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Abstract: In this article, the Meshless Local Petrov-Galerkin (MLPG) Mixed
Collocation Method is developed to solve the Cauchy inverse problems of Steady-
State Heat Transfer In the MLPG mixed collocation method, the mixed scheme is
applied to independently interpolate temperature as well as heat flux using the same
meshless basis functions The balance and compatibility equations are satisfied at
each node in a strong sense using the collocation method. The boundary conditions
are also enforced using the collocation method, allowing temperature and heat flux
to be over-specified at the same portion of the boundary. For the inverse problems
where noise is present in the measurement, Tikhonov regularization method is used,
to mitigate the inherent ill-posed nature of inverse problem, with its regularization
parameter determined by the L-Curve method. Several numerical examples are
given, wherein both temperature as well as heat flux are prescribed at part of the
boundary, and the data at the other part of the boundary and in the domain have
to be solved for. Through these numerical examples, we investigate the accuracy,
convergence, and stability of the proposed MLPG mixed collocation method for
solving inverse problems of Heat Transfer.
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1 Introduction

Computational modeling of solid/fluid mechanics, heat transfer, electromagnetics,
and other physical, chemical & biological sciences have experienced an intense de-
velopment in the past several decades. Tremendous efforts have been devoted to
solving the so-called direct problems, where the boundary conditions are generally
of the Dirichlet, Neumann, or Robin type. Existence, uniqueness, and stability of
the solutions have been established for many of these direct problems. Numeri-
cal methods such as finite elements, boundary elements, finite volume, meshless
methods etc., have been successfully developed and available in many off-the shelf
commercial softwares, see [Atluri (2005)]. On the other hand, inverse problems,
although being more difficult to tackle and being less studied, have equal, if not
greater importance in the applications of engineering and sciences, such as in struc-
tural health monitoring, electrocardiography, etc.

One of the many types of inverse problems is to identify the unknown boundary
fields when conditions are over-specified on only a part of the boundary, i.e. the
Cauchy problem. Take steady-state heat transfer problem as an example. The gov-
erning differential equations can be expressed in terms of the primitive variable-
temperatures:

(−kT,i),i = 0 in Ω (1)

For direct problems, temperatures T = T̄ are prescribed on a part of the bound-
ary ST , and heat fluxes qn = q̄n = −kniu,i are prescribed on the other part of
the boundary Sq. ST and Sq should be a complete division of ∂Ω , which means
ST ∪ Sq = ∂Ω,ST ∩ Sq = /0. On the other hand, if both the temperatures as well
as heat fluxes are specified or known only on a small portion of the boundarySC,
the inverse Cauchy problem is to determine the temperatures and heat fluxes in the
domain as well as on the other part of the boundary.

In spite of the popularity of FEM for direct problems, it is essentially very unsuit-
able for solving inverse problems. This is because the traditional primal FEM are
based on the global Symmetric Galerkin Weak Form of equation (1):∫

Ω

kT,iv,idΩ−
∫

∂Ω

kniT,ivdS = 0 (2)

where vare test functions, and both the trial functions T and the test functions v
are required to be continuous and differentiable. It is immediately apparent from
equation (2) that the symmetric weak form [on which the primal finite element
methods are based] does not allow for the simultaneous prescription of both the
heat fluxes qn[≡ T,i] as well as temperatures T at the same segment of the bound-
ary, ∂Ω. Therefore, in order to solve the inverse problem using FEM, one has



Meshless Local Petrov-Galerkin Mixed Collocation Method 511

to first ignore the over-specified boundary conditions, guess the missing boundary
conditions, so that one can iteratively solve a direct problem, and minimize the dif-
ference between the solution and over-prescribed boundary conditions by adjusting
the guessed boundary fields, see [Kozlov, Maz’ya and Fomin (1991); Cimetiere,
Delvare, Jaoua and Pons (2001)] for example. This procedure is cumbersome and
expensive, and in many cases highly-dependent on the initial guess of the boundary
fields.

