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Symmetric Coupling of the Meshless Galerkin Boundary
Node and Finite Element Methods for Elasticity

Xiaolin Li'

Abstract: Combining moving least square (MLS) approximations and boundary
integral equations, a symmetric and boundary-only meshless method, the Galerkin
boundary node method (GBNM), is developed in this paper for two- and three-
dimensional elasticity problems with mixed boundary conditions. Unlike other
MLS-based meshless methods, boundary conditions in this meshless method can
be applied directly and easily. In the GBNM, the stiffness matrices so obtained are
symmetric. The property of symmetry is an added advantage in coupling the GB-
NM with the finite element method (FEM). Thus, a symmetric coupling of the GB-
NM and the FEM is also discussed for elasticity problems. Error analysis and con-
vergence study of the GBNM and the coupled GBNM-FEM are given in Sobolev
spaces. For demonstration purpose, some numerical examples are presented.
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1 Introduction

Meshless (or meshfree) methods have been proposed and achieved remarkable
progress in the past two decades [Atluri (2004); Li and Liu (2004); Liu (2009)].
Compared with traditional mesh-based numerical methods such as the finite ele-
ment method (FEM) and the boundary element method (BEM), meshless methods
get rid of, or at least alleviate, the difficulty of meshing and remeshing the entire
structure by simply adding or deleting nodes. Meshless methods have developed
so fast that they are applied successfully to a variety of science and engineering
problems.

The moving least square (MLS) is an approximation scheme of constructing contin-
uous functions from a set of unorganized sampled point values. Since the numerical
approximations start from scattered nodes instead of elements, the MLS scheme is
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one of the most extensively used schemes to form the meshless shape function-
s. Some MLS-based meshless methods, such as the element-free Galerkin (E-
FG) method [Liu (2009)], the h-p meshless method [Duarte and Oden (1996)], the
moving least square reproducing kernel method (MLSRKM) [Li and Liu (1996)]
and the meshless local Petrov-Galerkin (MLPG) method [Sladek, Stanak, and Han
(2013)] have been developed. They are domain type, as the FEM, in which the
problem domain is discretized by nodes.

The boundary integral equation (BIE) is an important and attractive computational
tool as it can reduce the dimensionality of the considered problem by one. The
boundary type meshless methods are developed by the combination of the mesh-
less idea with BIEs, such as the boundary node method (BNM) [Mukherjee and
Mukherjee (2005)], the boundary cloud method (BCM) [Li and Aluru (2002)], the
hybrid boundary node method (HBNM) [Miao, He, and Luo (2012)] and the bound-
ary face method (BFM) [Zhang, Qin, Han, and Li (2009)]. In these methods, the
MLS scheme is used to generate the shape functions on the boundary of a domain.
These methods take the advantages of both the BIE in dimension reduction and
the MLS scheme in elements elimination. However, since the MLS scheme lacks
the delta function property, they cannot exactly satisfy boundary conditions. The
technique used in the BNM to impose boundary conditions doubles the number of
system equations. This technique is also used in the BCM, the HBNM and the
BFM, together with the addition of a penalty formulation.

Liew, Cheng, and Kitipornchai (2006) developed an improved MLS scheme that us-
es weighted orthogonal polynomials as basis functions. The improved MLS scheme
has been introduced into BIEs to develop a boundary element-free method (BEFM).
Because the improved MLS scheme still lacks the delta function property, boundary
conditions in the BEFM are implemented with constraints. To construct meshless
shape functions with delta function properties, Li and Li (2014) discussed mathe-
matically an improved interpolating MLS scheme and developed an interpolating
BEFM for potential problems and unilateral problems. Besides, Liu ef al. devel-
oped the point interpolation method (PIM) and introduced it into BIEs to produce
boundary PIMs [Gu and Liu (2003); Liu (2009)]. Recently, Li (2014) developed a
dual boundary node method (DBNM) for implementation of boundary conditions
in BIEs-based meshless methods. In the DBNM, boundary conditions are intro-
duced directly into dual BIEs including the conventional BIE and hypersingular
BIE. Consequently, the DBNM can apply boundary conditions directly and easily,
and the number of both unknowns and system equations in the DBNM is only half
of that in the BNM.

Li and Zhu (2009b) and Li (2011a) developed a boundary type meshless method
called the Galerkin boundary node method (GBNM). It combines the MLS scheme
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with a variational (weak) version of BIEs. The MLS scheme is implemented for
constructing the trial and test functions of the variational form, thus only the bound-
ary of a problem domain is discretized by a set of scattered nodes instead of ele-
ments. Unlike other MLS-based methods mentioned above, boundary conditions
in the GBNM do not present any difficulty and can be implemented with ease via
multiplying the MLS shape function and integrating on the boundary. The GBNM
has been applied to elastic problems with pure displacement boundary conditions
[Li and Zhu (2009a)] and pure traction boundary conditions [Li and Li (2013)].
It is well known that mixed boundary value problems play an important role in
many different applications of physics, mechanics and engineering. In this paper,
the GBNM is further developed for solving elastic problems with mixed boundary
conditions of displacement and traction type.

