate are taken into consideration in a paper by Bagno et al. (1994) and others, a
review of which is given in a survey paper by Bagno and Guz (1997). Note that
in these papers, in studying wave propagation in pre-stressed plate + compressible
viscous fluid systems, the motion of the plate was written within the scope of the
so-called three-dimensional linearized theory of elastic waves in initially stressed
bodies (TLTEWISB). However, the motion of the viscous fluid was written with-
in the scope of the linearized Navier-Stokes equations. Detailed consideration of
related results was made in the monograph by Guz (2009).

However, up to now within this framework there is not an investigation related
to the forced vibration of the pre-strained plate + compressible viscous fluid sys-
tem. In the present paper the attempt is made in this field and two-dimensional
(plane-strain state) problem on the forced vibration of the pre-strained plate made
of highly-elastic material + compressible viscous fluid system is studied. The mo-
tion of the plate is described by utilizing of the TLTEWISB, and the motion of the
fluid by utilizing of the linearized Navier-Stokes equations. Numerical results on
the velocity and stress distributions on the plate-fluid interface and the influence
of the problem parameters such as initial strains of the plate, the thickness of the
plate, the frequency of the external force etc. on these distributions are presented
and discussed. These results are obtained in the case where the fluid is Glycerin
and the values of the elastic constants which enter into the mentioned above har-
monic potential and the density of the plate material are taken as Lame’s constants
and density of the Plexiglass (Lucite). Consequently, in the case where the initial
strains is absent in the plate the numerical results relate to the hydro-elastic system
consisting of the Plexiglass and Glycerin.
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Note that corresponding problems related to the pre-strained plate + elastic half-
space were studied in papers by Akbarov (2006 a, b, 2013a) Akbarov and Guler
(2007), Akbarov et al (2005), Akbarov and Ilhan (2009, 2010), Akbarov et al
(2013) and Emiroglu et al (2009).

2 Formulation of the problem and governing field equations

Consider a system consisting of an initially stretched plate-layer which is in contact
with the half-space occupied by the compressible Newtonian viscous fluid (Fig.1).
Assume that the thickness of the plate in the natural state (i.e. before the initial
stretching of that) is h. We consider separately the governing field equations for the
plate-layer and for the compressible Newtonian viscous fluid

2.1 Governing field equations for the plate- layer.

In the natural state, we determine positions of the points of the layer by the La-
grangian coordinates in the Cartesian system of coordinates Ox1x2x3. Suppose that
the layer has infinite length in the directions of the Ox1 and Ox3 axes. The Ox3 axis
extends along a direction perpendicular to the plane Ox1x2 in Fig. 1 and therefore
in not shown in this figure.

We propose that the layer made of highly-elastic material, before being contacted
with fluid, be stretched along the Ox1 axis direction and as result of this stretching
the homogeneous finite strain state appears in the layer. Namely this strain state is
called the initial strain state in the layer. Note that the initial strains are caused by
the static forces acting in the Ox1 axis direction at infinity and the action of these
forces continues all further dynamic process.

  

Fig. 1. The sketch of the system under consideration (a) and Sommerfeld contour (b). 

 

Figure 1: The sketch of the system under consideration (a) and Sommerfeld contour
(b).

With the initial state of the layer we associate the Lagrangian Cartesian system of
coordinates Oy1y2y3 and suppose that the origin of the system coincides with the
origin of the system Ox1x2x3, and the coordinate axes Oy1, Oy2 and Oy3 coincide
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with the coordinate axes Ox1, Ox2 and Ox3, respectively. Assuming that the materi-
al of the layer is compressible, the elastic relations are given through the harmonic
potential.

Below the values related to the initial state are denoted by upper index 0. Thus, ac-
cording to the foregoing, the initial state in the layer can be determined as follows.

u0
1 = (λ1−1)x1, u0

2 = (λ2−1)x2, u0
3 = 0 λ1 = const1 6= 1, λ2 = const2 6= 1,

λ3 = 1, y1 = λ1x1,y2 = λ2x2, y3 = x3, (1)

where u0
k (k = 1,3) is a component of the displacement vector in the layer in the

initial strain state and λk is an elongation factor which characterizes the change in
the length of the line element in the Oxk axis direction. This parameter determined
by the expression λk =

√
1+2εk , where εk is the k− th principal value of the

Green’s strain tensor. The expression of the components of this tensor through the
components of the displacement vector will be given below.

Within this consider a motion of the layer in the case where on the free face plane
of that the line-located normal time harmonic force acts. This consideration will
be made by the use of coordinates associated with the initial state, i.e. by the use
of coordinates yk (k = 1,3), in the framework of the three-dimensional linearized
theory of elastic waves in initially stressed bodies (TLTEWISB). In the construction
of the field equations of the TLTEWISB, one considers two states of a deformable
solid. The first is regarded as the initial or unperturbed state and the second is a
perturbed state with respect to the unperturbed one. By the “state of a deformable
solid” both motion and equilibrium (as a particular case of motion) is meant. It is
assumed that all values in a perturbed state can be represented as a sum of the values
in the initial state and the perturbations. The latter is also assumed to be small in
comparison with the corresponding values in the initial state. It is also assumed
that both initial (unperturbed) and perturbed states are described by the equations
of nonlinear solid mechanics. Owing to the fact that the perturbations are small,
the relationships for the perturbed state in the vicinity of appropriate values for the
unperturbed state are linearized, and then the relations for the perturbed state are
subtracted from them. The results is the equations of the TLTEWISB. The general
problems of the TLTEWISB have been elaborated in many investigations such as
Biot (1965), Guz (2004), Truestell and Noll (1965) and others.

Thus, the following are the basic relations of the TLTEWISB for the compressible
body under the plane-strain state in the Oy1y2 plane.

The equation of motion is

∂Qi j

∂yi
= ρ

∂ 2u j

∂ t2 , (2)
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and mechanical relations are

Qi j = ωi jαβ

∂uα

∂yβ

, (3)

where i; j;α;β = 1,2 and Einstein summation rule is employed with respect to the
repeated indices in (2) and (3). Moreover, in equation (2) and (3) the following
notation is used: Qi j are the components of the perturbations of the Kirchhof-
f non-symmetric stress tensor related to the areas of the initial state, u j are the
components of the perturbations of the displacement vector, and ρ is the density
also related to the volume of the initial state. Expressions for determination of the
components ωi jαβ will be determined below. Note that these components are de-
termined through the initial strain state (1) and through the elastic potential. As
has noted above, in the present work the elastic relations of the layer’s material are
determined by harmonic potential. This potential is given as follows:

ϕ =
1
2

λ (s1)
2 +µs2 (4)

where λ and µ are the mechanical constants of the material and

s1 = (
√

1+2ε1−1)+(
√

1+2ε2−1)+(
√

1+2ε3−1),

s2 = (
√

1+2ε1−1)2 +(
√

1+2ε2−1)2 +(
√

1+2ε3−1)2. (5)

In (5) εi (i = 1,2,3) are the principal values of the Green’s strain tensor.