Recently, simple non-iterative methods have been under development for solv-
ing inverse problems without using the primal symmetric weak-form: with global
RBF as the trial function, collocation of the differential equation and boundary
conditions leads to the global primal RBF collocation method [Cheng and Cabral
(2005)]; with Kelvin’s solutions as trial function, collocation of the boundary con-
ditions leads to the method of fundamental solutions [Marin and Lesnic (2004)];
with non-singular general solutions as trial function, collocation of the boundary
conditions leads to the boundary particle method [Chen and Fu (2009)]; with Tr-
efftz trial functions, collocation of the boundary conditions leads to Trefftz collo-
cation method [Yeih, Liu, Kuo and Atluri (2010); Dong and Atluri (2012)]. The
common idea they share is that the collocation method is used to satisfy either the
differential equations and/or the boundary conditions at discrete points. Moreover,
collocation method is also more suitable for inverse problems because measure-
ments are most often made at discrete locations.

However, the above-mentioned direct collocation methods are mostly limited to
simple geometries, simple constitutive relations, and text-book problems, because:
(1) these methods are based on global trial functions, and lead to a fully-populated
coefficient matrix of the system of equations; (2) the general solutions and particu-
lar solutions cannot be easily found for general nonlinear problems, and problems
with arbitrary boundary conditions; (3) it is difficult to derive general solutions that
are complete for arbitrarily shaped domains, within a reasonable computational
burden. With this understanding, more suitable ways of constructing the trial func-
tions should be explored.

One of the most simple and flexible ways is to construct the trial functions through
meshless interpolations. Meshless interpolations have been combined with the
global Symmetric Galerkin Weak Form to develop the so-called Element-Free Ga-
lerkin (EFG) method, see [Belytschko, Lu, and Gu (1994)]. However, as shown
in the Weak Form (2), because temperatures and heat fluxes cannot be prescribed
at the same location, cumbersome iterative guessing and optimization will also be
necessary if EFG is used to solve inverse problems. Thus EFG is not suitable for
solving inverse problems, for the same reason why FEM is not suitable for solving
inverse problems.
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Instead of using the global Symmetric Galerkin Weak-Form, the Meshless Local
Petrov-Galerkin (MLPG) method by [Atluri and Zhu (1998)] proposed to construct
both the trial and test functions in a local subdomain, and write local weak-forms
instead of global ones. Various versions of MLPG method have been developed in
[Atluri and Shen (2002a, b)], with different trial functions (Moving Least Squares,
Local Radial Basis Function, Shepard Function, Partition of Unity methods, etc.),
and different test functions (Weight Function, Shape Function, Heaviside Func-
tion, Delta Function, Fundamental Solution, etc.). These methods are primal meth-
ods, in the sense that all the local weak forms are developed from the govern-
ing equation with primary variables. For this reason, the primal MLPG colloca-
tion method, which involves direct second-order differentiation of the temperature
fields, as shown in equation(1), requires higher-order continuous basis functions,
and is reported to be very sensitive to the locations of the collocation points.

Instead of the primal methods, MLPG mixed finite volume and collocation method
were developed in [Atluri, Han and Rajendran (2004); Atluri, Liu and Han (2006)].
The mixed MLPG approaches independently interpolate the primary and secondary
fields, such as temperatures and heat fluxes, using the same meshless basis func-
tions. The compatibility between primary and secondary fields is enforced through
a collocation method at each node. Through these efforts, the continuity require-
ment on the trial functions is reduced by one order, and the complicated second
derivatives of the shape function are avoided. Successful applications of the MLPG
mixed finite volume and collocation methods were made in nonlinear and large de-
formation problems [Han, Rajendran and Atluri (2005)]; impact and penetration
problems [Han, Liu, Rajendran and Atluri (2006); Liu, Han, Rajendran and Atluri
(2006)], topology optimization problems [Li and Atluri (2008a, b)] ; inverse prob-
lems of linear isotropic/anisotropic elasticity [Zhang, Dong, Alotaibi and Atluri
(2013) A thorough review of the applications of MLPG method is given in [Sladek,
Stanak, Han, Sladek, Atluri (2013)].