In contrast with other boundary type meshless methods aforementioned, another
outstanding feature of the GBNM is the conservation of the symmetry and positive
definiteness of the variational problems in the process of numerical implementa-
tion. The property of symmetry can be an added advantage in coupling the GB-
NM with other numerical methods. Some coupled methods, such as the coupled
BEM and FEM [Brebbia and Georgion (1979); Stephan (2004); Beer (2001); Gan-
guly, Layton, and Balakrishna (2000); Haas and Kuhn (2003); Dong and Atluri
(2012a,b, 2013)], the coupled EFG and FEM [Belytschko and Organ (1995)], the
coupled MLPG and FEM [Liu (2009)], the coupled MLPG and BEM [Tadeu, S-
tanak, and Sladek (2013)], the coupled improved EFG and BEM [Zhang, Liew, and
Cheng (2008)], and the coupled reproducing kernel particle boundary element-free
method (RKPBEFM) and FEM [Qin and Cheng (2008)], have been developed. In
this paper, based on the coupled techniques propose by Ganguly, Layton, and Bal-
akrishna (2000), Haas and Kuhn (2003), Zhang, Liew, and Cheng (2008) and Qin
and Cheng (2008), a direct symmetric coupling of the GBNM and the FEM is al-
so developed for elasticity problems. In the present coupled method, the resulting
coupling matrix is symmetric and positive definite.

Error analysis and convergence study, which ensure convergence of numerical meth-
ods, are crucial in meshless research. The associated mathematical proofs guaran-
tee that meshless methods will converge to the true solution. Over the past two
decades, it has been developed so fast in the areas of meshless research from both
computational and mathematical point of views. A large amount of research has
been devoted to deriving error estimation for MLS-based domain type meshless
methods such as the s-p meshless method [Duarte and Oden (1996)], the MLSRK-
M [Li and Liu (1996)] and the finite point method [Cheng and Cheng (2008)]. Nev-
ertheless, although boundary type meshless methods perform very well in practice,
not much is rigorously known on the mathematical foundation of these schemes.
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Until now, a rigorous mathematical analysis of boundary type meshless methods
was given for the GBNM for potential problems [Li and Zhu (2009b); Li (2011a,
2012)], for Stokes problems [Li and Zhu (2009¢); Li (2011b)] and for elastici-
ty problems with pure displacement or traction boundary conditions [Li and Zhu
(2009a); Li and Li (2013)]. Thus, one aim of this paper is to provide a solid
mathematical foundation to the GBNM for the mixed boundary value problems
of elastostatics. Besides, the error analysis and convergence study of the coupled
GBNM-FEM are also presented in Sobolev spaces.

An outline of this paper is as follows. In Section 2 we give a detailed numerical
implementation and error analysis of the GBNM for elasticity problems with mixed
boundary conditions. Section 3 deals with the GBNM-FEM coupling approach and
the corresponding error analysis. Numerical examples are presented in Section 4.
Section 5 contains conclusions.

2 The GBNM for mixed elasticity problems
2.1 BIEs

Let Q be a bounded or unbounded domain in R? (d = 2,3) with boundary I" =
r,ur;, I,nl;=0,I, # 0, with given displacement data on I';,, and traction data
on I'y. In linear elasticity for isotropic materials, the governing equation is

uAu+ (A +u)vV(V-u)=0, inQ (1)

where u = (uj,uy,- - ,ud)T is the displacement field; A and u are classical Lamé
constants; A, V and V- stand for the Laplacian, gradient and divergence operators,
respectively. Suitable boundary conditions are associated with this field equation.
They can be of the following types:

u=1u, onl, 2)
t=o-n=t, onl, 3)
where t = (t1,,- - ,td)T is the boundary traction, o is the stress tensor, n is the

outward normal direction on I', and @ = (i, itp, - - - ,IZd)T and t = (f],5, - ,fd)T
are the given displacement and traction, respectively.