Let us consider briefly the definition of the stress and strain tensors in the large
elastic deformation theory which are used in the present investigation. For this
purpose we use the Lagrange coordinates xi(i = 1,2,3) in the Cartesian system
of coordinates Ox1x2x3 and the position of the points after and before deforma-
tions we determine by the vectors r∗ and r respectively where r∗ = r+ u. Here
u = uigi is a displacement vector expressed by the unit basic vectors gi. Taking
the relations dr∗ · dr∗ = dr · dr+ 2dr · du+ du · du (here the symbol "·" mean-
s the scalar product of the vectors), du · du = (∂uk

/
∂xi)(∂uk

/
∂x j)dxidx j and

2dr ·du= 2(∂uk
/

∂xi)dxkdx jinto account, it can be written that dr∗ ·dr∗−dr ·dr=
2εi jdxidx j, where

εi j =
1
2

(
∂ui

∂x j
+

∂u j

∂xi
+

∂un

∂xi

∂un

∂x j

)
. (6)

This is a component of the Green’s strain tensor ε̃ which is symmetric.

Let us consider the definition of the Kirchhoff stress tensor. The use of various
types of stress tensors in the large (finite) elastic deformation theory is connected
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with the reference of the components of these tensors to the unit area of the relevant
surface elements in the deformed or un-deformed state, because, in contrast to the
linear theory of elasticity, in the finite elastic deformation theory the difference be-
tween the areas of the surface elements taken before and after deformation must be
accounted for in the derivation of the equation of motion and under satisfaction of
the boundary conditions. According to the aim of the present investigation, we here
consider two types of stress tensors denoted by q̃ and S̃ the components of which
refer to the unit area of the relevant surface elements in the un-deformed state, but
act on the surface elements in the deformed state. The components Si j of the stress
tensor S̃ are determined through the strain energy potential ϕ = ϕ(ε11,ε22, ...,ε33),
where εi j is a component of the Green’s strain tensor (6), by the use of the following
expression:

Si j =
1
2

(
∂

∂εi j
+

∂

∂ε ji

)
ϕ(ε11,ε22, ...,ε33). (7)

The components qi j of the stress tensor q̃ are determined by the expression

qi j =

(
δ

j
k +

∂u j

∂xk

)
Sik. (8)

Here δ
j

k is the Kronecker symbol. The stress tensor q̃ with components determined
by expressions (7) and (8) is called the Kirchhoff stress tensor. According to ex-
pressions (6)-(8), the stress tensor S̃ is symmetric, but the Kirchhoff stress tensor
q̃ is non-symmetric. Thus, with this we restrict ourselves to consideration of the
definition of the stress and strain tensors in the finite elastic deformation theory.
These definitions are given without any restriction related to the association of the
selected coordinate systems to the natural or initial state. However, in using the co-
ordinate system associated system with the initial deformed state, the initial strain
state can be taken as an “un-deformed” state in the foregoing definitions.

Now we attempt to attain the Eq. (3) and the expressions of the components ωi jαβ

by employing the linearization procedure. Thus, according to (1), (4)-(8), we attain
that

S0
11 = [λ (λ1 +λ2−2)+2µ(λ1−1)] (λ1),

S0
22 = [λ (λ1 +λ2−2)+2µ(λ2−1)] (λ2) = 0,

S0
12 = 0.

(9)

It follows from the second expression in (9) that

λ2 = [2µ−λ (λ1−2)]/(λ +2µ)−1. (10)
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In this way, for a selected material the magnitude of the initial strains and the initial
stresses in the layer can be determined through λ1 only. In this case the perturbation
of the components of the non-symmetric Kirchhoff stress tensor qi j (denoted by q′i j)
related to the areas of the natural state are determined by the following expression:

q′i j =

(
δ

j
k +

∂u0
j

∂xk

)
S′ik +S0

ik
∂u j

∂xk
, (11)

where S′ik is a perturbation of the components of the foregoing stress tensor S̃.

By linearization of Eq. (7), the following relation is obtained for these components:

S′in =

{
1
4

(
δ

β

k +
∂u0

β

∂xk

)(
∂

∂ε0
kβ

+
∂

∂ε0
βk

)(
∂

∂ε0
in
+

∂

∂ε0
ni

)
ϕ

0

}
∂uα

∂xβ

. (12)

Using the relations

Q11dy2dy3 = q′11dx2dx3, Q22dy1dy3 = q′22dx1dx3, Q12dy2dy3 = q′12dx2dx3,

Q21dy1dy3 = q′21dx1dx3, dy1 = λ1dx1, dy2 = λ2dx2⇒ Q11 = q′11/λ2,

Q22 = q′22/λ1, Q12 = q′11/λ2, Q21 = q′21/λ1 (13)

and changing ∂u j
/

∂xk and ∂uα

/
∂xβ in Eqs. (11) and (12) with λk∂u j

/
∂yk and

λβ ∂uα

/
∂yβ , respectively, we attain Eq. (3) and expressions for components ωi jαβ

from Eqs. (11) and (12) after some mathematical calculations. Next we consider
the obtaining of the expressions for Q11, ω1111 and ω1122 given in Eq. (3). From
Eqs. (1), (11) and (12) it can be easily attained that

q′11 = λ1S′11 +S0
11

∂u1

∂x1
, S′11 = λ1

∂

∂ε0
11

S0
11

∂u1

∂x1
+λ2

∂

∂ε0
22

S0
11

∂u2

∂x2
. (14)

Taking the relations

λ1
∂

∂ε0
11

S0
11 =

λ1

λ1

∂S0
11

∂λ1
=

1
λ1

(λ +2µ)− 1
(λ1)2 S0

11, λ2
∂

∂ε0
22

S0
11 =

λ2

λ2

∂S0
11

∂λ2
=

λ

λ2
,

(15)

which are obtained from the definition of the parameter λi and expression for S0
11

in Eq. (9), and the relations (14) into account, the following mathematical transfor-
mations can be made:

q′11 = (λ +2µ)
∂u1

∂x1
+λ

∂u2

∂x2
= λ1(λ +2µ)

∂u1

∂y1
+λλ2

∂u2

∂y2
,
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Q11 = q′11/λ2 =
λ1

λ2
(λ +2µ)

∂u1

∂y1
+λ

∂u2

∂y2
= ω1111

∂u1

∂y1
+ω1122

∂u2

∂y2
.

