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Numerical Solution for a Class of Linear System of
Fractional Differential Equations by the Haar Wavelet

Method and the Convergence Analysis
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Abstract: In this paper, a class of linear system of fractional differential equa-
tions is considered. It has been solved by operational matrix of Haar wavelet
method which converts the problem into algebraic equations. Moreover the con-
vergence of the method is studied, and three numerical examples are provided to
demonstrate the accuracy and efficiency.
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1 Introduction

In the past several decades, there has been a great deal of interest in fractional dif-
ferential equations. Kai Diethelm has analyzed the fractional differential equations
theoretically [Kai Diethelm (2004)] and mainly studied Volterra integral equation-
s [Kai Diethelm and Neville, J. F (2012)]; Mark M. Meerschaert has completed
the stochastic models for fractional calculus [Mark M Meerschaert and Alla Siko-
rskii (2010)]; Wen Chen has used fractional derivatives to study anomalous diffu-
sion modeling [Chen, Sun, Zhang and Korosak (2010)]; Changpin Li has done the
asymptotical stability analysis of linear fractional differential systems [Li and Zhao
(2009)] and studied the numerical algorithm for fractional calculus [Chen and Li
(2012)] with An Chen. In recent years, the study of fractional calculus has turned
to practical application from pure mathematical theory. Compare with integer or-
der differential equation, fractional differential equation has the advantage that it
can describe some natural physics processes and dynamic system processes much
better [Chen, Sun, Zhang and Korosak (2010); Chen, Sun and Li (2010); Chen,
Baleanu and Tenreiro Machado (2010)] Among all of them above, Haar method
is the easier one to calculate. Because the range of Haar wavelet basis function
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only has three numbers: -1 0 and 1, Haar method can transform the fractional dif-
ferential equations into a linear system of algebraic equations and there are many
zero elements in the coefficient matrix In general, it is not simple to derive the
analysis solutions to most of the fractional order differential equations Therefore,
it is vital to develop some reliable and efficient techniques to solve the fractional
differential equations. And the numerical solution of fractional differential equa-
tions has attached considerable attention from many researchers. During the past
decades, an increasing number of numerical schemes are being developed. These
methods include finite difference approximation method [Yuste (2006)], fractional
linear multi-step method [Ford and Joseph Connolly (2009); Sweilam, Khader and
Al-Bar (2007)], collocation method [Rawashdeh (2006); Li (2012)], the Adomian
decomposition method [Momani and Odibat (2007); Odibat and Momani (2008)]
variational iteration method [Wu and Lee (2010); Odibat and Momani (2006)], and
operational matrix method [Saharay (2012); Ü Lepik (2009); Li and Zhao (2010)]
By now, most of the relevant literatures concern about the numerical solution of
the fractional differential equations [Rawashdeh (2006); Li (2012); Wu and Lee
(2010); Ü Lepik (2009); Li and Zhao (2010); Li and Fan (2012)], the existence and
uniqueness of the solutions for system of fractional differential equations [Gao and
Jiang (2013); Huang (2012); Duan (2009); Dai and Li (2012)], while the research
about the numerical solution of the system of fractional differential equations is
relatively fewer than others.

In the present paper, we intend to use the Haar wavelet method to solve a class of
linear system of fractional differential equations as following:

Dαu(t) = f1(t)v(t)+ e1(t)

Dβ v(t) = f2(t)u(t)+ e2(t)

u(0) = a, v(0) = b

u(T ) = c, v(T ) = d

(1)

where t ∈ [0,T ], 0 < α,β < 1, a,b,c and d are known constants, f1(t), f2(t), e1(t)
and e2(t) are the functions in the Hilbert space L2[0,T ). We adopt the Riemann-
Liouville and Caputo fractional differential-integral definitions [Kilbas, Srivastava
and Trujillo (2006)] as following :

Jαu(t) =
1

Γ(α)

∫ t

0
(t−τ)α−1u(τ)dτ

Dαu(t) =
1

Γ(m−α)

∫ t

0

u(m)(τ)

(t− τ)α−m+1 dτ, 0≤ m−1 < α < m
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the relationship between Riemann-Liouville operator and Caputo operator is given
by :

IαDαu(t) = u(t)−u(0), 0 < α < 1 (2)

We expand the unknown functions as linear combination of wavelet basis func-
tions with unknown coefficients, the method transforms the system of differential
equations into a system of algebraic equations.