Egs. (1)-(3) compose the standard mixed boundary value problem of linear elastic-
ity. The associated BIE is [Zhu and Yuan (2009)]

ux) = [V - [T,xy)u@d. xco @
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where X = (x1,x2, - ,xd)T is the source point, y = (y1,y2,- - ,yd)T is the field point,
and U (x,y) = [U;; (x, y)]lfl_j: , is the fundamental solution of the Lamé system (1),

A+3u
4w (d—1)u (A +2u)

A+p (x—y)(x—y)"
A+3u rd

U(x,y) = E(x,y)I+

Here, I is the identity matrix, r = [x —y/|, E (X,y) = —Inr ford =2 and E (x,y) =
1 / r for d = 3. Let .7 be the differential operator which transforms a displacement
field in Q into the corresponding traction on its boundary. When the derivatives
are taken with respect to x or y, then we denote it by 74 and .75, respectively.
Under this notation, Ty (x,y) = (ZU (x, y))" is the strongly singular fundamental
solution.

In Eq. (4), letting x tend to I', we obtain the strongly singular displacement BIE

Ju(x) = () (9~ () (x),  xeT )

Then applying the operator 7% to Eq. (5) yields the hypersingular traction BIE

%t(x) = (1) () + (Zru) (x), xeT (©)

In Egs. (5) and (6), we have used the standard notations for the boundary integral
operators defined on I,

(414) ( /ny dr (y)

(u) ( /T x,y)u(y)dL(y)
(A1) ( /Txy dr(y)
and

(Zrw) (x) = - [ Sy uE)IE)

Here, Tx (x,y) = ZU (x,y) and S (x,y) = ZTy (X,y) are the strongly singular and
hypersingular fundamental solutions, respectively.

Obviously, the kernel functions are symmetric, i.e., U=UT, S = ST and Ty =
Ti. Thus, to find the complete Cauchy data [u,t]|.- and to achieve a symmetric
formulation, Eq. (5) is used where the boundary traction t is unknown, while Eq.
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(6) is used where the boundary displacement u is unknown. Then according to
boundary conditions (2) and (3), we get the following BIEs:

O, (%) — (0 (%) = 28 (%) + (H6,8) ()~ (1) (x), xe T )
(AL )+ (5w () = 3T~ (D 0~ (7,8 (), xeT, @)

2.2 Variational formulation

Let

Hf(r):{u|r:uer“/?(Rd)}, H° () := (H* (D)), ©>0

denote the usual Sobolev space of functions defined on I' [Zhu and Yuan (2009)].
In the following, we often write ||-[| - for the Sobolev norm |- || ge .-

Besides, let H™7 (T") be the dual space of H* (I') with respect to the duality (-,-)
which is defined for functions w and v by

)= [w()v()dr )

Moreover, let

A7 () =H"([,)xH" (), 1€R

with norm

(w3 = [t + [[ull

Then Eqs. (7) and (8) lead to the following variational problem:

Find (t,u) € 27~ '/2(T) such that 9
B((tu),(t.0)) =L(t, W), V(¢,u)e. 12T ©)

where

B((tw). (V) = (0, — (i) + (L) + (Fru),

1 _ 1. -
L(tw)=(za+o0-7tt ) +(-t—24t—Zrau

2 r, 2 ! r,
The unique solvability of the variational problem (9) follows from the continuity
of the boundary integral operators introduced above and the coerciveness of the
operators ¥ and 7.
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2.3 Approximation

Let {x;}}_, be a set of N boundary nodes x; € I" and let

h = max min ’x,—xJ’
I<i<N1<j<N

represent the nodal spacing. To simplify the representation, we further assume that
the first N, boundary nodes {xi}{\ﬁ , C I', and the rest N — N,, nodes {xi}fl, N1 C L

Based on {Xl} _; alone, the MLS approximation of u and t can be written as

Ny

t(x)~.#t(x)=) &;(x)t;, xeIl, (10)
i=1

u(x) =~ Z ®;(x)u;, xcI; (11)
i=N,+1

where .# is an approximation operator, t; and u; are the nodal values, and ®; is
the shape function of the MLS approximation, which can be defined as [Li and Zhu
(2009b); Li (2011a)]

B
0 (x) — ij(s)[A I(S)B(S)Lk, i=LENM, .

Jj=1

0, i ¢ N(Xx),

where s is a local coordinate of the boundary point x on I', P;(s) is a basis of
order f3 consisting of monomials in s, A (x) = {I}, 5, - , I} is the set of the global
sequence numbers of boundary nodes that lie on the influence domain of x, and the
matrices A (s) and B (s) are defined by

Z wi(s PT (s))

JEA(X)

B (S) = [W[l (S)P(Sll ) »Wh (S)P(Sb) W (S)P(SIK)]

in which P(s) = [Py (s), P, (s),-- ,Pg (s)] B w;j (s) is a weight function and s; is the
curvilinear coordinate of x;.