This paper is devoted to numerical solution of the inverse Cauchy problems of
steady-heat transfer. Both temperature and heat flux boundary conditions are pre-
scribed only on part of the boundary of the solution domain, whilst no informa-
tion is available on the remaining part of the boundary. To solve the dilemma that
global-weak-form-based methods (such as FEM, BEM and EFG) which do not al-
low the primal and dual fields to be prescribed at the same part of the boundary, the
MLPG mixed collocation method is developed for inverse Cauchy problem of heat
transfer. The moving least-squares approximation is used to construct the shape
function. The nodal heat fluxes are expressed in terms of nodal temperatures by
enforcing the relation between heat flux and temperatures at each nodal point. The
governing equations for steady-state heat transfer problems are satisfied at each
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node using collocation method. The temperature and heat flux boundary condi-
tions are also enforced by collocation method at each measurement location along
the boundary. The proposed method is conceptually simple, numerically accurate,
and can directly solve the inverse problem without using any iterative optimization.

The outline of this paper is as follows: we start in section 2 by introducing the
meshless interpolation method with emphasis on the Moving Least Squares in-
terpolation. In section 3, the detailed algorithm of the MLPG mixed collocation
method for inverse heat transfer problem is given. In section 4, several numerical
examples are given to demonstrate the effectiveness of the current method involv-
ing direct and inverse heat transfer problems. Finally, we present some conclusions
in section 5.

2 Meshless Interpolation

Among the available meshless approximation schemes, the Moving Least Squares
(MLS) is generally considered to be one of the best methods to interpolate random
data with a reasonable accuracy, because of its locality, completeness, robustness
and continuity. The MLS is adopted in the current MLPG collocation formulation,
while the implementation of other meshless interpolation schemes is straightfor-
ward within the present framework. For completeness, the MLS formulation is
briefly reviewed here, while more detailed discussions on the MLS can be found in
[Atluri (2004)]

The MLS method starts by expressing the variable T (x) as polynomials:

T (x) = pT (x)a(x) (3)

where pT (x) is the monomial basis. In this study, we use first-order interpolation,
so that pT (x) = [1,x,y] for two-dimensional problems. a(x) is a vector containing
the coefficients of each monomial basis, which can be determined by minimizing
the following weighted least square objective function, defined as:

J(a(x)) =
m

∑
I=1

wI(x)[pT (xI)a(x)− T̂ I]2

= [Pa(x)− T̂]TW[Pa(x)− T̂]
(4)

where, xI, I = 1,2, · · · ,m is a group of discrete nodes within the influence range of
node x, T̂ I is the fictitious nodal value, wI(x) is the weight function. A fourth order
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spline weight function is used here:

wI(x) =
{

1−6r2 +8r3−3r4

0
r ≤ 1
r > 1

r =

∥∥x−xI
∥∥

rI

(5)

where, rI stands for the radius of the support domain Ωx.

Substituting a(x)into equation (3), we can obtain the approximate expression as:

T (x) = pT A−1 (x)B(x) T̂ = ΦΦΦ
T (x) T̂ =

m

∑
I=1

Φ
I (x) T̂ I (6)

where, matrices A(x) and B(x) are defined by:

A(x) = PT WP B(x) = PT W (7)

ΦI (x) is named as the MLS basis function for node I, and it is used to interpolated
both temperatures and heat fluxes, as discussed in section 3.2.

3 MLPG Mixed Collocation Method for Inverse Cauchy Problem of Heat
Transder

3.1 Inverse Cauchy Problem of Heat Transder

Consider a domain Ω wherein the steady-state heat transfer problem, without in-
ternal heat sources, is posed. The governing differential equation is expressed in
terms of temperature in equation (1). It can also be expressed in a mixed form, in
terms of both the tempereature and the heat flux fields:

qi =−kT,i in Ω (8)

qi,i = 0 in Ω (9)

For inverse problems, we consider that both heat flux and temperature are pre-
scribed at a portion of the boundary, denoted as SC:

T = T at SC

−nikT,i = qn = qn at SC
(10)