The paper is organized as follows. In section 2, the formulations of the Haar
wavelet basis functions in the Hilbert space L2[0,T ) are given, and then we get the
operational matrix of Haar wavelet through the operational of Block Pulse Func-
tions(BPF) . In section 3, Haar wavelet method is used to approximate the system
of fractional differential equations. As a result the system of fractional differen-
tial equations is converted into algebraic equations. In section 4, the convergence
analysis of the Haar wavelet method is given. Numerical examples are given to
demonstrate the validity of Haar wavelet method in solving fractional differential
equation in Section 5. Section 6 comments on the result.

2 Haar wavelet and the related operational matrix

2.1 Haar function

The Haar wavelet is the function defined in the Hilbert space L2[0,T ]

hi(t) =


1, k

2 j T ≤ t < k+1/2
2 j T,

−1, k+1/2
2 j T ≤ t ≤ k+1

2 j T,
0, otherwise.

where T ∈R+, i = 2 j +k, k = 0,1,2, · · · , 2 j−1, j = 0,1,2, · · · ,J and J is a positive
integer, so that i = 1,2,3, · · ·m−1m = 2J+1. Each Haar wavelet hi has the support
interval (2− jkT,2− j(k+1)T )h0(t) = 1, t ∈ [0,T ].

Any function f (t) defined on the interval [0,T ] can be expanded into Haar wavelet
by

f (t) =
∞

∑
i=0

cihi(t) (3)

where ci are the Haar coefficients. So as to the following integral square error ε is
minimized

ε =
∫ T

0
[ f (t)−

m−1

∑
i=0

cihi(t)]2dt
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we can get the explicit formulations of ci

ci = 2 j
∫ T

0
f (t)hi(t)dt (4)

If f (t) is approximated as piecewise constant during each subinterval, (4) may be
terminated after m terms, that is

f (t)≈
m−1

∑
i=0

cihi(t) =CT
mHm(t) (5)

where Cm and Hm(t) are m-dimensional row vectors

Cm = (c0,c1, · · · ,cm−1)
T

Hm(t) = (h0(t),h1(t), · · · ,hm−1(t))T

Taking the collocation points as following

ti =
2i−1

2m
, i = 1,2, · · · ,m (6)

then we defined

Φm×m
∆
= [Hm(t1),Hm(t2), · · · ,Hm(tm)] = [Hm(

1
2m

),Hm(
3

2m
), · · · ,Hm(

2m−1
2m

)]

Φm×m is a m-square Haar matrix.

2.2 Operational matrix

In this part, we’ll get the operational matrix of Haar wavelet through the operational
of Block Pulse Functions(BPF) .

The BPF defined as

bi(t) =
{

1, iT/m≤ t < (i+1)T/m,
0, otherwise.

where i = 0,1,2, · · · ,(m−1). Then we have

Hm(t) = Φm×mBm(t) (7)

where Bm(t)
∆
= [b0(t),b1(t), · · · ,bm−1(t)]T

In Ref [Li and Sun (2011)], the Block Pulse operational matrix of the fractional
order integrationFαhas given by

(IαBm)(t)≈ FαBm(t) (8)
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Fα = (
T
m
)α 1

Γ(α +2)



1 ξ1 ξ2 · · · ξm−2 ξm−1
0 1 ξ1 · · · ξm−3 ξm−2
0 0 1 · · · ξm−4 ξm−3
...

...
...

. . .
...

...
0 0 0 · · · 1 ξ1
0 0 0 · · · 0 1


where ξk = (k+1)α+1−2kα+1 +(k−1)α+1

Let

(IαHm)(t)≈ Pα
m×mHm(t) (9)

the Haar wavelet operational matrix of the fractional order integrationPα
m×m is a

m-square matrix.