In what follows, we assume that there exists a positive number y > 1 / 2 such that the
chosen weight function w; is y-times continuously differentiable and the boundary

I' is y-times piecewise continuous. Then we can conclude that the MLS shape
function ®; is y-times continuously differentiable [Li and Zhu (2009b); Li (2011a)].
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Let
A, = (span {®@;,1 < i < N})* (13)
be the meshless space. Then the approximation of the variational problem (9) is

{ Find (t,,u;,) € 5, such that (14)

B((ty,uy), () =L(t',v), V(' )eH
2.4 Discretization

Inserting Egs. (10) and (11) into the variational problem (14), we get the following
linear algebraic equations

(XT BA)<§;>:<§:’> ()

where X; is the vector of dN, unknown nodal values t; = (¢1;,2;,- - ,td,-)T, X, is the

vector of d (N —N,;) unknown nodal values u; = (ulj,uzj, .- ,udj)T. The block
matrices used in Eq. (15) are given by

V= [qu]z,q:p Vg [k, 1] / / D; (y) Upg (x,y) P (x) dI" (y)dI (x) (16)

A=Apll e Aplkd)= [ [ @)1y, x) @ x)ACHIR) (17)

D= [qu]z,q:p Dy [m, j] = / . D; (y)Spq (x,¥) P (x)dI (y)d (x) (18)

forall k,i=1,2,--- ,N,and m,j =N, +1,N,+2,--- ,N. The components of the
right-hand side are given by

F,=[F_,, F = [F”]p 1

with
2/ i, (%) @y (x) T (x +/ / v) o (%) iy (¥) D (x) AT (y)dT (x)
[ [ U 3 () @1 (1) T (1) (x) 19)

Bl =5 [ 5000 (0)d00 = [ [/ (1), (5.3)7 () @5 (4T (1) (x)

+ /F [ S04 (5:3) 8 () B ()T (v)dT (3 (20)
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forallk=1,2,--- ,Nyandm=N,+1,N,+2,--- ,N.

From the symmetry of the kernel functions and the coerciveness of the operators
¥ and &, we conclude that the block matrices V and D are symmetric and pos-
itive definite. Hence, the stiffness matrix in Eq. (15) is block skew-symmetric
and positive definite. Then, one can solve Eq. (15) by a generalized Krylov sub-
space method such as the generalized minimum residual method (GMRES). Since
this method can not utilize symmetry and positive definiteness simultaneously and
sufficiently, equivalent system equations deserve to be established for the practical
numerical implementation.

On the other hand, the symmetry and positive definiteness of the block matrix V
indicate that it is invertible. Thus, X; can be obtained from the first of Eq. (15) as

X, =V 1 (F,+AX,) 1)

Then, inserting Eq. (21) into the second of Eq. (15) leads to the Schur complement
system

(ATV'A+D)X,=F,—A"V'F, (22)

The stiffness matrix in Eq. (22) is symmetric and positive definite, a property that
enables the use of more efficient equation solvers and therefore leads to substantial
reductions in solution time. Moreover, this property can be an added advantage
in coupling the GBNM with the FEM. After solving the reduced system (22), the
unknown vector X; can be computed in a postprocessing step via Eq. (21) from
the now known vector X,,. Finally, the yet unknowns t on I', and u on I'; can be
computed using Eqs. (10) and (11), respectively. Then, the approximate solution
u;, of the mixed elastic problem (1)-(3) can be computed from Eq. (4) as

w00 = [ U6 @I+ [ (UEy)dr)

[ AW E - [ m@TxrE, xee @3
Egs. (16)-(20) and (23) have integrations over the boundary. As in many other
meshless methods such as the EFG and the BNM, cells are used in this research
to approximate the boundary and carry out numerical integration. It is worth men-
tioning that cells are used just for integration, and pose no restriction on shape or
compatibility. In these integrations, if x and y belong to distinct cells, the inte-
grands are regular and thus, the associated double integrals can be evaluated by
usual Gaussian quadrature formulas. Otherwise, these double integrals are weakly
singular, strongly singular or hypersingular. There have been various regulariza-
tion procedures proposed in the past to handle various singular integrals. Li (2012)
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developed a technique to tackle the weakly singular, strongly singular and hyper-
singular integrations simultaneously. This technique is attractive and is used to
carry out the singular integrations in this research.

2.5 Error analysis

In this subsection, we will estimate the error of using the GBNM for solving the
mixed elastic problem (1)-(3). In what follows, by C we will denote a general
constant which is independent of 4 and may have different values at different oc-
currences.