The inverse problem is thus defined as, with the measured heat fluxes as well as
temperatures atSC, which is only a portion of the boundary of the whole domain,
can we determine heat fluxes as well as temperatures in the other part of the bound-
ary as well as in the whole domain? A MLPG mixed collocation method is devel-
oped to solve this problem, and is discussed in detail in the following two subsec-
tions.
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3.2 MLPG Mixed Collocation Method

We start by interpolating the temperature as well as the heat flux fields, using the
same MLS shape function, as discussed in section 2:

T (x) =
m

∑
J=1

Φ
J(x)T̂ J (11)

qi(x) =
m

∑
J=1

Φ
J(x)q̂J

i (12)

where, T̂ Jand q̂J
i are the fictitious temperatures and heat fluxes at node J.

We rewrite equations (11) and (12) in matrix-vector form:

T = ΦΦΦT̂ (13)

q = ΦΦΦq̂ (14)

With the heat flux – temperature gradient relation as shown in equation (8), the heat
fluxes at node I can be expressed as:

qi(xI) =−kT,i(xI) =−k
m

∑
J=1

Φ
J
,i(x

I)T̂ J; I = 1,2, · · · ,N (15)

where N is the total number of nodes in the domain.

This allows us to relate nodal heat fluxes to nodal temperatures, which is written
here in matrix-vector form:

q = KaT̂ (16)

And the balance equation of heat transfer is independently enforced at each node,
as:

m

∑
J=1

Φ
J
,x(xI)q̂J

x +
m

∑
J=1

Φ
J
,y(xI)q̂J

y = 0; I = 1,2, · · · ,N (17)

or, in an equivalent Matrix-Vector from:

KSq̂ = 0 (18)

By substituting equation (16) and (14) into equation(18), we can obtain a dis-
cretized system of equations in term of nodal temperatures:

KeqT̂ = 0 (19)

From equation (15) and (17), we see that both the heat transfer balance equation,
and the heat flux temperature-gradient relation are enforced by the collocation
method, at each node of the MLS interpolation. In the following subsection, the
same collocation method will be carried out to enforce the boundary conditions of
the inverse problem.
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3.3 Over-Specified Boundary conditions in a Cauchy Inverse Heat transfer Prob-
lem

In most applications of inverse problems, the measurements are only available at
discrete locations at a small portion of the boundary. In this study, we consider
that both temperatures T̂ J as well as heat fluxes q̂J

n are prescribed at discrete points
xI, I = 1,2,3...,M on the same segment of the boundary. We use collocation method
to enforce such boundary conditions:

m

∑
J=1

Φ
J(xI)T̂ J = T (xI)

− k
m

∑
J=1

Φ
J
,n(x

I)T̂ J = qn(x
I)

(20)

or, in matrix-vector form:

KT T̂ = fT

KqT̂ = fq
(21)

3.4 Regularization for Noisy Measurements

Equation (19) and (21) can rewritten as:

KT̂ = f, K =

 Keq

KT

Kq

 , f =

 0
fT

fq

 (22)

This gives a complete, discretized system of equations of the governing differential
equations as well as the over-specified boundary conditions. It can be directly
solved using least square method without iterative optimization.

However, it is well-known that the inverse problems are ill-posed. A very small
perturbation of the measured data can lead to a significant change of the solution.
In order to mitigate the ill-posedness of the inverse problem, regularization tech-
niques can be used. For example, following the work of Tikhonov and Arsenin
[Tikhonov and Arsenin (1977)], many regularization techniques were developed.
[Hansen and O’Leary (1993)] has given an explanation that the Tikhonov regular-
ization of ill-posed linear algebra equations is a trade-off between the size of the
regularized solution, and the quality to fit the given data. With a positive regu-
larization parameter, which is determined by the L-curve method, the solution is
determined as:

min
(
‖KT− f‖2 + γ ‖f‖2

)
(23)
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This leads to the regularized solution:

T =
(
KTK+ γI

)−1 KTf (24)

4 Numerical Examples

In this section, we firstly apply the proposed method to solve a direct problem with
an analytical solution, in order to verify the accuracy and efficiency of the method.
Then we apply the proposed method to solve three inverse Cauchy problems with
noisy measurements, in order to explore the accuracy, stability, and converge of the
MLPG mixed collocation method for solving inverse problems of heat transfer.

