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Flexural Wave Dispersion in Bi-material Compound Solid
and Hollow Circular Cylinders

S. D. Akbarov1,2

Abstract: Flexural wave dispersion in a bi-material solid and hollow circular
cylinders is investigated with the use of the three-dimensional linear theory of e-
lastodynamics. It is assumed that on the interface surface of the cylinders the com-
plete contact conditions satisfy. The analytical solution of the corresponding field
equations is presented and, using these solutions, the dispersion equations for the
cases under consideration are obtained. The dispersion equations are solved nu-
merically and based on these solutions, dispersion curves are constructed for the
concrete selected pairs of materials such as Tungsten (inner cylinder material) + A-
luminum (outer cylinder material) and Steel (inner cylinder material) + Aluminum
(outer cylinder material). The numerical results are obtained for the first and second
lowest modes. According to these numerical results the influence of the problem
parameters, such as the thicknesses of the external and inner cylinders and the ma-
terials of the inner cylinder material, on the character of the dispersion curves is
analyzed.
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1 Introduction

The detailed review of the investigations related to the flexural wave dispersion in
a circular cylinders was given in a recently published paper by Akbarov (2013b).
It follows from this review that up to now there is not any investigation related to
the flexural wave dispersion in compound cylinders. However, up to now there
are sufficient number investigations in which the dispersion of the axisymmetric
waves in compound cylinders was studied. We consider a brief review of these
investigations and begin this review with a work by Akbarov and Guz (2004) in
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which axisymmetric wave dispersion in a pre-stressed bi-material compound sol-
id cylinder is studied. The investigations are made by utilizing the first version
of the small initial deformation theory of the Three-dimensional Linearized The-
ory of Elastic Waves in Initially Stressed Bodies (TLTEWISB) (the definition of
the various versions of the small initial deformation theories of the TLTEWISB
are given in monograph by Guz (2004), as well as in papers by Akbarov (2012,
2013b). It is assumed that the elastic relations of the cylinders’ materials are given
through the Murnaghan potential described in a monograph by Murnaghan (1951).
In a paper by Akbarov and Guliev (2009) the same problem was studied for the
case where the constituents of the cylinder is fabricated from highly elastic mate-
rials and the corresponding investigations were carried out by utilizing the large
(or finite) initial deformation version of the TLTEWISB. The materials of the con-
stituents were assumed to be compressible and their elastic relations were given
by the harmonic-type potential. Within the same assumptions, the influence of the
finite initial strains on the axisymmetric wave dispersion in a circular cylinder, em-
bedded in a compressible elastic medium, was studied in a work by Akbarov and
Guliev (2010). Moreover, in a paper by Akbarov et al (2010) the problem con-
sidered in works by Akbarov and Guliev (2009, 2010) was developed for the case
where the materials of the components of the system were incompressible and their
stress-strain relations were given through the Treloar potential. Numerical results,
regarding the influence of the initial strains in the cylinder and in embedded body
on the wave dispersion, were presented and discussed. Note that in the foregoing
papers related to the compound cylinders, it was assumed that complete contact
conditions were satisfied on the interface surface between the constituents. How-
ever, in papers by Akbarov and Ipek (2010, 2012) this condition was refuted and,
within the scope of the assumptions accepted in the paper by Akbarov and Guliev
(2009), the influence of the imperfectness of the mentioned interface conditions on
the dispersion of the axisymmetric longitudinal waves in the bi-material compound
cylinder was studied.

In a paper by Akbarov (2012) within the scope of the assumptions accepted in the
paper by Akbarov and Guz (2004) the influence of the third order elastic constants
on the axisymmetric wave propagation in the bi-layered hollow cylinder was inves-
tigated. Moreover, the axisymmetric wave propagation in the double-walled CNT
was considered in a paper by Akbarov (2013a).

A paper by Akbarov et al (2011a) within the scope of the second version of the
small initial deformation theory of the TDLTEWISB it is investigated the disper-
sion relations of axisymmetric wave propagation in an initially twisted bi-material
compound cylinder. It was assumed that the constituents of the compound cylin-
der were isotropic and homogeneous and, in particular, it was established that as a
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result of the existence of the initial twisting, at least in one constituent of the consid-
ered compound cylinder, the axisymmetric longitudinal and torsional waves could
not be propagated separately, i.e. new axisymmetric waves, which differ from the
axisymmetric torsional and longitudinal waves, must appear.

