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Simulations of Blood Drop Spreading and Impact for
Bloodstain Pattern Analysis
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Abstract: Bloodstain pattern analysis (BPA) in forensic science is an important
tool to solve crime scenes. The complex dynamic behavior of blood drops poses
great challenges for accurate fluid dynamic simulations. In this paper, we specifi-
cally focus on simulations of blood drop spreading and impact, which may involve
contact line hysteresis and spattering of drops as they interact with solid surfaces.
Here, we set up a numerical framework that combines (1) the connectivity-free
front tracking (CFFT) method for modeling multiphase (air and liquid) flows and
(2) a dynamic contact line model for modeling fluid-solid contact line. Both com-
ponents are necessary in simulating drop spreading and impact which involve the
prediction of the contact line movement and drop spattering. The “connectivity-
free” approach refers to the explicit representation of the drop interface points
without logical connectivities, which relieves the maintenance and bookkeeping
of the interface when the topology goes through large changes as a drop impacts
onto a solid surface. It also provides a direct means to couple the dynamic contact
line model to form initial contact line and track the contact line movement without
reconnecting the points on the interface. Drop spreading and moving on horizontal
and oblique planes are studied to show the accuracy and the capability of this cou-
pled algorithm to handle contact line problems. To further validate the method, a
drop impacting on a solid obstacle is also performed to demonstrate the flexibility
and robustness of the method.
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1 Introduction

The bloodstain pattern analysis (BPA), which is a part of the forensic science, can
be crucial in solving a crime scene [Karger, Rand, Fracasso, and Pfeiffer (2008)].
It provides more comprehensive evidence for criminologists and scientists by an-
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alyzing blood generation, motion and spatter patterns. In the most recent review
article on fluid dynamics and bloodstain pattern analysis, Attinger et al. [Attinger,
Moore, Donaldson, Jafari, and Stone (2013)] addressed the essential role fluid dy-
namics plays in forensic science. In both communities, BPA and fluid dynamics,
the blood drop dynamics as it interacts with surrounding environments, air and/or
other liquids or solids, has always been one of the key components of the analysis.
The underlying physics of these multi-phase interactions involve blood drop tra-
jectories in air (multi-fluid flows) and the spatter patterns (blood spatter analysis)
as blood drops impact on solid surfaces (fluid-solid interactions). Therefore, fluid
dynamic analysis, focusing on multiphase flows such as the studies of drop im-
pact and spreading, can be used to perform BPA considering the similarities drawn
between the two [Attinger, Moore, Donaldson, Jafari, and Stone (2013)].

Among the many possible dominant factors such as drop generation, trajectories,
impact, staining patterns on different types of surfaces in analyzing blood drops and
blood stains, here we will only focus our effort on two of them: (1) drop spreading,
and (2) drop impact. Numerical model and simulations of blood drop spreading and
impact can offer scientists a visual and dynamic prediction on the exact sequence of
events. However, the complicated behaviors of blood drops require the numerical
models to be capable of accurately capturing and predicting the intricate interplay
among the interfacial forces, which include: (a) the three-phase (air-liquid-solid)
dynamic contact line, (b) solving the Navier-Stokes equations with properly mod-
eled surface tension force, and (c) coping with geometry topology changes of the
blood drops during the process, such as blood spattering due to impact.

In the forefront of modeling drop spreading, which involves the overall surface
energy balance among air-liquid, liquid-surface, and air-surface, several numer-
ical algorithms have been proposed and widely used, such as the front tracking
method [Tryggvason, Bunner, Esmaeeli, Juric, Al-Rawahi, Tauber, Han, Nas, and
Jan (2001); Unverdi and Tryggvason (1992); Witteveen, Koren, and Bakker (2007);
Muradoglu and Tryggvason (2008)], volume of fluid method (VOF) [Hirt and
Nichols (1981); Cervone, Manservisi, and Scardovelli (2010)] and the level-set
method [Xu, Li, Lowengrub, and Zhao (2006); Herrmann (2008)]. The classic us-
age of these methods is only to model air-liquid multiphase flows, which sets the
limitations of their applicability. Drop spreading and impact are dynamic processes
that also involve the interactions with solid surfaces. Therefore, fluid (air/gas or liq-
uid) interacting with solid surfaces must also be accounted for in these simulations.
This then introduces the concept of “contact line”.