Lemma 2.1 (Li and Zhu (2009b); Li (2011a)) Let .# be the MLS approximation
operator and let P be the L*-projection onto 74, then for any v € H™! (') with
0<m< v, we have

—k
”V—///VHk,FSChmH [Vllpr s O<k<m
Iv=2Ver <CH K V] ps —(r+1) <k<m

Theorem 2.1 Let (t,u) and (t;,uy) be the solutions of variational problems (9)
and (14), respectively. Then if (t,u) € 7™ ('), we have

It w) =ty w) |y o < CH 2|8 )0y 1/2<m <y

Proof. Subtraction Eq. (14) from Eq. (9) leads to

B((t,u)— (ty,uy), (t,0')) =0, (t,u') e (24)
then using (2t, #a) — (t,,u;,) € 7, yields

B((t,u) — (ty,uy), (t,u) — (ty,u,)) = B((t,u) — (ty,uy), (t,u) — (Pt, A ) (25)
According to the coerciveness and continuity of the bilinear form B (-, ), we have

B((t.u) — (ty, ), (t,w) = (t,w3)) = C [ (tw) = (t,w,) 2o (26)

B((t,u) — (ty,up), (t,u) — (2t, A ))
< C|l(tu) = (tw,w) ||y o r [[ (8 0) = (28, A 0)|| o 1 @27
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Gathering Eqs. (25)-(27) and using Lemma 2.1 we finally obtain
[(t,w) = (t,w) ||y o r S Cl(Ew) = (Pt A )|y
5 ) 1/2
= (lt= 242 o, + Il — 2wl )
2m+1 2 2m+1 2 12

< (W, + 2 )
=Ch" Pt )],

which completes the proof.

Theorem 2.2 Under the conditions of Theorem 2.1,

I(t. ) = (th,wp)l| g p < CH" |t W), p.  1/2<k<m<y

Proof. From the duality argument it follows that

||(t,u)—(th,uh)H,kF§C sup |B(<t7u)_(th>uh)7(fnu))|
’ (T,0)e*1(T) H(Ta.u)Hk—l,F

(28)

Since & (t,u) € 4, from Eq. (24) one gets

B((tu ll) - (th,llh) ) (Thu’)) = B((t7 l,l) - (thauh) ) (Thu’) -2 (Thu))
Then using the continuity of B(-,-), Theorem 2.1 and Lemma 2.1 yields

B((t,u) = (tw,u), (7, 1)) < C[(t,u) = (t,wn) [ 1o 017, 1) = Z (7. )] 1 or
< CH" (4 w) L, 0 1(7 ) [y (29)

Finally, inserting Eq. (29) into Eq. (28) ends the proof.

Theorem 2.3 Let u and wy, be defined by Egs. (4) and (23), respectively. As-
sume that (t,u) € ™ (L) with 1/2 < m <. Then for any x € Q with lx =
minycr [X—y| > 6 > 0, we have

2o
u) —w (x| <CY 6T ()],
j=1

Proof. Subtraction Eq. (23) from Eq. (4) yields
Ju (x) =, (x)]
~|[ U (60~ 6)ar®) - [ @) w3 T, k)

t

<OV lyr, It =tull —yr, + 1Ty ¥y o= wallyy (30)
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Using /x > & > 0, we have

7+2 ) 7+2
LCSOIMELe) WA e TR V) =opn G31)
j=1 :

Thus, substituting Eq. (31) into Eq. (30) and invoking Theorem 2.2 end the proof.

Theorem 2.3 indicates that the approximate solution obtained by the meshless GB-
NM converges to the analytical solution of the elastic problem (1)-(3). The same
type of estimate can be obtained for the stress tensor 0. More specifically, we have

Theorem 2.4 Let 0 be the exact stress solution of the elastic problem (1)-(3) and
let oy, be the corresponding GBNM solution, then under conditions of Theorem 2.3,

y+2

o (%)~ 0, (x)| <C Y &7 " |(tw) ],
j=1

Theorems 2.3 and 2.4 indicate that the errors of stress and displacement in the
meshless GBNM are all of the same convergence rate.

Furthermore, the convergence can be established in energy norms.

Theorem 2.5 Let u and vy, be defined by Egs. (4) and (23), respectively. If (t,u) €
™ (D) with 1/2 < m <y, then

H“_“hHl,Q <Ccp? ”(t7“)|’m,r

Proof. Since Eq. (4) defines an isomorphism from #~!/2(T") onto H' (Q), we
have

u—wpll; o < [[(t;w) = (t,wi) ||y o r

The proof is completed via invoking Theorem 2.1.