In papers by Ozturk and Akbarov (2008, 2009a, 2009b), within the scope of the
second version of the small initial deformation theory of the TDLTEWISB, the
axisymmetric torsional wave propagation in the initially uni-axially stretched bi-
material compound cylinder was investigated. The elastic relations for the com-
ponents of the compound cylinder were obtained from the Murnaghan potential.
It should be noted that in all the foregoing investigations related to the torsional
wave propagation in the pre-stressed bi-layered compound cylinder it was assumed
that complete contact conditions were satisfied with respect to the contact surface
between the inner and outer cylinders. In a paper by Kepceler (2010) the problems
considered in the papers by Ozturk and Akbarov (2008, 2009a, 2009b) were ex-
amined for the case where the specified contact conditions were imperfect and the
numerical results on the effects of this imperfection on the influence of the initial
stresses on the wave propagation velocity are presented and discussed. In a paper
by Cilli and Ozturk (2010), the torsional wave propagation in a pre-stretched mul-
tilayered solid cylinder was studied within the scope of the assumptions used in
papers by Ozturk and Akbarov (2008, 2009a, 2009b).

Finally, in a paper by Akbarov et al (2011b) by utilizing the finite initial defor-
mation version of the TLTEWISB within the scope of the piecewise homogeneous
body model, torsional wave dispersion in a pre-strained three-layered (sandwich)
hollow cylinder was studied. The mechanical relations of the materials of the cylin-
ders are described through their harmonic potential.

Thus, in the present paper the investigations reviewed above are developed for the
flexural wave in the compound cylinder and namely by utilizing the field equations
of the linear theory of elastodynamics the flexural wave dispersion in the bi-material
compound solid and hollow cylinders are investigated. To the best of the author”s
knowledge, the investigations carried out in the present paper are the first attempts
on the flexural wave propagation in the compound cylinders.

2 Formulation of the problem and governing field equations

We consider the solid (Fig. 1a) and hollow (Fig. 1b) compound cylinders and as-
sume that the radius of the cross section of the interface cylindrical surface between
the cylinders is R. The thickness of the outer and inner hollow cylinders we denote
through h(1) and h(2) respectively. We determine the position of the points of the
cylinders in the cylindrical system of coordinates Orθz (Fig. 1). The values related
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to the inner and outer hollow cylinders will be denoted by the upper indices (2)
and (1), respectively. Within this framework, let us investigate the flexural wave
propagation along the Oz axis in the cylinders using the coordinates r, θ and z in
the framework of the linear theory of elastodynamics. Thus, we write the basic
relations of the linear theory of elastodynamics for the case under consideration.

(a) (b) 

 Figure 1: The geometry of the compound solid (a) and compound hollow (b) cylin-
ders
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In (2) the conventional notation is used.

Now we write the boundary and contact conditions:
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σ
(1)
rr

∣∣∣
r=R+h(1)

= 0, σ
(1)
rθ

∣∣∣
r=R+h(1)

= 0, σ
(1)
rz

∣∣∣
r=R+h(1)

= 0, (3)

the contact conditions on the interface surface between the cylinders are

σ
(1)
rr

∣∣∣
r=R

= σ
(2)
rr

∣∣∣
r=R

, σ
(1)
rθ

∣∣∣
r=R

= σ
(2)
rθ

∣∣∣
r=R

, σ
(1)
rz

∣∣∣
r=R

= σ
(2)
rz

∣∣∣
r=R

u(1)r

∣∣∣
r=R

= u(2)r

∣∣∣
r=R

, u(1)
θ

∣∣∣
r=R

= u(2)
θ

∣∣∣
r=R

, u(1)z

∣∣∣
r=R

= u(2)z

∣∣∣
r=R

(4)

and boundary conditions on the inner surface of the inner hollow cylinder
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Note that the boundary condition (3) and contact condition (4) occur both for the
solid and hollow compound cylinders, but the boundary condition (5) occurs for
the hollow compound cylinder only.

This completes formulation of the problem and consideration of the governing field
equations.

3 Solution procedure and obtaining the dispersion equation

For solution of the eigenvalue problems (1) – (5) we use the representation proposed
by Guz (2004):
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For the flexural waves we represent the functions Ψ and X as follows:
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In (10) and (11), c is the phase velocity of the flexural waves.

Thus, we find the solution of the equations in (9) as follows:

for the inner solid cylinder
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In (15), Jn(x) and Yn(x) are Bessel functions of the first and second kind of the
n− th order, In(x) and Kn(x) are Bessel functions of a purely imaginary argument
of the n− th order and Macdonald functions of the n− th order, respectively.