⇒ ω1111 =
λ1

λ2
(λ +2µ), ω1122 = λ . (16)

Thus, we obtain the foregoing expressions for components ω1111 and ω1122. In this
way we obtain the expressions for remain components ωi jαβ in Eq. (3) which are
differ from zero. These expressions are:

ω2211 = λ , ω1212 = ω2121 =
2λ2µ

λ1 +λ2
, ω1221 = ω2112 =

2(λ2)
2

µ

λ2 (λ1 +λ2)
. (17)

Note that the similar discussions of the equations and relations for the circular
cylinders in the cylindrical system of coordinates have also been made in a paper
by Akbarov (2013b).

Thus with this we restrict ourselves to consideration of the basic equations and
relations within the scope of which the motion of the plate-layer is described. In
this case the boundary conditions on the upper face plane of the layer can be written
as follows.

Q21|y2=0
= 0, Q22|y2=0

=−P0eiωt
δ (y1). (18)

In (18) ω is a frequency of the lineal-located external load with amplitude P0, δ (y1)
is a delta Dirac function.

2.2 Governing field equations for the compressible Newtonian viscous fluid.

Now we consider the field equations of motion of the Newtonian compressible
viscous fluid and the density, viscosity constants and pressure related to that we
will denote by upper index (1). We use the Euler coordinates in the coordinate
system Oy1y2y3 which is associated with the initial state of the layer to write these
equations. Taking the smallness of the perturbations in the perturbed state in the
system under consideration we will identify the Euler and Lagrange coordinates in
the coordinate system Oy1y2y3. Thus, within the foregoing assumptions, according
to Guz (2009), we write field equations for the fluid flow.

The linearized Navier-Stokes equations:

ρ
(1)
0

∂vi

∂ t
−µ

(1) ∂vi

∂y j∂y j
+

∂ p(1)

∂yi
− (λ (1)+µ

(1))
∂ 2v j

∂y j∂yi
= 0, (19)

The equation of continuity:

∂ρ(1)

∂ t
+ρ

(1)
0

∂v j

∂y j
= 0, (20)
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Rheological relations:

Ti j =

(
−p(1)+λ

(1) ∂vk

∂yk

)
δi j +2µ

(1)ei j, (21)

where

ei j =
1
2

(
∂vi

∂y j
+

∂v j

∂yi

)
. (22)

The equation of state:

a2
0 =

∂ p(1)

∂ρ(1) . (23)

In Eqs. (19)-(23) i; j;k = 1,2,3 and the following notation is used: vi is a compo-
nent of a perturbation of the velocity vector, p(1) is a perturbation of the pressure,
µ(1) is a coefficient of viscosity, λ (1) is the second coefficient of the viscosity, a0
is a sound speed in the fluid, ei j is a component of a perturbation of the strain rate
tensor, Ti j is a component of a perturbation of the stress tensor, ρ(1) is a perturba-
tion of the density of the fluid, ρ

(1)
0 is a density of the fluid in the initial state, i.e.

before the perturbation of the fluid and δi j is a Kronecker symbol. Note that in Eqs.
(19)-(21) Einstein summation rule is employed with respect to the repeated indices.

In the present paper we consider the case where

v1 = v1(y1,y2, t), v2 = v2(y1,y2, t), v3 = 0. (24)

According to Guz (2009), the solution of the system equations (19)-(23) in the case
where the relations in (24) take place, is reduced to the finding of two potentials ϕ

and ψ which are determined from the following equations.[(
1+

λ (1)+2µ(1)

a2
0ρ

(1)
0

∂

∂ t

)
∆− 1

a2
0

∂ 2

∂ t

]
ϕ = 0,(

ν
(1)

∆− ∂

∂ t

)
ψ = 0, ∆ =

∂ 2

∂y2
1
+

∂ 2

∂y2
2
,

(25)

where ν(1) is a kinematic viscosity, i.e. ν(1) = µ(1)
/

ρ
(1)
0 .

The velocities v1, v2 and the pressure p(1) are expressed via the potentials ϕ and ψ

by the following expressions:

v1 =
∂ϕ

∂y1
+

∂ψ

∂y2
, v2 =

∂ϕ

∂y2
− ∂ψ

∂y1
, p(1) = ρ

(1)
0

(
λ (1)+2µ(1)

ρ
(1)
0

∆− ∂

∂ t

)
ϕ. (26)
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Assuming that p(1) =−(T11 +T22 +T33)/3 , we obtain:

λ
(1) =−2

3
µ
(1) . (27)

This completes the field equation of the fluid flow which is considered in the present
paper. As fluid occupies the half-plane (−∞ < y1 <+∞,−∞ < y2 <−λ2h), we
assume that

|vi|< const,
∣∣∣∣ ∂vi

∂y j

∣∣∣∣< const, i; j = 1,2 as y2→−∞, (28)

and there is not reflected waves from y2 =−∞.

2.3 Contact conditions on the interface between the fluid and pre-strained layer

We assume that the velocities and forces acting on the interface between the fluid
and layer are continuous. In other words, we assume that

∂u1

∂ t

∣∣∣∣
y2=−λ2h

= v1|y2=−λ2h ,
∂u2

∂ t

∣∣∣∣
y2=−λ2h

= v2|y2=−λ2h ,

Q21|y2=−λ2h = T21|y2=−λ2h , Q22|y2=−λ2h = T22|y2=−λ2h . (29)

This completes the formulation of the problem. It should be noted that, with cor-
responding obvious changes, the foregoing problem formulation can be remake for
the case where the fluid is inviscid. Moreover, in the case where λ1 = λ2 = 1.0
the foregoing formulation relates to the corresponding classical problem of hydro-
elastodynamics.