Using Eqs. (7) (8) and (9), we have

Pα
m×mHm(t)≈ (IαHm)(t)≈ (Iα

Φm×mBm)(t) =

Φm×m(IαBm)(t)≈Φm×mFαBm(t) = Φm×mFα
Φ
−1
m×mHm(t)

namely

Pα
m×m ≈Φm×mFα

Φ
−1
m×m (10)

3 Application of Haar wavelet in system of fractional differential equations

The purpose of this paper is to present the numerical solution of the system of
fractional differential equations as Eq.(1)

Let{
Dαu(t)≈CT

mH(t)

Dβ v(t)≈ LT
mtH(t)

(11)

by using Eqs(2) (9) and (10), we have

u(t) = IαDαu(t)+u(0)

≈ IαCT
mH(t)+u(0)

=CT
m(I

αH)(t)+u(0)

=CT
mPα

m×mH(t)+u(0)

≈CT
mΦm×mFα

Φ
−1
m×mH(t)+u(0)

=CT
mΦm×mFα

Φ
−1
m×mH(t)+a

(12)
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similarly

v(t)≈ LT
mΦm×mFβ

Φ
−1
m×mH(t)+b (13)

substituting Eqs. (11) (13) for (1), we have
CT

mH(t) = f1(t)LT
mΦm×mFβ

Φ
−1
m×mH(t)+b f1(t)+ e1(t)

LT
mH(t) = f2(t)CT

mΦm×mFα
Φ
−1
m×mH(t)+a f2(t)+ e2(t)

CT
mΦm×mFα

Φ
−1
m×mH(T )+a = c

LT
mΦm×mFβ

Φ
−1
m×mH(T )+b = d

(14)

Thus Eq. (1) has been transformed into a system of algebraic equations. Discrete
Eq. (14) at the collocation points defined in Eq. (6), then we have

CT
mΦm×m = LT

mΦm×mFβ F1 +gT
1

LT
mΦm×m =CT

mΦm×mFαF2 +gT
2

CT
mΦm×mFα f = c−a

LT
mΦm×mFβ f = d−b

(15)

where

g1 = [b f1(t1)+ e1(t1), b f1(t2)+ e1(t2), · · · , b f1(tm)+ e1(tm)]T

g2 = [a f2(t1)+ e2(t1), a f2(t2)+ e2(t2), · · · , a f2(tm)+ e2(tm)]T

F1 =


f1(t1) 0 · · · 0

0 f1(t2) · · · 0
...

...
. . .

...
0 0 · · · f1(tm)



F2 =


f2(t1) 0 · · · 0

0 f2(t2) · · · 0
...

...
. . .

...
0 0 · · · f2(tm)


f = (0,0, · · · ,1)T

then Eq.(15) can be written as

(CT
m,L

T
m)

[
Φm×m −Φm×mFαF2 Φm×mFα f

−Φm×mFβ F Φm×m Φm×mFβ f

]
= (gT

1 ,g
T
2 ,c−a+d−b) (16)

The least squares solution of the above equation (ĈT
m, L̂

T
m) which calculated by

MATLAB [Ge and Sha (2007); Zhang (2010)] programs can be regarded as the
approximate solution. Substituting the values of the coefficients ĈT

m and L̂T
m into

Eqs.(12) and (13), we get the output response u(t) and v(t).
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4 Convergence analysis of the Haar wavelet method

In this subsection, the convergence analysis of Haar wavelet method has been em-
ployed. In order to illustrate the convergence conveniently [Chen (2012)], let

h(2 jt− k) =


1, k2− j ≤ x < (k+1/2)2− j

−1, (k+1/2)2− j ≤ x < (k+1)2− j

0, elsewhere

hi(t) = 2 j/2h(2 jt− k)

so we have the orthogonal property of Haar wavelet

∫ 1

0
hl(t)hi(t)dt =

{
1, i = l
0, i 6= l

There are two error estimates has been defined:

(1) If the exact solution of the problem Eq. (1) is known as uex(t), uJ(t) is the
numerical solution at the levelJthat calculated by Haar wavelet method. Let

∆
J
ex(tk) = |uex(tk)−uJ(tk)| , k = 1,2, · · · ,m m = 2J+1

where {tk} are the collocation points at the level J. Then we define the global error
estimate as

σex =
∥∥∆

J
ex

∥∥
Then we can have

Theorem 4.1. Suppose that uJ(t) =
m
∑

i=0
cihi(t) is the approximation of uex(t),

uJ(t), uex(t) and σex are defined as above, then the error at Jth level statisfies the
following inequality

σex ≤
√

3K
6

2−J

where |u′ex(t)| ≤ K, ∀t ∈ (0,1) and K > 0
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Proof. From the definition