Thus, using relations (6), (12) – (14) and (2) we obtain the dispersion equation
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for the compound solid cylinder from the boundary (3) and contact (4) conditions,
as well as the dispersion equation
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for the hollow compound cylinder from the boundary (3), (5) and contact (4) con-
ditions. We here do not give the explicit expressions of β s

i j and β h
i j, because they

can easily be determined from the corresponding expressions given in a paper by
Akbarov (2013b).

4 Numerical results and discussions

The numerical results are obtained for steel (St), tungsten (Tg) and aluminum (Al).
Note that the material of the internal cylinder is selected as steel (St) (it will be
denoted as Case 1) or tungsten (Tg) (it will be denoted as Case 2), but the material
of the external hollow cylinder is selected as aluminum (Al). All mechanical char-
acteristics of these materials and their notation, which will be used below, are given
in Table 1. The values of the velocity of wave dilatation and bar velocity for these
materials are given in Table 2. Note that the data given in the tables are selected
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Table 1: The values of elastic constants of selected materials.
Materials Density Young’s moduli Pois.’s ratio

Steel (St) Steel (St) ρSt×10−3=7.795kg
/

m3 ESt×10−4=19.6MPa νSt=0.27
Tungsten (Tg) ρT g×10−3=19.3kg

/
m3 ET g×10−4=34.3MPa νT g=0.28

Aluminum (Al) ρAl×10−3=2.77kg
/

m3 EAl×10−4=7.28MPa νAl=0.30

Table 2: The wave velocity of the selected materials.
Materials Velocity of wave of

dilatation
Bar velocity The values of

velocity ratio
Steel (St) c(1)2,St×10−3=3.152m/s c(1)b,St×10−3=5.025m/s c(1)b,St/c(1)2,St=1.594

Tungsten (Tg) c(1)2,T g×10−3=2.63m/s c(1)b,T g×10−3=4.219m/s c(1)b,T g/c(1)2,T g=1.604

Aluminum (Al) c(2)2,Al×10−3=3179m/s c(2)b,Al×10−3=5.126m/s c(2)b,Al/c(2)2,Al=1.612

according to Guz (2004) and Guz and Makhort (2000). Assume that n = 1 in (8) –
(15).

The dispersion equations (16) (for the solid compound cylinder) and (17) (for the
hollow compound cylinder) are solved numerically by employing the algorithm
and PC programs which were used in the previous papers by the author, such as
Akbarov (2013b), Akbarov and Ipek (2010, 2012) and others. We recall that in
the paper by Akbarov (2013b) the dispersion of the flexural wave dispersion in
the finite pre-strained solid and hollow cylinders made of highly elastic material
was studied and programs which were used under this studying were tested by
the known classical results obtained for example in papers by Abramson (1957).
Therefore, the PC programs used in the investigations carried out in the paper by
Akbarov (2013b) after corresponding development and change are employed for
the numerical solution of the equations (16) and (17). Consequently, the algorithm
and PC programs used in the present numerical investigations has been already
tested, although we will also consider below some fragments on the mentioned
testing.

Thus, we analyze numerical results and begin this analyze with graphs given in
Fig. 2 which show dispersion curves related to the first mode in Case 1 (Fig. 2a)
and in Case 2 (Fig. 2b) for the solid compound cylinder (Fig. 1a). In Fig. 2 the
corresponding dispersion curves for the inner solid cylinder made of Tungsten and
for the hollow cylinder made of Aluminum are also illustrated. It follows from
Fig. 2 that the flexural wave propagation velocity in the compound solid cylinder
is greater than the flexural wave propagation velocity in each constituents of this
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(a) 

 

(b) 

 
Figure 2: Dispersion curves for the compound solid cylinder related to the first
mode in Case 1 (a) and in Case 2 (b)
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cylinder.

 

(a) 

 

 

(b) 

 

 Figure 3: Dispersion curves for the compound solid cylinder related to the second
mode in Case 1(a) and in Case 2 (b)
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The same type results are also observed for the second mode of the flexural wave
propagation velocity in the compound solid cylinder the dispersion curves of which
are given in Fig. 3 in Case 1 (Fig. 3a) and Case 2 (Fig. 3b). Note that in Fig. 3 the
corresponding dispersion curves related to the inner solid and outer hollow cylin-
ders are also illustrated. Consequently, it can be conclude that the compounding
of the cylinders causes to increase of the flexural wave propagation velocity in that
with respect to the flexural wave propagation velocity in its constituents. This can
be explained with the fact that the dilatational wave propagation velocity c(2)2,Al for

Aluminum is greater than c(2)2,St in Steel and c(2)2,T gin Tungsten. Moreover, the fore-
going increasing of the wave propagation velocity in the compound cylinder is also
caused by the change of the geometry of the cross section of the cylinder after
compounding procedure.