3 Method of solution

Below, we use the dimensionless coordinates ȳk = yk/h and omit the over bar on
the coordinates. According to the boundary condition (18), we represent the sought
values as

g(y1,y2, t) = ḡ(y1,y2)eiωt . (30)

Substituting the expression (30) into the foregoing equations and relations, and
replacing the derivatives ∂ (•)

/
∂ t and ∂ 2(•)

/
∂ t2 with iω(•̄) and −ω2(•̄) respec-

tively we obtain corresponding equations, boundary and contact conditions for the
amplitudes of the sought values. For solution to these equations we use the expo-
nential Fourier transformation with respect to the y1 coordinate:

fF(s,y2) =

+∞∫
−∞

f (y1,y2)e−isy1dy1. (31)
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Taking the problem symmetry with respect to y1 = 0 into account, we can represent
the originals of the sought values as follows.

u1 =
1
π

∞∫
0

u1F(s,y2)sin(sy1), u2 =
1
π

∞∫
0

u2F(s,y2)cos(sy1),

Q11 =
1
π

∞∫
0

Q11F(s,y2)cos(sy1), Q22 =
1
π

∞∫
0

Q22F(s,y2)cos(sy1),

Q12 =
1
π

∞∫
0

Q12F(s,y2)sin(sy1), Q21 =
1
π

∞∫
0

Q21F(s,y2)sin(sy1),

ϕ =
1
π

∞∫
0

ϕF(s,y2)cos(sy1), ψ =
1
π

∞∫
0

ψF(s,y2)sin(sy1),

v1 =
1
π

∞∫
0

v1F(s,y2)sin(sy1), v2 =
1
π

∞∫
0

v2F(s,y2)cos(sy1),

T11 =
1
π

∞∫
0

T11F(s,y2)cos(sy1), T22 =
1
π

∞∫
0

T22F(s,y2)cos(sy1),

T12 =
1
π

∞∫
0

T12F(s,y2)sin(sy1), T21 =
1
π

∞∫
0

T21F(s,y2)sin(sy1). (32)

First, we consider the solution of the equations related to the Fourier transforma-
tion of the quantities related to the plate-layer, i.e. to the solution of the equations
which are obtained from the equations (2), (3), (16) and (17) by employing Fouri-
er transformation (32). Thus, substituting the expressions (32) into the equations
(2) and (3), and doing some mathematical manipulations we obtain the following
equations for the u1F and u2F .

Au1F −B
du2F

dy2
+C

d2u1F

dy2
2

= 0, Du2F +B
du1F

dy2
+G

d2u2F

dy2
2

= 0, (33)

where

A = X2− s2
ω1111, B = s(ω1122 +ω2121), C = ω2112,

D = X2− s2
ω1221, G = ω2222, X2 = ω

2h2/c2
2, c2 =

√
µ
/

ρ. (34)



Forced Vibrations of a System Consisting of a Pre-strained Highly Elastic Plate 371

Introducing the notation

A0 =
AG+B2 +CD

CG
, B0 =

BD
CG

,

k1 =

√√√√−A0

2
+

√
A2

0
4
−B0, k2 =

√√√√−A0

2
−

√
A2

0
4
−B0, (35)

we can write the solution of the equation (33) as follows.

u2F = Z1ek1y2 +Z2e−k1y2 +Z3ek2y2 +Z4e−k2y2 ,

u1F = Z1a1ek1y2 +Z2a2e−k1y2 +Z3a3ek2y2 +Z4a4e−k2y2 , (36)

where

a1 =
−D−Gk2

1

Bk2
1

, a2 =−a1, a3 =
−D−Gk2

2

Bk2
2

, a4 =−a3. (37)

Using the equations (3) and (36) we also write expressions for the Fourier trans-
formations Q21F and Q22F of the corresponding stresses which enter the boundary
condition (18) and contact condition (29).

Q21F =Z1 (ω2112k1a1− sω2121)ek1y2 +Z2 (−ω2112k1a2− sω2121)e−k1y2+

Z3 (ω2112k2a3− sω2121)ek2y2 +Z4 (−ω2112k2a3− sω2121)e−k2y2 ,

Q22F =Z1 (sω2211a1 + k1ω2222)ek1y2 +Z2 (sω2211a2− k1ω2222)e−k1y2+

Z3 (sω2211a3 + k2ω2222)ek2y2 +Z2 (sω2211a4− k2ω2222)e−k2y2 .
(38)

This completes the consideration of the determination of the Fourier transformation
of the values related to the plate-layer. Now we consider the determination of
the Fourier transformations of the quantities related to the fluid flow. First, we
consider the determination of the ϕF and ψF from the Fourier transformation of the
equations in (25), which taking the relation (27) into account and the relation

ϕF = ωh2
ϕ̃F , ψF = ωh2

ψ̃F (39)

can be written as follows

d2ϕ̃F

dy2
2

+

(
Ω2

1

1+ i4Ω2
1

/
(3N2

w)
− s2

)
ϕ̃F = 0,

d2ψ̃F

dy2
2
−
(
s2 + iN2

w
)

ψ̃F = 0, (40)
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where

Ω1 =
ωh
a0

, N2
w =

ωh2

ν(1) . (41)

The dimensionless number Nw in (41) can be taken as Womersley number and
characterizes the influence of the fluid viscosity on the mechanical behavior of the
system under consideration. When the Womersley number is large (around 10 or
greater), it shows that the flow is dominated by oscillatory inertial forces. When
the Womersley number is low, viscous forces tend to dominate the flow. However,
for hydro-elastodynamic problems the mentioned “large” and “low” limits for the
Womersley number can change significantly.

The dimensionless frequency Ω1 in (41) can be taken as the parameter which char-
acterizes the compressibility of the fluid on the mechanical behavior of the system
under consideration. Thus, taking the conditions (28) into consideration, the solu-
tions to the equations in (40) are found as follows

ϕ̃F = Z5eδ1y2 , ψ̃F = Z6eγ1y2 , (42)

where

δ1 =

√
s2−

Ω2
1

1+ i4Ω2
1

/
(3N2

w)
, γ1 =

√
s2 + iN2

w. (43)

Using (42) and (39) we obtain the following expressions for the velocities, pressure
and stresses of the fluid from the Fourier transformations of the equations (21), (22)
and (26).

v1F = ωh
[
−Z5seδ1y2 +Z6eγ1y2

]
, v2F = ωh

[
Z5δ1eδ1y2−Z6seγ1y2

]
,

T22F = µ
(1)

ω

[
Z5

(
4
3

δ
2
1 +

2
3

s2−R0

)
eδ1y2 +Z6

(
−sγ1−

2
3

sγ1

)
eγ1y2

]
,

T21F =−µ
(1)

ω

[
2sδ1Z5eδ1y2 +(s2 + γ

2
1 )Z6eγ1y2

]
, p(1)F = µ

(1)
ωR0Z5eδ1y2 , (44)

where

R0 =−
4
3

Ω2
1

1+ i4Ω2
1

/
(3N2

w)
−N2

w. (45)