Direct simulations of fluid interacting with solid boundaries encounters a mathe-
matical dilemma in capturing the moving contact line along a no-slip boundary:
the fluid velocity is finite at the free-surface but zero on the solid surface [Dupon-
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t and Legendre (2010)]. Therefore a stress singularity is formed. The divergent
stress comes from the fact that the continuum assumption of the fluid is no longer
valid within the molecular length scale near the three phase contact region. The
molecular interactions between the fluid and the solid within the molecular length
scale are required in the model. Besides direct simulations, there are various nu-
merical models to deal with the contact line problem. To apply a non-slip boundary
condition on a solid surface, one of the models suggests [Di and Wang (2009)] to
assume there is a thin liquid film as a precursor model. The singular stress is nat-
urally removed if the inclusion of a microscopic precursor film is placed in front
of the apparent contact line. However, the assumption of the existence of the thin
liquid film is under debate because if it does exist, it is generally not fast enough to
stay ahead of the contact line [Chen, Mertz, and Kulenovic (2009)]. Other studies
have been made to address this problem by relaxing the no-slip boundary condi-
tion with a slip boundary model to resolve the singular stress when solving the
Navier-Stokes equations. Due to the lack of description of the microscopic inter-
actions between the fluid and solid in the subgrid scale, the contact angle typically
needs to be specified from some empirical models to treat the contact line. Many
multiphase simulating techniques such as front tracking [Muradoglu and Tasoglu
(2010)], level-set [Spelt (2005); Chen, Mertz, and Kulenovic (2009)], VOF [Sika-
lo, Wihelm, and Roisman (2005); Afkhami, Zaleski, and Bussmann (2009)] have
adopted this approach to simulate contact line problems successfully. The contact
angle is either imposed to the explicit interfacial markers at the contact line (front
tracking method) or specified as a boundary condition (level-set and VOF). Despite
the limitation of the results been dependent on the slip-length and thus on the grid
spacing, the method is still widely adopted due to its simplicity and easiness to
implement into an existing multiphase flow algorithm.

The biggest challenge here, however, is modeling the drop impact, where a drop
impacts on a solid surface and upon impact, the drop spatters into small drops. In
other words, the topology, or the geometry of the interface of the drop changes
as the drop breaks up. To handle topology changes numerically is not a trivial
task because of the connectivities among the points that represent the interface
cannot be maintained through time. The re-construction and re-connecting of the
drop interface as it goes through dramatic changes can be quite daunting. In our
recent development, we proposed a connectivity-free front tracking (CFFT) method
[Wang, Wang, and Zhang (2013)]. The main goal of this development was to handle
topology changes of the interface without the constraint of the connectivities of the
interfacial points, therefore the name “connectivity-free”. It combines the merits
of the front tracking and front capturing approaches such that explicit interfacial
points were used for interface representation to achieve better volume conservation,
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and constructing a smooth and accurate indicator field based on the actual location
and geometry of the interface for fluid properties (curvature and surface tension)
calculations.

Naturally, to successfully model drop spreading and impact involves two main fea-
tures to be included in an algorithm: (1) a multiphase model without connectivity
to handle drop breaking-up or spattering, and (2) a fluid-solid contact line model
that accurately captures the contact line dynamics. The objective of this paper is to
couple a dynamic contact line model into the CFFT algorithm so that drop spread-
ing and impact can be studied and analyzed. To our knowledge, this is a first at-
tempt in coupling a contact line model into a connectivity-free multiphase method.
To demonstrate the capabilities of this coupled algorithm, several numerical ex-
periments are examined in 2-D. Three-dimensional problems are not particularly
difficult in either contact line model or CFFT algorithm individually, in fact they
have been examined independently for 3-D problems [Shi, Bao, and Wang (2013);
Wang, Wang, and Zhang (2013)] even though contact line model was mostly mod-
eled with axis-symmetric and 2-D [Dupont and Legendre (2010)]. However, the
combination of the two involves quite complex 3-D surface reconstruction algo-
rithm, which requires significantly more effort. Here, our main focus is to first
develop the numerical framework, the 3-D implementation is to be completed in
the near future.

Under the framework of the CFFT method, the points regeneration scheme can
cope with the interface topology change automatically, and construct the initial
contact line by connecting points to the solid surface when the interface is close
enough. The dynamic contact line model then reconstructs the contact by adjusting
the explicitly represented interface. Coupling the contact line model to CFFT has
many advantages: 1) No connectivities required for the interfacial points which
is hard to maintain when interface undergoes topology change; 2) The break-up
and coalescence, and the initial contact line formation can be automatically treated
with a points-regeneration scheme; 3) Easy implementation of the dynamic contact
line model with the interface represented by explicit points; 4) Avoid solving the
advection equation in the VOF and level-set method which would require special
treatment to deal with issues related to stability and volume conservation.