4.1 MLPG mixed collocation method for the direct heat transfer problem

Example 1: Patch Test

In this case, we consider a rectangular domain Ω = {(x,y) |0≤ x≤ a,0≤ y≤ b},
as shown in Figure 1. Its left boundary is maintained at the temperatureT = 0◦C,
and the right boundary is prescribed with a temperature distribution as T = Ay◦C
. The upper and lower boundaries are adiabatic. There is no heat source in the
domain. The thermal conductivity is k = 1w/(m · ◦C). The analytical solution is:

T (x,y) =
Abx
2a

+
∞

∑
n=1

2Ab[cos(nπ)−1]
n2π2

sinh[nπx/b]cos[nπy/b]
sinh[anπ/b]

(25)

 

Figure 1: Heat conduction in a rectangular domain.
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 Figure 2: The normalized analytically and numerically solved T , qx qy along the

line y = 3 for the direct heat transfer problem of Example 1.
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In this example, we consider that a = b = 10, A = 5, and use a uniform nodal
configuration of 30×30nodes. When the support domain is too small or too large,
the relative computational error will become unacceptably large. It was found that
r = 2.5−3.0 is an economical choice that gives good results without significantly
increasing the computational burden, see [Wu, Shen, and Tao (2007)]. We select a
support size of 25 times of the nodal distance, and use the first-order polynomial
basis is used in the MLS approximations.

We solve this problem by using the MLPG mixed collocation method. Figure 2
gives the analytically and numerically solved temperature and heat fluxes, normal-
ized to their maximum values. It can be seen that the computational results with
MLPG mixed collocation method agrees well with the analytical solutions.

4.2 MLPG mixed collocation method for Cauchy inverse problem of heat trans-
fer

Example 2: An L-shaped Domain

 

 

Figure 3: Heat transfer in an L-shape domain.

The second example is a Cauchy inverse heat transfer problem in the L-shaped
domain as illustrated in Figure 3 The exact solution is given in the polar coordinates
by:

T (r,θ) = r
2
3 sin(

2θ −π

3
) (26)
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Figure 4: The nodal configuration and boundary collocation points of example 2.

qr =−k · 2
3

r−
1
3 sin(

2θ −π

3
) (27)

where k is the thermal conductivity, taken as 1 in this example. Equation (27)
implies that the radial heat flux qr is singular at the re-entrant corner O where r = 0

Node discretization of the L-shaped domain and the locations of temperature and
heat flux measurements are shown in Figure 4 Temperatures and heat flues are over-
specified at SC = {(x,y) |0≤ x≤ 10, y =−10}∪{(x,y) |−10≤ y≤ 0 ,x =−10}∪
{(x,y) |1≤ x≤ 10 ,y = 0}∪ {(x,y) |1≤ y≤ 8, x = 0} %1 white noise is added to
the measured temperatures and heat fluxes. By MLPG mixed collocation method,
we solve this inverse problem, and give the temperature and heat fluxes along the
line y= -1. As can be seen from Figure 5 good agreements are given between the
computed results and the analytical solution, even though the measurements are
contaminated by noises.

Example 3: A semi-infinite domain

In this case, the steady-state heat transfer problem in a semi-infinite domain is
considered, as shown in Figure 6. The half-space Ω = {(x,y) |y≥ 0} is insulated
and kept at a temperature of zero at {(x,y) |y = 0, |x|> 1}, The line segment of
{(x,y) |y = 0, |x|< 1} is kept at a temperature of unity. The analytical solution
[Brown and Churchill (2008) ] of this example is given as:

T =
1
π

arctan(
2y

x2 + y2−1
) (0≤ arctan t ≤ π ) (28)