Substituting expressions (36), (38) and (44) into the boundary condition (18) and
contact condition (29) we obtain system of equations with respect to the unknowns
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Z1, Z2, . . . , Z6 through which the sought values are determined. The mentioned
equation can be expressed as follows.(

Q21
/

µ
)∣∣

y2=0 = Z1α11 +Z2α12 +Z3α13 +Z4α14 = 0,(
Q22
/

µ
)∣∣

y2=0 = Z1α21 +Z2α22 +Z3α23 +Z4α24 =−P0
/

µ,

∂u1F

∂ t

∣∣∣∣
y2=−λ2h

− v1F |y2=−λ2h

= iω(Z1α31 +Z2α32 +Z3α33 +Z4α34)−ωh(Z5α35 +Z6α36) = 0,

∂u2F

∂ t

∣∣∣∣
y2=−λ2h

− v2F |y2=−λ2h

= iω(Z1α41 +Z2α42 +Z3α43 +Z4α44)−ωh(Z5α45 +Z6α46) = 0,(
Q21
/

µ
)∣∣

y2=−λ2h−
(
T21
/

µ
)∣∣

y2=−λ2h

= Z1α51 +Z2α52 +Z3α53 +Z4α54−M(Z5α55 +Z6α56) = 0,(
Q22
/

µ
)∣∣

y2=−λ2h−
(
T22
/

µ
)∣∣

y2=−λ2h

= Z1α61 +Z2α62 +Z3α63 +Z4α64−M(Z5α65 +Z6α66) = 0,
(46)

where

M =
µ(1)ω

µ
. (47)

The expressions of the coefficients αnm(n;m = 1,2, ...,6) can be easily determined
from expressions (36), (38) and (44), and therefore we do not give here these ex-
pressions. Thus, unknowns Z1,Z2, ...,Z6 in the equations (46) can be determined
via the formulae.

Zk =
det
∥∥β k

nm

∥∥
det‖αnm‖

, (48)

Note the matrix
(
β k

nm
)

is obtained from the matrix (αnm) by the replacing of the
k− th column of the (αnm) by the column (0,−P0/µ,0,0,0,0)T .

Now we consider the calculation of the integrals in (32). For this purpose first we
consider the following reasoning. If we take the Fourier transformation parameter
s as the wavenumber then the equation

det‖αnm‖= 0, n;m = 1,2, ...,6, (49)
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coincides with the dispersion equation of the waves propagated in the direction of
the Oy1 axis in the system under consideration. It should be noted that, according
to the well-known physic-mechanical considerations, the equation (49) must have
complex roots only. This character of the roots is caused with the viscosity of the
fluid. However, as usual, the viscosity of the Newtonian fluids is insignificant in the
qualitative sense and therefore in many cases within the scope of the PC calculation
accuracy the equation (49) has real roots. Consequently these roots become singu-
lar points of the integrated expressions in the integrals (32). Therefore, according
to works by Lamb (1904), Tsang (1978), Jensen et al (2011) and many others listed
in these references, we will evaluate the wavenumber integrals (32) along the Som-
merfeld contour (Fig. 1b) in the complex plane s = s1 + is2 and in this way the real
roots of Eq. (49) are avoided.

Thus, using the presentation (30), we can determine the sought values through the
following two type relations.

{Q22,Q11,u2,T22,T11,v2}=
1
π

Re

eiωt
∫
C

[Q22F ,Q11F ,u2F ,T22F ,T11F ,v2F]cos(sy1)ds

,

{Q21,Q12,u1,T21,v1}=
1
π

Re

eiωt
∫
C

[Q21,Q12F ,u1F ,T21F ,v1F ]sin(sy1)ds

 .

(50)

According to Fig. 1b, we can write the following relation.

∫
C

f (s)cos(sy1)ds = i

s∗2∫
0

f (is2)cos(is2y1)ds2 +

∞∫
0

f (s1 + is∗2)cos((s1 + is∗2)y1)ds1,

∫
C

f (s)sin(sy1)ds = i

s∗2∫
0

f (is2)sin(is2y1)ds2 +

∞∫
0

f (s1 + is∗2)sin((s1 + is∗2)y1)ds1.

(51)

Taking the fact that the values of the integrals
∫
C

f (s)cos(sy1)ds and∫
C

f (s)sin(sy1)ds are independent on the values of the parameter s∗2 into account,

as usual (see, for example Jensen et al (2011) and Tsang (1978)), to simplify the
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calculation of these integrals, the parameter s∗2 is assumed as a small parameter.
According to this assumption and to the relation∣∣∣∣∣∣

s∗2∫
0

f (is2)cos(is2y1)ds2

∣∣∣∣∣∣= O(s∗2),

∣∣∣∣∣∣
s∗2∫

0

f (is2)sin(is2y1)ds2

∣∣∣∣∣∣= O(s∗2),

we use the following approximate expressions for calculation of the foregoing in-
tegrals∫
C

f (s)cos(sy1)ds≈
∞∫

0

f (s1 + is∗2)cos((s1 + is∗2)y1)ds1,

∫
C

f (s)sin(sy1)ds≈
∞∫

0

f (s1 + is∗2)sin((s1 + is∗2)y1)ds1. (52)

The accuracy of expressions in (52) with respect to values of the parameter s∗2 was
discussed in a paper by Akbarov and Ilhan (2013).

Moreover under calculation procedure, the improper integrals
+∞∫
0

f (s1)cos(s1y1)ds1

and
+∞∫
0

f (s1)sin(s1y1)ds1 in (52) are replaced by the corresponding definite inte-

grals
+S∗1∫
0

f (s1)cos(s1y1)ds1 and
+S∗1∫
0

f (s1)sin(s1y1)ds1 respectively. The values of

S∗1 are determined from the convergence requirement of the numerical results. Note
that under calculation of the latter integrals, the integration intervals are further
divided into a certain number of shorter intervals, which are used in the Gauss
integration algorithm. In this integration procedure it is assumed that in each of
the shorter intervals the sampling intervals of the numerical integration ∆s1 must
satisfy the relation |∆s1| �min{s∗2,1/y1}. All these procedures are performed au-
tomatically with the PC by use of the corresponding programs constructed by the
authors in MATLAB.

This completes the discussions related to the algorithms employing for calculation
of the wave-number integrals in the form (32). Note that after some obvious chang-
ing the foregoing solution method can be applied also for the case where the fluid
is inviscid.