3 Coupling of the GBNM and the FEM
3.1 Coupled formulation

As shown in Fig. 1, a bounded or unbounded problem domain €2 is decomposed in-
to two disjoint sub-domains, Qs and QF, with the GBNM-FEM coupling interface
I';. The GBNM is used in Qg and the FEM is used in Qp. Without loss of general-
ity, it is assumed that both displacement and traction boundary conditions are given
on I'g and I'r. The boundaries of Qg and Qf are denoted as I'g =1',c U, UIY
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/_./""'_ \I‘ 3
Q |
|¥I

i Qg

(a) (b)

Figure 1: The coupling domain of the GBNM and the FEM. (a) the problem domain
Q is bounded and (b) the problem domain £ is unbounded.

and I'r = I'yr UTLp U, respectively. Note that if the problem domain Q is un-
bounded, as shown in Fig. 1(b), both the displacement boundary I';, and traction
boundary I'; are empty. We consider the model boundary value problems as

V.6=0, inQg (32)
V.o=b, inQr (33)
u=1i, onl,=T,cUlr (34)
t=o0-n=t, onl,=T,cgUlr (35)

where b is the body force, and o is the stress tensor given by ¢ = .o (u). Here, the
operator .27 is uniformly monotone and Lipschitz continuous. In Qg, this operator
is linear as .« (u) = Atre (w) I+ 2ue (u), where I is the unit matrix, tr is the trace

operator and € (u) = 3 (Vu + (Vu)T> is the strain. In Qp, the operator .27 may be
linear or nonlinear. Examples of nonlinear cases can be found in [Stephan (2004)].

In the GBNM sub-domain Qg, applying Eq. (5) forx € I',, and Eq. (6) forx € [';¢,
according to boundary conditions (34) and (35), we gain

1 _
Vgt Vot = A gu = o = S0+ 0= I (36)

1 - _
S A+ A+ Drgu+ Dru = 5t—;ifr’th—@ruGu (37
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Then, as in Sections 2.2 and 2.4, evaluating Eqs. (36) and (37) in the sense of
Galerkin yields

TI
Vul Vuu _Aul _Aut T o fz (38)
Atl} Al, Dy Dy LOLN RN i

Ul

where T/ and T* are the traction vector at the nodes on I'; and I',g, respectively;
U’ and U are the displacement vector at the nodes on I'; and I';g, respectively. In
the matrices V;;, A;; and D;;, the first index denotes the position of the source point
x and the second index stands for the position of the field point y.

Since both the displacements and tractions are unknown on the interface I';, apply-
ing Egs. (5) and (6) for x € I'; we gain

S Tt i A0 0 = g8 (39)
—%t+yifr’u0t+</"i/r’,t+9ncu+@r,u = -1 = Dl (40)
Then evaluating Eqgs. (39) and (40) in the sense of Galerkin yields
T
Vi Vi —1®-Ay —Ay ™ | [ f
( —3®+A}, K, Dy Dy ) u | ( f; ) @D
Ut

where @ = [D? ]Zzl contains the integrals accompanying the free terms as

O [ki] = | ()i ()T (x)

According to the scheme used for evaluating an equivalent nodal force [Beer (2001)],
we can define a vector of equivalent nodal forces on the interface I'; as

FL = o1/

Then gathering Egs. (38) and (41) provides

Vi Vi —3P—A; —Ay T! f
VuI Vuu _Aul _Aut T _ fZ (42)
Io+A], A}, Dy Dy Lo f/ +FL

A;l} A; DtI Dtt UI f
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As in Section 2.4, Eq. (42) can be transformed to the following Schur complement
system by eliminating the traction vectors,

11 1G 1 74 74
Ko Xe V(YU )=(TatFe 43)
K¢ K¢ U v

Eq. (43) correlates the nodal displacements with nodal forces.

On the other hand, the FEM sub-domain Q yields the following system of equa-
tion by the well-known finite element implementation,

KrU=Fr

where Kr is the domain stiffness matrix, U and Fr are the nodal displacements and
nodal forces, respectively. This equation can be split into two parts corresponding
to a region containing the interfacial degrees of freedom and a region containing
the non-interfacial degrees of freedom,

Ki K, U* F}
(K;F k! J\uv )= F “44)

where K¥ is the stiffness matrix corresponding to the interfacial region displace-
ments U’, KI¥ is the stiffness matrix corresponding to the non-interfacial region
UF, FL is the load vector for the interface region alone that is obtained using the
FEM, and F%, is the load vector for the non-interface degrees of freedom.

Moreover, the compatibility and equilibrium conditions on the coupling interface
I'; must be satisfied. Therefore, the displacements on I'; for Qr and Q¢ should be
equal, i.e.

u =uf, onIy (45)

where ul’ and u¥ are the displacement on I'; that is obtained using the FEM and
the GBNM, respectively. Besides, the summation of nodal forces on I'; for Qf and
Q¢ should be zero, i.c.