The comparison of the dispersion curves constructed in Case 1 with the correspond-
ing ones constructed in Case 2 shows that the flexural wave propagation velocity in
Case 1 is greater than that in Case 2. This statement can be explained with the fact
that the dilatational wave propagation velocity c(2)2,T g in Tungsten is less than c(2)2,St in
Steel.

Now we analyze the limit values of the flexural wave propagation velocity in the
first mode as kR→ 0 and as kR→∞. It follows from the graphs given in Fig. 2 that

c/c2.T g→ 0, c/c2.St → 0 as kR→ 0 (18)

and

c/c2.T g→ cR.Al/c2.T g, c/c2.St → cR.Al/c2.St as kR→ ∞, (19)

where cR.Al is Rayleigh wave velocity in Aluminum. Note that the limit relations
(18) and (19) do not depend on the ratio h(1)/R. Moreover note that, in general, if
there exists the Stoneley wave for the selected pair of materials of the constituents
of the compound cylinder, then we must write

c/c2.T g→min{cR.Al/c2.T g;cS/c2.T g} ,
c/c2.St →min{cR.Al/c2.St ;cS/c2.St} ; as kR→ ∞,

(20)

instead of the relation (19).

The observation of the dispersion curves related to the first mode (Fig. 2) shows
that for the relatively great values of the ratio h(1)/R, for instance, for h(1)/R≥ 0.5,
there appear the points (denote it as kR = (kR)∗) at which

d(c
/

c(2)2.T g)

d(kR)

∣∣∣∣∣∣
kR=(kR)∗

= 0,
d(c
/

c(2)2.St)

d(kR)

∣∣∣∣∣∣
kR=(kR)∗

= 0, (21)
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Figure 4: Dispersion curves for the compound hollow cylinder related to the first
mode in Case 1 (a) and in Case 2 (b)
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(a) 

 

(b) 

 
Figure 5: Dispersion curves for the compound hollow cylinder related to the second
mode in Case 1 (a) and in Case 2 (b)
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and the values of the (kR)∗ decrease with the h(1)/R.

The equation (21) means that there exists such value of the dimensionless wavenum-
ber kR, i.e. the value kR = (kR)∗, under which the group velocity of the flexural
wave in the compound solid cylinder becomes equal to the corresponding phase
velocity of that. It should be noted that such statement does not appear for the solid
cylinder, but appears for the corresponding hollow cylinder under relatively small
values of the h(1)

/
R, for instance, in the cases where h(1)

/
R≤ 0.3. However, in the

cases where h(1)
/

R > 0.3 the foregoing type points do not appear in the dispersion
curves related to the solid compound cylinder.

Thus, it follows from the foregoing discussions that the dispersion curves of the
flexural waves in the compound solid cylinder differ from those in the correspond-
ing solid and hollow cylinders not only in the quantitative sense, but also in the
qualitative sense.

Now we consider numerical results related to the compound hollow cylinder. The
dispersion curves of the compound hollow cylinder related to the first mode are
given in Fig. 4 for Case 1 (Fig. 4a) and for Case 2 (Fig. 4b). In Fig. 4 the
corresponding dispersion curves related to the external hollow cylinder are also
given. It follows from these graphs that as a result of the compounding of the
cylinders the flexural wave propagation velocity increases and, as in the compound
solid cylinder, this increasing can be explained with the inequalities c(2)2,Al > c(2)2,T gand

c(2)2,Al > c(2)2,St , as well as with the fact that the thickness of the compound hollow
cylinder is greater than the thickness of the outer hollow cylinder.