4 Numerical results and discussions

It follows from the foregoing discussions that the problem under consideration is
characterized through the dimensionless parameters Ω1 and Nw which are deter-
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mined by the expressions in (41), M which is determined with the expression (47),
λ
/

µ where λ and µ are the mechanical constants which enter the expression of
the elastic potential (7), and λ1 through which the initial strains in the layer are
characterized. Note that the case where Ω1 = 0 corresponds to the incompressible
fluid, but the case where 1

/
Nw = 0 to the inviscid fluid.

Under numerical investigation we assume that the values of the mechanical con-
stants and the density of the plate material are µ = 1.86×109Pa, λ = 3.96×109Pa
and ρ = 1160kg

/
m3, but the material of the fluid is Glycerin with viscosity co-

efficient µ(1) = 1,393kg
/
(m · s), density ρ = 1260kg

/
m3and sound speed a0 =

1459.5m/s [Guz (2009)]. We introduce also the notation c2 =
√

µ
/

ρ which is the
shear wave propagation velocity in the layer material in the case where the initial
strains are absent in that. Note that the values selected above for the constants λ , µ

and ρ , and related to the plate material under absent of the initial strains correspond-
s to the Plexiglass (or Lucite) [ see Guz (2004); Lai-Yu et al (2006)]. Consequently,
these values have real meaning and numerical results attained in the case where the
initial strains are absent in the plate, i.e. in the case where λ1 = λ2 = 1.0 in the lin-
earized elastic relations (3), (16) and (17), can be regarded the hydro-elastic system
consisting of the plate made of Plexiglass and half-plane filled by the Glycerin.

Thus, after the selection the values of materials constants the foregoing dimension-
less parameters can be determined through the three quantities: h (the thickness of
the plate-layer), ω (the frequency of the time-harmonic external forces) and λ1 (the
elongation parameter through which the initial strains in the layer are determined).
In the present paper we will consider namely the influence of these three parame-
ters on the distribution of the velocities and stresses on the interface plane between
the pre-strained plate-layer and fluid.

With respect to the plate-layer thickness we consider two cases: the first case we
call the “thin plate case” for which 0.001m ≤ h ≤ 0.005m, but the second we call
the “thick plate case” for which 0.05m ≤ h ≤ 1.0m. For the “thin plate case” we
assume that 5hz < ω ≤ 300hz, but for the “thick plate case” 5hz < ω ≤ 1000hz.

Before consideration of the numerical results we note the following reasoning. Ac-
cording to the mechanical consideration and a lot of numerical results (which are
not given here), it can be predicted that the influence of the fluid viscosity on it-
s motion in the case under consideration must be notable, namely in the "thin
plate case" for low frequency of the forced vibration. But the influence of the
fluid compressibility can be neglected in the “thin plate case” for the frequencies
5hz < ω ≤ 300hz, in other words in these cases the results obtained for the com-
pressible and incompressible fluid models coincides with each other with very high
accuracy. Also, according to the mechanical consideration, it can be predicted that
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the influence of the fluid compressibility on its motion must be considerable in the
"thick plate case" under relatively high frequency of the forced vibration. Based on
this reasoning we select the foregoing change range of the frequency for "thin" and
"thick plate cases" and under obtaining numerical results related to the “thin plate
case” we will assume that the fluid is compressible one.

 (a)                            

(b) 

(c) (d) 

 Figure 2: The frequency response of T22(a), v2(b), v1(c, for a viscous fluid) and also
v1(d, for an inviscid fluid) in the “thin plate case” under absent of the initial strains
in the plate.

First, we consider the case where ωt = 2πn (n = 0,1,2, ...), i.e. the case where
cos(ωt) = 1 and sin(ωt) = 1 in Eq. (50). Thus, we analyze numerical results
obtained for the T22, v2 and v1, and calculated on the interface plane between the
layer and fluid. Consider graphs given in Fig. 2 which illustrate the frequency
response of the T22 (Fig. 2a), v2 (Fig. 2b), v1 (Fig. 2c for a viscous fluid) and
also v1 (Fig. 2d for an inviscid fluid). Under obtaining these results the values
related to the T22 and v2 are calculated at y1

/
h = 0, but the values related to the



378 Copyright © 2014 Tech Science Press CMES, vol.97, no.4, pp.359-390, 2014

(a) (b) 

  

(c) 
(d) 

  

 Figure 3: The distribution of T22(a), v2(b), v1(c, for a viscous fluid) and also v1(d,
for an inviscid fluid) with respect to the y1/h in the “thin plate case” under absent
of the initial strains.

v1 at y1
/

h = 10 and it is assumed that the initial strains in the plate are absent, i.e.
it is assumed that λ 1 = 1.0. It follows from these results that as a result of the
fluid viscosity the absolute values of the stress T22 and velocity v2 decrease. The
influence of the fluid viscosity on the velocity v2 is more significant than on the
stress T22 and the magnitude of the mentioned influence decrease with frequency
ω .

Note that this conclusion agrees with the well-known mechanical considerations
related to the influence of the viscosity of the systems on their vibration.

It should be especially noted - the more considerable influence of the fluid vis-
cosity on the frequency response of the velocity v1. This considerable influ-
ence is explained by the fact that for the inviscid fluid, the contact conditions
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(a) 
(b) 

    

(c) 
(d) 

    

 Figure 4: Graphs of the dependencies among T22(a), v2(b), v1(c, for a viscous fluid)
and also v1(d, for an inviscid fluid) and ωt in the “thin plate case” under absent of
the initial strains in the plate.

∂u2
/

∂ t
∣∣
y2=−λ2h = v2|y2=−λ2h and Q21|y2=−λ2h = T21|y2=−λ2h in (29), disappear. As

a result of this disappearance, the sign of the velocity v1 obtained for the viscous
fluid, is opposite that obtained for the inviscid fluid. At the same time, the results
given in Figs. 2c and 2d show that the absolute values of the velocity v1 obtained
for the viscous fluid are less significant than the corresponding values of this veloc-
ity obtained for the inviscid fluid. Consequently, the foregoing results show that in
the case under consideration, as well as in other similar cases related to plate-fluid
interaction problems, under determination of the fluid flow velocity v1 on the inter-
face plane and in the near vicinity of this plane, the viscous fluid model must be
used.

At the same time, it follows from the results given in Fig. 2 that in the considered
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 (a)    (b) 

                                                    (c) 

Figure 5: The influence of the initial stretching of the plate on the frequency re-
sponse of T22(a), v2(b) and v1(c, for a viscous fluid) in the “thin plate case” under
h = 0.001m.

change range for the frequency the absolute values of the T22 and v1 increase, but
the values of the v2 decrease with the frequency ω .