FL+FL=0, onIy (46)

Finally, combining Egs. (43) and (44), in view of Eqgs. (45) and (46), we obtain the
coupled equations as follows:

K" K} 0 ur F}
K KI+K{ K u = ff (47)
0 K¥ KZ¢ U 'y
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Since the FEM matrix in Eq. (44) is obtained from the usual energy based FEM
approaches, the resultant matrix is symmetric and positive definite. The sum of the
symmetric and positive definite matrices continues to be symmetric and positive
definite. Thus the resulting coupling matrix presented in Eq. (47) is symmetric and
positive definite.

3.2 Error analysis

In this subsection, we will estimate the error of using the symmetric coupled GBNM-
FEM for solving the mixed elastic problem (32)-(35). In what follows, let u be the
exact displacement solution of the elastic problem and let u;, be the approximated
displacement obtained by the GBNM, the FEM or the coupled GBNM-FEM.

In the GBNM sub-domain g, using Theorem 2.5 we have

Theorem 3.1 Let hg be the spacing of boundary nodes in the GBNM sub-domain
Qg. Then

lu—wy; o, < CHGT?

In the FEM sub-domain Qp, let us use a regular partition of the interior domain Qp
and let 4r denote the maximum of the longest element sides. On these elements,
let Hr denote a finite dimensional subspaces of H! (QF), satisfying

: 1
Jnf Ju=vil g, <ChE uloyiq,.  VueH' (@)

Then,
Theorem 3.2 The error estimation in the FEM sub-domain Qr is

lu—will; o, <Chi

As stated in the previous section, when the coupled GBNM-FEM is used, the prob-
lem domain Q is decomposed into two disjoint sub-domains, Qg and Qp. Thus,

Hu_“hH],Q = Hu_uhHI,QF + Hu_“hHl,QG

As a consequence, the error estimation of the coupled GBNM-FEM can be estab-
lished by combining Theorems 3.1 and 3.2.

Theorem 3.3 The error estimation in the problem domain Q is

lu—wl[; o <C (hgﬂ/z —i—h}‘é‘)
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4 Numerical examples
4.1 Examples of the GBNM
Two examples are selected to demonstrate the applicability of the GBNM for elas-

ticity problems.

The first example that is considered is a three-dimensional problem in a cubic do-
main. The cube is bounded by the planes x; = £1, xo = &1 and x3 = 1. The
following analytical solution is used,

up =203 +334+3x3, wp=3x1-203+3x3, wuz=3x1+33-23  (48)

Displacements are imposed on faces x3 = &1 and boundary tractions on all other
faces. The material constants that are used in our analysis are Young’s modulus
E = 1.0 and Poisson’s ration v = 0.25.
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ol 17 W
R ] b ]
2 . . . . . . . 5 . . : . . . .
0 0.2 0.4 0.6 0.8 1 12 1.4 16 [u} 0z 04 06 0a 1 1.2 1.4 16
B B
(a) (b)

Figure 2: Results of (a) displacement u and (b) stress ¢ for the cubic problem.

Fig. 2 shows a comparison between the numerical results with the analytical solu-
tions for displacement u and stress ¢ along the arc given by the formulas x; = sin 3,
x2 =0, x3 =cos(2f), B €[0,0.5x]. In this analysis, the cubic surface is discretized
using 48 distributed nodes. It is clearly shown that the numerical results agree very
well with the analytical ones.

To investigate the convergence of the present method, three different nodal arrange-
ments of 48, 192 and 768 boundary nodes have been used. Fig. 3 shows the log-log
plot of errors with respect to the nodal spacing. As we expected, the numerical
results from the proposed meshless method gradually converge to the analytical
values along with the decrease of the nodal spacing.
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Figure 3: Convergence of the GBNM.

Figure 4: A cylindrical tube subjected to uniform internal pressure.

The second example to be considered is a cylindrical tube subjected to uniform
internal pressure. Due to symmetry, only the upper right quadrant of the structure is
modeled as shown in Fig. 4. The plane stress case is considered, and the parameters
are chosen as Young’s modulus E = 10, Poisson’s ration v = 0.25 and internal
pressure p = 1.0. Besides, the geometry is chosen as a = 1 and b = 2. In the
polar coordinate system (r,0), the analytical displacements are [Timoshenko and
Goodier (1970)]

azpr b?
1—v+r—2(1+v) , ug=0

E (b*—ad?)

Uy =
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and the corresponding stresses are

2 2 2 2
_a‘p b _a‘p b
T p_2 <1_r2>7 Ge_bz—a2<1+r2>

The numerical results by the GBNM are plotted in Fig. 5. We again verify these
results with the available analytical solution. In this analysis, the boundary is dis-
cretized by 60 boundary nodes (12 nodes on AB, CD and AD, and 24 nodes on
BC). As expected, these numerical results agree well with the analytical values.