σex =
∥∥∆

J
ex

∥∥≤ ∥∥∥∥∥ ∞

∑
i=m

cihi(t)

∥∥∥∥∥
= (
∫ 1

0
(

∞

∑
i=m

cihi(t),
∞

∑
l=m

clhl(t)) dt)1/2

= (
∞

∑
i=m

∞

∑
l=m

cicl

∫ 1

0
hi(t)hl(t)dt)1/2

= (
∞

∑
i=m

c2
i )

1/2

(17)

Now,

ci =
∫ 1

0
2 j/2uex(t)h(2 jt− k)dt

= 2 j/2(
∫ (k+1/2)2− j

k2− j
uex(t)dt−

∫ (k+1)2− j

k+1/2)2− j
uex(t)dt)

applying mean value theorem :

ci = 2 j/2[((k+1/2)2− j− k2− j)uex(ξ1)−((k+1)2− j− (k+1/2)2− j)uex(ξ2)]

= 2− j/2−1(ξ1−ξ2)u′ex(ξ )

≤ 2− j/2−12− jK

= 2−3 j/2−1K

(18)

where ξ1 ∈ (k2− j,(k+1/2)2− j), ξ2 ∈ ((k+1/2)2− j,(k+1)2− j) and ξ ∈ (ξ1, ξ2)

substituting Eq. (18) for Eq. (17), we have

σex = (
∞

∑
i=m

c2
i )

1/2 = (
∞

∑
i=m

2−3 j−2K2)1/2

= (K2
∞

∑
j=J+1

2 j+1−1

∑
i=2 j

2−3 j−2)1/2

= (K2
∞

∑
j=J+1

2−3 j−2(2 j+1−2 j))1/2

= (
K2

4

∞

∑
j=J+1

2−2 j)1/2

=

√
3K
6

2−J

(19)
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(2) Mostly the exact solution is unknown, at the beginning, we solve the problem
for the level of J, the result is denoted by uJ(t), then repeat these calculation forJ+
1,getting in this way the function uJ+1(t), next we define

∆J(tk) = |uJ(tk)−uJ+1(tk)|

the error estimate we shall define as

σJ = ‖∆J‖

Theorem 4.2. Suppose that uJ(t), uJ+1(t) is the approximate solutions, and σJ is
defined as above, then the error at Jth level satisfies the following inequality

σex ≤
√

3K
4

2−J

where |u′ex(t)| ≤ K, ∀t ∈ (0,1) and K > 0

Proof. From the properties of inequality

∆J = |uJ−uJ+1|= |uJ−uex− (uJ+1−uex)|
≤ |uex−uJ|+ |uex−uJ+1|= ∆

J
ex +∆

J+1
ex

applying Lemma 6.1, we can see

σJ = ‖∆J‖ ≤
∥∥∆

J
ex +∆

J+1
ex

∥∥≤ ∥∥∆
J
ex

∥∥+∥∥∆
J+1
ex

∥∥
≤
√

3K
6

2−J +

√
3K
6

2−J−1 =

√
3K
4

2−J
(20)

From the Eqs. (19) and (20), it is obvious that the accuracy improves when we
increase the level of resolution J

Because the value of the exact solution in boundary point has been given, so even
if the derivative of exact solution in boundary point does not exist, nor can be an
infinite value. So we can always find a suitable K to support the theorems 1, 2.
The derivatives of the selected points in the proof of theorems are the derivatives
of interval internal points. So the above two theorems can also be applied to the
situation that the derivative of exact solution in boundary point does not exist
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5 Numerical examples

Example 1. Consider the following system of linear fractional differential equa-
tions



D
1
2 u(t) =

8
3
√

π
t−

1
2 v(t)+

8
3
√

π
t

1
2

D
1
2 v(t) =

8
3
√

π
t−

1
2 u(t)− 8

3
√

π
t−

1
2 − 2√

π
t

1
2

u(0) = 1, v(0) = 0

u(1) = 2, v(1) = 0

The exact solutions are given by u(t) = t2 + 1, v(t) = t2− t.The comparison be-
tween approximate and exact solutions for j = 5, T = 1 is presented in Fig.1 and
the errors of u(t) v(t) for different values of mare shown in Table 1 In the table we
can see the accuracy improved when increasing the level of resolution J