Consider the distribution of the considered quantities with respect to the dimen-
sionless coordinate y1

/
h the graphs of which are given in Fig. 3a (for T22), Fig. 3b

(for v2), Fig. 3c (for v1 in the viscous fluid case) and Fig. 3d (also for v1 in the
inviscid fluid case) and are constructed under λ1 = 1.0. It follows from the results
given in Fig. 3, as can be predicted, the absolute maximum values for the stress T22
and the velocity v2 are obtained at y1

/
h = 0. According to the problem symmetry

with respect to the plane y1 = 0, the velocity v1 is equal to zero at y1
/

h = 0.

Consequently, the absolute maximum values of the velocity v1 are obtained at far
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(a) 
(b) 

 
Figure 6: The influence of the initial stretching of the layer (i.e. of the parameter
λ1) on the dependencies among T22h/P0 (a), v2µh/(P0c2) (b) and ωt.

from the point y1
/

h = 0 and in the considered change range of the dimensionless
coordinate y1

/
h these points are not reached in Figs. 3c and 3d.

According to the mechanical consideration the values of the T22, v2 and v1 must
decay as y1

/
h→ ∞. This decay is observed for the stress T22 and velocity v2 from

the Figs. 3a and 3b, although this decay is very weak in the “thin plate case”
and the magnitude of the decay increases with the plate thickness. Therefore the
considerable illustration of the decay of the studied quantities with respect to the
dimensionless coordinate y1

/
h will be clearly illustrated under consideration the

“thick plate case”.

We recall that the foregoing results are obtained from the expressions in (50) in the
cases where ωt = 2nπ (n = 0,1,2, ... ). Now we consider numerical results related
to the dependencies among T22h/P0, v2µh/(P0c2), v1µh/(P0c2) and ωt in the case
where 0 ≤ ωt ≤ π . Graphs of these dependencies in the case where λ1 = 1.0 are
given in Figs. 4a (for T22), 4b (for v2), 4c (for v1 in the viscous fluid case) and
4d (for v1 in the inviscid fluid case). It follows from these graphs that the absolute
maximum values of the studied quantities arise in the cases where ωt 6= 0+nπ (n=
0,1,2.... ). In other words, the absolute maximum values of the studied quantities
arise at ωt = (ωt)∗+ nπ and the values of (ωt)∗ can be easily determined from
Fig. 4 for each considered case. However, the absolute maximum values of the
external loading arise, namely at ωt = 0+ nπ . This means phase shifting of the
studied quantities with respect to the external loading. It follows from Fig. 4 that
this phase shifting is more considerable for the velocities v2 and v1.
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 (a) (b) 

                                             (c) 

Figure 7: The frequency response of T22(a), v2(b) and v1(c, for a viscous fluid) in
the “thick plate case” under absent of the initial strains in the plate.

All the numerical results discussed above have been obtained in the case where the
initial strains in the plate layer are absent. Consequently, the foregoing results can
be related for the case where the plate material is a Plexiglass (Lucite) and the fluid
is Glycerin. In other words, the foregoing results have real application field for the
noted constituents of the system under consideration. Now we consider the results
illustrated the influence of the initial strains of the plate on the frequency response
of the studied quantities. For this purpose, we consider the graphs shown in Fig.
5 which indicate the influence of the parameter λ1 on the frequency response of
the T22 (Fig. 5a), v2 (Fig. 5b) and v1 (Fig. 5c). It follows from Fig. 5 that the
initial stretching of the plate-layer causes to decrease the absolute values of the
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 (a)  (b) 

                                              (c) 

Figure 8: The distribution of T22 (a), v2 (b), v1 (c, for a viscous fluid) and also v1(d,
for an inviscid fluid) with respect to the y1/h in the “thick plate case” under absent
of the initial strains in the plate and under ω = 600hz.

studied quantities significantly. Moreover, it follows from the Fig. 5b that the
initial stretching of the plate-layer effects also on the character of the frequency
response of the velocity v2, i.e. for the relatively small values of the parameter λ1
(for instance in the cases where λ1≤ 1.00001) the absolute values of the v2increase,
but for the relatively great values of the parameter λ1 ( for instance in the cases
where λ1 ≤ 1.00005) the absolute values of the v2 decrease monotonically with the
frequency ω .

Also, we consider the influence of the initial stretching of the plate-layer on the
dependence among T22h

/
P0 (Fig. 6a), v2µh

/
(P0c2) (Fig. 6b) and ωt. It follows

from Fig. 6 that the initial stretching of the plate-layer causes to increase of the
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(a) (b) 

 Figure 9: Graphs of the dependencies among T22 (a), v2 (b) and ωt in the “thick
plate case” under absent of the initial strains in the plate and under ω = 600hz.

(a) (b) 

 Figure 10: The influence of the initial stretching of the plate on the frequency
response of T22(a) and v2(b) in the “thick plate case” under h = 0.5m.

values of the phase shifting (ωt)∗.

Thus, with the above, we restrict ourselves to consideration of the numerical results
related to the “thin plate case”. Now we consider numerical results related to the
“thick plate case”, according to which, we assume that 0.05m ≤ h ≤ 1.0m. First,
as above, we assume that ωt = 2nπ (n = 0,1,2, ... ) and analyze the graphs given
in Fig. 7 which illustrate the frequency response of T22 (Fig. 7a), v2 (Fig. 7b)
and v1(Fig. 7c) under λ 1 = 1.0. Note that under construction these graphs we
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assume that the fluid is viscous one and the results obtained for the T22 and v2
in the inviscid fluid case coincide with the corresponding ones shown in Fig. 7.
However, the results obtained for the velocity v1 obtained in the inviscid fluid case,
as in the “thin plate case” differ significantly from corresponding ones obtained
in the viscous fluid case. Taking these discussions into account below, as in Fig.
7, we will analyze numerical results related to the viscous fluid case. Thus, we
turn again to the results given in Fig. 7 and note that these results are given in the
compressible and incompressible fluid cases simultaneously. It follows from the
analyses of the graphs illustrated in Fig. 7 that the fluid incompressibility causes
to increase of the absolute values of the stress T22 and of the velocity v2 and this
influence is more considerable for the velocity v2. The magnitude of the mentioned
influence increase monotonically with the thickness of the plate h and with the
frequency of the external forced vibration ω , in other words with increasing of the
values of the parameter Ω1 in (41). According to the numerical results obtained for
various values of the parameter Ω1, in general, it can be noted that the influence
of the compressibility of the fluid on the foregoing results becomes considerable in
the cases where Ω1 ≥ 0.15. Moreover, it follows from the analyses that as a result
of the fluid incompressibility the absolute values of the stress T22 and the velocity
v2 increase for the considered pair of the fluid and plate materials. However, the
character of the fluid compressibility on the velocity v1 depends on the values of
the frequency ω .