0.2 T T T : 2 T
. U s G
Analytical |] 15F

019

o Oy

018k Analytical

r

017

016+

displacernent u

o1&

Figure 5: Results of (a) radial displacement u, and (b) stress ¢ along the radius.

4.2 Examples of the coupled GBNM-FEM

In this subsection, we will present two numerical examples to show the accuracy
and efficiency of the coupled GBNM-FEM of this paper.

Consider a beam subjected to a parabolic traction at the free end as shown in Fig.
6. The beam is of length L and height H, and has a unit thickness. The beam is
assumed to be in a state of plane stress. The analytical solution for this problem is
[Timoshenko and Goodier (1970)]

Px; , H?
== |(6L— 2 -
u B [(6 3x)x1+(24v) (x2 2 >]

H%x,

6EI
P(L—xl)XQ p <H2 2)

P
U = —— |:3Vx%(L—X1)+(4+5V) +(3L—x1)x%]

on=—"7 - On =0, op=-—=



502 Copyright © 2014 Tech Science Press ~ CMES, vol.97, no.6, pp.483-507, 2014

X1

Y

| L

Figure 6: A beam and its computational model.

where I = H? / 12 is the moment of inertia of the beam.

The beam is separated into two parts. The GBNM is used in the right part and
the FEM is used in the left part. The parameters are taken as E = 3.0 x 10’kPa,
v=0.3,L=48m, H = 12m and P = 1000kN in the computation.

The numerical results, which are furnished by the coupled method, are shown in
Fig. 7 together with the analytical solutions. In this analysis, 48 boundary nodes
are used in the GBNM region, and 128 quadrangular FEM elements are used in
the FEM region. From this figure, we can find that the numerical solutions are in
excellent agreement with the analytical solutions.

x 107

0 #  This paper | |
Analytical

displacarnent W,

y

Figure 7: Results of displacement u; at x; = 0.

The convergence is presented in Fig. 8, where % is equivalent to the maximmum
element size in the FEM in this case. We can find that the greater precision of the
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solution will be obtained when more nodes are selected.

loalu-u 1 )

1 05 0 0A
log(h)

Figure 8: Convergence of the coupled GBNM-FEM.

Next, we consider a semi-infinite soil-structure interaction problem. As shown in
Fig. 9 (a), the FEM is used in the structure region Qf, and the GBNM is used
in the infinite soil foundation region Qs. As in [Brebbia and Georgion (1979);
Qin and Cheng (2008)], the infinite foundation can be treated by truncating the
semi-infinite plane at a finite distance from the structure. The computational model
is plotted in Fig. 9: 36 boundary nodes are used in the GBNM region, and 48
triangular elements are used in the FEM region.

Consider five concentrated vertical loads on the top of the structure. Table 1 gives
the vertical displacement on the top of the structure. The results obtained using
the FEM [Brebbia and Georgion (1979)], the coupled BEM-FEM [Brebbia and
Georgion (1979)] and the coupled RKPBEFM-FEM [Qin and Cheng (2008)] are
also given in the table for comparison. Although no analytical solutions exist for
such a complex problem, the solutions of the presented coupled method are in good
agreement with the results of other methods.

5 Conclusions

The meshless GBNM is developed in this paper for the numerical solution of mixed
elasticity problems in two and three dimensions. In this method, an equivalent vari-
ational form of BIEs is used, thus boundary conditions are applied directly and eas-
ily. Another prominent feature of the present approach is that the resulting system
matrix is not only symmetric but also positive definite. This paper also examines an
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Figure 9: Schematic diagram for the problem of a structure standing on a semi-
infinite foundation. (a) The coupled GBNM/FEM model. (b) Meshes and loads on
the FEM region.

Table 1: Vertical displacement (x 10~#) along top of the structure

Node No. FEM BEM-FEM RKPBEFM-FEM GBNM-FEM

1 1.41 1.40 1.42 1.43
2 1.34 1.33 1.33 1.33
3 1.32 1.32 1.31 1.32
4 1.34 1.33 1.33 1.33
5 1.41 1.40 1.42 1.43

efficient symmetric coupling of the GBNM with the FEM. In the coupled method,
the resulting coupling matrix is symmetric and positive definite. Theoretical error
estimates of the GBNM and the coupled GBNM-FEM are established. From the
error analysis, it is shown that the error bound of the numerical solution is directly
related to the nodal spacing. Some numerical examples have been given and the
numerical results are accurate and are in agreement with the theoretical analysis.
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