Figure 1: The comparison between approximate and exact solutions of Example 1.
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Table 1: Errors for different values of m.

t
m=32 m=64 m=128

(∆4
ex)u(t) (∆4

ex)v(t) (∆5
ex)u(t) (∆5

ex)v(t) (∆6
ex)u(t) (∆6

ex)v(t)
1/16 1.7530e-4 2.0703e-4 1.5502e-5 1.4521e-5 6.8952e-6 8.6292e-6
3/16 5.7101e-4 5.8000e-4 3.8471e-4 3.5201e-4 1.9055e-4 1.9125e-4
5/16 1.9977e-3 2.0034e-3 1.1302e-3 1.0738e-3 5.5424e-4 5.5470e-4
7/16 4.1653e-3 4.1696e-3 2.2430e-3 2.1645e-3 1.1017e-3 1.1020e-3
9/16 7.0810e-3 7.9305e-3 3.7290e-3 3.6256e-3 1.7821e-3 1.8335e-3

11/16 1.0747e-2 1.0750e-2 5.5841e-3 5.4574e-3 2.6863e-3 2.7492e-3
13/16 1.5164e-2 1.5166e-2 7.8099e-3 7.6600e-3 3.7747e-3 3.8491e-3
15/16 2.0331e-2 2.0333e-2 1.0407e-2 1.0233e-2 5.1331e-3 5.1333e-3

Example 2. Now, let us consider the following fractional equations:

D
2
3 u(t) =

8389
772Γ(1

3)
t

4
3 v(t)− 8389

386Γ(1
3)

t
4
3 − 767

77Γ(1
3)

t
19
3

D
1
2 v(t) =

1024
231Γ(1

2)
t−

5
2 u(t)+

1024
231Γ(1

2)
t

9
2

u(0) = 0, v(0) = 2

u(1) = 0, v(1) = 3

(21)

The exact solutions of the system of equations are u(t) = t8− t7 and v(t) = t6 +2.
The comparisons between approximate and exact solutions for j = 5, T = 1 are
shown in Fig.2 which demonstrated the numerical solutions approximate the exact
solutions in a good way.

Example 3. Consider the differential equations of fractional order
D

1
4 u(t) = 3

20 sin tv(t)+2sin(6t)
D

3
4 v(t) = t tan( 3

10 t)u(t)− t
1
2 cos(10t)

u(0) = 0, v(0) = 0
u(2) = 1, v(2) = 1

2

(22)

This system of fractional differential equations doesn’t have exact solutions, and
the approximate solutions for J = 4, T = 2and J = 5, T = 2are shown in Fig.3.
From Table 2 we can see the errors for different values of J

6 Conclusions

This article adopts Haar wavelet method to solve a class of linear system of frac-
tional differential equations by combining wavelet function with operational matrix
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Figure 2: The comparison between approximate and exact solutions of Example 2.

Figure 3: The approximate solutions of Example 3 for m=32 and m=64.
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Table 2: Errors for different values of m.

t
m=32 m=64 m=128

(∆3)u(t) (∆3)v(t) (∆4)u(t) (∆4)v(t) (∆5)u(t) (∆5)v(t)
1/8 0.0116 0.0096 47616e-4 29893e-3 38615e-4 66680e-4
3/8 0.0843 0.0204 22328e-2 54716e-3 58349e-3 15708e-3
5/8 0.0120 0.0008 39861e-3 61145e-4 10527e-3 29393e-5
7/8 0.0899 0.0072 24169e-2 22953e-3 60752e-3 30748e-4
9/8 0.0044 0.0354 14697e-3 90377e-3 71697e-4 26140e-3

11/8 0.0794 0.0426 20150e-2 12431e-2 54858e-3 27840e-3
13/8 0.0351 0.0562 82657e-3 14317e-2 24667e-3 41755e-3
15/8 0.0787 0.0134 23195e-2 18351e-3 56103e-3 10669e-3

of fractional integration. In order to reduce the computation, we transform the ini-
tial equations into a linear system of algebraic equations. In fortunately, there are
many zero elements in the coefficient matrix. Efficiency of this method is demon-
strated by the convergence analysis and three numerical examples It is obvious that
the accuracy improves when we increase the level of resolution J Usually, it can
reach the higher precision, even though J is small
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