The relation (18) occurs also for limit values of the flexural wave propagation ve-
locity in the compound hollow cylinder in the first mode as kR→ 0. However, the
relation related to the limit values of the flexural wave propagation velocity in the
compound hollow cylinder in the first mode as kR→ ∞ is more complicate than
that for the compound solid cylinder, i.e. than that given in Eq. (19). Namely, we
obtain the following limit relations instead of the Eq. (19) for the compound hollow
cylinder from the asymptotic analyses of the dispersion equation (17) and from the
physical consideration related to the problem under investigation.

c/c2.T g→min{cR.Al/c2.T g;cR.T g/c2.T g} ,

c/c2.St →min
{

cR.Al
/

c2.St ;cR.St
/

c2.St ;
}

as kR→ ∞, (22)

and, if there exists the Stoneley waves for the pair of materials of the constituents
of the compound hollow cylinder we must write the following one instead of the
Eq. (22).

c/c2.T g→min{cR.A1/c2.T g;cR.T g/c2.T g;cS/c2.T g}
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c/c2.St →min{cR.A1/c2.St ;cR.St/c2.St ;cS/c2.St} as kR→ ∞ (23)

In the relations (22) and (23) the velocities of the Rayleigh and Stoneley waves
velocities are indicated through the lower index R and S respectively.

According to the graphs given in Fig. 4 we can conclude that the relation (21)
occurs also for the compound hollow cylinder. However, for the compound hol-
low cylinder this relation takes place not only for the relatively great values of
the h(1)

/
R(= h(2)

/
R) (for instance, in the cases where h(1)

/
R≥ 0.5), but also

for the relatively small values of the h(1)
/

R(= h(2)
/

R) (for instance, in the case
where h(1)

/
R≥ 0.1). Consequently, there exists also such values of the h(1)

/
R(=

h(2)
/

R)(for instance, in the case where h(1)
/

R = 0.3) under which the relation (21)
does not satisfy.

Finally, we note the following statement. According to the mechanical consid-
eration, the results obtained for the compound hollow cylinder must approach to
the corresponding ones obtained for the compound solid cylinder with h(1)

/
R(=

h(2)
/

R). The comparison of the results calculated for the compound hollow cylin-
der in the cases where h(1)

/
R(= h(2)

/
R)= 0.75 and 0.90 (Fig. 4) with the results

calculated for the compound solid cylinder in the cases where h(1)
/

R= 0.75 and
0.90 (Fig. 2) proves the foregoing consideration and again validate the algorithm
and PC programs used in the present investigations.

5 Conclusions

Thus, in the present paper it has been made the attempt to study the flexural wave
dispersion in a bi-material solid and hollow circular cylinders with the use of the
three-dimensional linear theory of elastodynamics. It is assumed that on the in-
terface surface of the cylinders the complete contact conditions satisfy. The ana-
lytical solution of the corresponding field equations is presented and, using these
solutions, the dispersion equations for the cases under consideration are obtained.
The dispersion equations are solved numerically and based on these solutions, dis-
persion curves are constructed for the concrete selected pairs of materials such as
Tungsten (inner cylinder material) + Aluminum (outer cylinder material) and Steel
(inner cylinder material) + Aluminum (outer cylinder material).

The numerical results are obtained for the first and second lowest modes. Accord-
ing to these numerical results the influence of the problem parameters, such as the
thicknesses of the external and inner cylinders and the materials of the inner cylin-
der material, on the character of the dispersion curves is analyzed. According to
these analyses it is established that the dispersion curves of the flexural waves in
the compound solid cylinder differ from those in the corresponding solid and hol-
low cylinders not only in the quantitative sense, but also in the qualitative sense.
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Moreover, according to these analyses, it can be made the following concrete con-
clusions:

• the flexural wave propagation velocity in the compound cylinder is greater
than that in the constituents of this cylinder;

• the low wavenumber limit values as kR→ 0 of the first mode of the flexu-
ral wave propagation velocity in the compound cylinders, as the same limit
values of that in the constituents of the cylinder, are determined with the
expression (18);

• the high wavenumber limit values as kR→∞ of the first mode of the flexural
wave propagation velocity in the compound solid cylinder are determined by
the expressions (19) and (20), but in the compound hollow cylinder with the
expressions (22) and (23);

• an increase in the thickness of the outer hollow cylinder of the solid com-
pound cylinder causes to appear a such value of the dimensionless wavenum-
ber kR under which the relation (21) takes place, i.e. under which the group
velocity of the flexural wave propagation velocity becomes equal to its phase
velocity;

• the foregoing type behavior of the dispersion curves takes also place for the
flexural wave propagation in the compound hollow cylinder. However, in the
latter case this behavior occurs not only for the relatively great values of the
thickness of the inner and outer cylinders, but also for the relatively small
values of that and there exist such values of this thickness under which the
wave propagation velocity of the flexural wave increase monotonically with
the dimensionless wavenumber.
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