Consider the distribution of the studied quantities with respect to y1
/

h for the “thick
plate case”. The graphs of this distribution are given in Fig. 8a (for T22 ), Fig. 8b
(for v2) and Fig. 8c (for v1). The results are obtained for the various values of the
plate thickness under 0.05m ≤ h ≤ 1m in the case where λ 1 = 1.0. The decay of
the values of the T22, v2 and v1with y1

/
h is observed clearly from the graphs and

this decay becomes more significantly with the plate thickness.

As an example for results related to the phase shifting of the studied quantities we
consider the dependence among T22, v2 and ωt. The graphs of this dependence
which are obtained for the various values of the plate thickness under λ1 = 1.0 are
given in Fig. 9a (for T22) and Fig. 9b (for v2). It follows from Fig. 9a that the phase
shifting for the stress T22 is absent in the “thick plate case”. However, this shifting
takes place for the velocity v2 in the “thick plate case” and decreases with the plate
thickness.

Now we consider numerical results related to the influence of the initial stretching
of the plate on the frequency response of the studied quantities in the “thick plate
case”. For this purpose we consider the case where h = 0.5m and analyze the
graphs given in Fig. 10 a (for T22) and Fig. 10 b (for v2). It follows from these
graphs that, as in the “thin plate case”, the initial stretching of the plate causes
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Figure 11: The fragments on the convergence of the numerical results under calcu-
lation of the integrals (52).

to decrease in the absolute values of the stress T22 and velocity v2. Moreover, it
follows from the graphs given in Fig. 10 b that, the initial stretching of the plate
also changes the character of the frequency response of the velocity v2, i.e. in the
cases where 1.0 ≤ λ 1 ≤ 1.001 the absolute values of the v2 increase, but in the
case where 1.005≤ λ 1 ≤ 1.20 decrease monotonically with the frequency ω . The
results given in Fig. 10 also show that the T22 and v2 approach to a certain limit
values with the parameter λ 1. For instance, the values of the T22 (or v2) obtained
in the case where λ1 = 1.15 coincide almost with the corresponding values of that
obtained in the case where λ1 = 1.20.

Now we analyze an example related to the convergence of the numerical results
with respect to S∗1 and s∗2 in the integrals (52). Numerical results obtained for vari-
ous problem parameters show that the very disadvantaged case in the convergence
sense is the “thin plate case” for low frequencies of the external force, namely the
case where h = 0.001 and 5hz < ω ≤ 300. As noted above, under calculation of
the related integrals, the interval [0,S∗1] is divided into a certain number of shorter
intervals. Let us denote this number through N. Consequently the length of the
mentioned shorter intervals is S∗1

/
N and in each of these shorter intervals the in-

tegration is made by the use of the Gauss integration algorithm with ten sample
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point. Consequently, convergence of the mentioned numerical integration can be
estimated with respect to the values of S∗1 and N for each fixed value of s∗2. All
the numerical results related to the “thin plate case” have been obtained in the case
where N = 10000, S∗1 = 100 and s∗2 = 0.001. Some fragments on the convergence
of the numerical results obtained for the velocity v2 with respect to the N, S∗1 and
s∗2 are illustrated in Fig. 11. As follows from Fig. 11, the noted above selected
values of the N, S∗1 and s∗2 for calculation of the numerical results are sufficient
in the convergence sense. It should be noted that under the “thick plate case” the
convergence of the numerical results is achieved in the relatively small values of S∗1
and N.

5 Conclusions

Thus, in the present paper the forced vibration of the system consisting of the pre-
strained plate-layer and compressible viscous Newtonian fluid has been studied.
The motion of the layer is described within the scope of the three-dimensional lin-
earized theory of elastic waves in initially stressed bodies, but the motion of the
fluid within the scope of the linearized Navier-Stokes equations. The elastic rela-
tions of the plate material are described with the use of the harmonic potential. It is
assumed that the velocities and forces are continuous on the interface plane between
the fluid and the plate, and two-dimensional (plane-strain state) problem is consid-
ered. Also, it is assumed that the forced vibration is caused by the lineal-located
time-harmonic forces acting on the free face plane of the plate. The exponential
Fourier transformation with respect to the space coordinate directed along the in-
terface is employed for solution of the corresponding boundary-value and contact
problem. The inverse of this transformation is found numerically by employing
Sommerfeld contour method. Non-dimensional parameters characterized the com-
pressibility and viscosity of the fluid, are introduced and concrete numerical results
related to the interface velocities and normal stress are presented and discussed.
These results are obtained in the case where the fluid is Glycerin and the values
of the elastic constants which enter in the mentioned above harmonic potential and
the density of the plate material are taken as Lame’s constants and density of the
Plexiglass (Lucite). Consequently, in the case where the initial strains are absent in
the plate material the numerical results relate to the hydro-elastic system consisting
of the Plexiglass and Glycerin. According to analyzes of these numerical results, it
can be made the following concrete results related to the mechanics of the forced
vibration of the system under consideration.

• in the “thin plate case” the influence of the fluid viscosity on its flow veloc-
ities is significant and must be taken into account under calculation of these
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quantities;

• the magnitude of the aforementioned influence decreases with the frequency
of the forced vibration;

• the compressibility of the fluid on the studied quantities is insignificant in the
“thin plate case”;

• the initial stretching of the plate causes a significant decrease in the absolute
values of the studied quantities;

• the influence of the fluid viscosity on the fluid velocity in the plate laying
direction is not only quantitative, but also qualitative, and this conclusion
also occurs for the “thick plate case”;

• the influence of the fluid viscosity on the interface pressure and on the fluid
flow velocity in the direction which is perpendicular to the interface plane, is
insignificant in the “thick plate case”;

• the influence of the compressibility of the fluid on the values of the consid-
ered quantities is significant in the “thick plate case”;

• The existence of the fluid constituents in the system under consideration
causes to appear the phase shifting of the studied velocities and stress with
respect to the phase of the external forces and the magnitude of this phase
shifting decrease with the plate thickness and increase with the initial stretch-
ing of the plate.
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