This problem is solved using a truncated finite domain by MLPG mixed collocation
method, in Ω = {(x,y) |−2≤ x≤ 2, 0≤ y≤ 1} The nodal configuration and collo-
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 Figure 5: T , qx, and qy along the line y =−1, normalized to their maximum values,

for the inverse problem of Example2.
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Figure 6: Heat conduction in a semi-infinite domain.

cation points are shown in figure 7, with temperature and heat fluxes measured
at SC = {(x,y) |−1≤ x≤ 1, y = 2}, and polluted by 1% white noise. By MLPG
mixed collocation method, we solve this inverse Cauchy problem of heat transfer,
and plot the numerically identified temperature and heat fluxes along the liney= 0.5
Figure 8 gives the comparison between numerical and analytical solution, demon-
strating the validity of the proposed MLPG mixed collocation method

 

Figure 7: The finite truncated domain and the nodal configuration of the MLPG
mixed collocation model for example 3.
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 Figure 8: T qx, and qy along the line y = 0.5, normalized to their maximum values,

for the inverse problem of Example 3.
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Example 4: Patch with different levels of white noise, different numbers of col-
location points, and different sizes of Sc

We reconsider the heat transfer problem in a rectangular domain
Ω = {(x,y) |0≤ x≤ a,0≤ y≤ b}, as shown in Figure 1. But for this case, an
inverse problem is solved instead of a direct one. Different levels of white noise,
different numbers of collocation points, and different sizes of Scare considered to
investigate the stability, convergence, and sensitivity of the proposed MLPG mixed
collocation method for inverse Cauchy problems.

a. Numerical stability

We consider that various percentages of random noises, pT and pq are added into
the measured T and qn, at 40 points uniformly distributed along
SC = {(x,y) |0≤ y≤ b, x = 0}∪{(x,y) |0≤ y≤ b ,x = a}. We analyze the numer-
ical solutions with three levels of noise (1%, 3% and 5%) added to: (i) the Dirichlet
data (temperatures); (ii) the Neumann data (heat fluxes); and (iii) the Cauchy data
(temperatures and heat fluxes), respectively.

Figure 9-11 present the heat fluxes qx, qy and temperature T at y = 3 numerically
identified by using the MLPG mixed collocation method It can be seen that, for
each fixed level of noise, the numerical solutions are stable approximations to the
corresponding exact solution, free of unbounded and rapid oscillations.

b. Numerical convergence

In this problem, we consider noisy measurements with. pq = pT = 5% along SC =
{(x,y) |0≤ x≤ 10, y = 0}∪{(x,y) |x = 0,1≤ y≤ 1 0}∪{(x,y) |x = 10,0≤ y≤ 10}
Different numbers of uniformly distributed collocation points are used, i.e. nc =
2,4,10,20,40,80,160,320,640,1280, on each of the three sides of SC

In order to analyze the accuracy, we introduce the following root mean-square
(RMS) errors:

ET =

√
1
N

N

∑
i=1

(
T −T

)2

/√
1
N

N

∑
i=1

T 2

Eqx =

√
1
N

N

∑
i=1

(qx−qx)
2

/√
1
N

N

∑
i=1

qx
2 (29)

Eqy =

√
1
N

N

∑
i=1

(
qy−qy

)2

/√
1
N

N

∑
i=1

qy
2
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Figure 9: The numerically identified (a) T (b) qx, (c)qy along the line y = 3 with
various levels of noise added into the prescribed temperatures (the Dirichlet data),
i.e. pT ∈ {1%,3%,5%} for the Cauchy problem given by example 4.
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Figure 10: The numerically identified (a) T (b) qx, (c) qy along the line y = 3with
various levels of noise added into the prescribed fluxes (the Neumann data), i.e.
pq ∈ {1%,3%,5%} for the Cauchy problem given by example 4.



Meshless Local Petrov-Galerkin Mixed Collocation Method 527

 

 

 

 
 

 
Figure 11: The numerically identified (a) T (b) qx, (c) qy along the line y = 3with
various levels of noise added into the prescribed temperatures and heat fluxes (the
Cauchy data), i.e. pq = pT ∈ {1%,3%,5%} for the Cauchy problem given by
example 4.



528 Copyright © 2014 Tech Science Press CMES, vol.97, no.6, pp.509-533, 2014

Table 1: The numerical errors based on MLPG mixed collocation method using
different number of collocation points (nc = 2,4,10,20,40,80,160,320,640,1280)
for example 4 with 5% noise.

nc ET Eqx Eqy

2 8.61 e-2 2.953 e-1 1.625 e-1
4 5.72 e-2 1.721 e-1 2.445 e-1
10 8.1 e-3 6.9 e-2 4.33 e-2
2 4.8 e3 39 e2 366 e-2
40 2.0 e-3 1.53 e-2 1.87 e-2
80 9.245 e-4 7.3 e-3 1.95 e-2

160 8.734 e-4 9.3 e-3 8.4 e-3
320 5.4098 e-4 5.4 e-3 7.0 e-3
640 4.5084 e-4 3.2 e-3 5.7 e-3
1280 4.3408 e-4 3.2 e-3 6.3 e-3

 
Figure 12: The errors as functions of the number of the collocation points for ex-
ample 4.
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where T qx, qy and T qx, qy represent, respectively, the numerical and exact values.

Table 1 and figure 12 present the numerical error of identified temperatures and heat
fluxes with different number of the collocation points, from where the numerical
convergence can be observed. It can be seen that all errors Eqx Eqy and ET keep
decreasing as the number of the collocation points increases. When nc is more than
102, the convergence rate of the aforementioned slows down, which is possibly due
to the presence of noisy measurements.

c. Influence of the size of SC

 
Figure 13: Four different sizes of accessible boundary (S1

c ,S
2
c ,S

3
c ,S

4
c), respectively.

In this case, we investigate how the size of SC affects the accuracy of the numerical
solution. For the given Cauchy problem, measured temperatures and heat fluxes are
contaminated with with 5% random noise. Four different sizes of Sc are considered
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and are illustrated in Figure 13, in which collocation points along Sc are shown as
red circles. These four different accessible boundaries are defined as:

S1
C = {(x,y) |y = 0,1≤ x≤ 9}

S2
C = {(x,y) |x = 0,1≤ y≤ 9}∪{(x,y) |x = 10,1≤ y≤ 10}

S3
C = {(x,y) |y = 0,1≤ x≤ 9}∪{(x,y) |x = 0,1≤ y≤ 9}

∪{(x,y) |x = 10,1≤ y≤ 9}

S4
C = {(x,y) |y = 0,1≤ x≤ 9}∪{(x,y) |x = 0,1≤ y≤ 9}
∪{(x,y) |y = 10,1≤ x≤ 9}∪{(x,y) |x = 10,1≤ y≤ 9}

Table 2 presents the numerical accuracy of the MLPG mixed collocation method.
It can be seen that the numerical accuracy improves with larger sizes of Sc, but it is
still acceptable even with the smallest size of Sc

Table 2: The numerical errors of MLPG mixed collocation method using different
sizes of Sc for example 4.

Sc ET Eqx Eqy

S1
c 3.28 e2 0.13 0.10

S2
c 4.9 e-3 3.52 e-2 1.92 e-2

S3
c 1.2 e-3 1.51 e-2 1.34 e-2

S4
c 4.2684 e-4 3.4 e-3 5.2 e-3

5 Conclusion

In this article, the MLPG mixed collocation method is applied to solve the inverse
Cauchy problems of steady-state heat transfer. The temperature as well as the heat
fluxes are interpolated independently using the same MLS basis functions. The
balance and compatibility equations are satisfied at each node in a strong sense
using the collocation method. The boundary conditions are also enforced using the
collocation method, allowing temperature and heat flux to be over-specified at the
same portion of the boundary. For the inverse problems where noise is present in
the measurement, Tikhonov regularization method is used, to mitigate the inherent
ill-posed nature of inverse problem with its regularization parameter determined
by the L-Curve method. Through several numerical examples, we investigated
the numerical accuracy, stability, and convergence of the MPLG mixed collocation
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method. It is shown that the proposed method is simple, accurate, stable, and thus
is suitable for solving inverse problems of heat transfer.
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