The outline of this paper is as follows. In Section 2, the mathematical model is
presented. We first review the governing equation of the connectivity-free fron-
t tracking method and then discuss the treatment of the moving contact line with
proper empirical correlations between the contact angle and the capillary number.
In Section 3, three numerical examples are studied to validate the algorithm. Final-
ly, the conclusions are drawn in Section 4.
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2 Numerical Algorithm

2.1 The connectivity-free front tracking method

A ‘one fluid’ approach is used to describe the multi-fluid flow regime [Hua, Stene,
and Lin (2008)], which uses only a single set of Navier-Stokes equations with fluid
properties varying across the interface without the need to treat the pressure jump
condition. Both fluids (air and liquid) are considered as isothermal, incompressible
flow. The surface tension force is added to the momentum equation as a singular
force term. The overall governing equations are expressed as follows:

∇ ·u = 0, (1)

ρ
∂u
∂ t

+ρ(u ·∇)u =−∇p+µ∇
2u+ρg+Fσ , (2)

where u is the velocity, p is the pressure, ρ and µ are the fluid density and viscosity,
respectively, g is the gravity, and Fσ is the surface tension force.

The fluid properties (density ρ and viscosity µ) are calculated using an indicator
defined as I = 1 for liquid and I = 0 for air. A linear interpolation is used to perform
the calculation:

ρ = Iρl +(1− I)ρg, (3)

µ = Iµl +(1− I)µg. (4)

The subscripts l and g denote the liquid and air, respectively.

In the front tracking method [Unverdi and Tryggvason (1992)], the indicator field
near the interface is obtained by solving the Poisson’s equation:

∇
2I = ∇ ·

∫
Γ

nΦ(x−xp)dΓ, (5)

where Γ is the interface, Φ is an appropriate interpolation function and n is the
unit normal, which requires to be obtained apriori utilizing the connectivity of the
interfacial points. The connectivity of the interfacial points is sometimes difficult to
maintain when the interface undergoes frequent topology changes, especially when
the air-liquid starts to contact with a solid surface generating a three-phase contact,
which requires the interface connectivity to be reconstructed constantly. It is even
more complicated for 3-D cases.

The CFFT method adopts an alternative way to cope with the necessity of con-
nectivity [Wang, Wang, and Zhang (2013)]. It still uses the explicit interfacial
points to describe and update the interface where a good volume conservation can
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be achieved in a divergence-free incompressible flow field [Tryggvason, Bunner,
Esmaeeli, Juric, Al-Rawahi, Tauber, Han, Nas, and Jan (2001)]. However, by com-
bining the basic concept of the front capturing methods such as level-set method
and the VOF method, the indicator field is obtained first using the un-connected in-
terfacial points through a special treatment, the unit normal and curvature are then
calculated from the indicator field.

The procedure of obtaining the indicator without interfacial points connectivity is
as follows: obtain an approximate indicator field first and then correct this indicator
field based on the current position of the interfacial points. In order to achieve
this, we first define a set of ghost points (xg) that are placed at the center of each
fluid element (see Fig. 1). Noting that this is different from the original CFFT
where a ghost fluid mesh instead of points is constructed. Without the mesh, it
adds flexibility when constructing the indicator. One can simply use more points
within each fluid element to achieve better resolution. If the initial position of the
interface is known, the approximate indicator for the ghost points at the beginning
of the simulation is also known.

In the front capturing method, the indicator or signed distance function is advected
by solving an advection equation (6) implicitly at the current time step:

dI
dt

+u ·∇I = 0. (6)

Solely using advection equation to update indicator function may cause issues in
stability and volume conservation. Here we use it to acquire the approximate in-
dicator field Ia at the current time step n explicitly by evaluating the indicator for
each ghost point based on the previous time step indicator field In−1 and interface
velocity un−1:

In
a (xg) = In−1(xg)−∆tun−1 ·∇In−1(xg). (7)

Since the ghost points are defined arbitrarily and their indicator values are explicitly
solved, it provides the possibility to increase or decrease the ghost point resolution
when needed.

Once the approximate indicator field, Ia, is obtained for the ghost points, we can
interpolate the indicator field from the ghost points, xg to any point x, such as the
fluid nodes and the interfacial points, through a proper delta function, Φ:

I(x) =
∫

g
IaΦ(x−xg)dΩg. (8)

Once the indicator values on the interfacial points are found, we then correct it so
that the interface would have a constant indicator (level). In order to achieve this,
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Figure 1: Schematics of computational domain set up.

a correction term δ Ip(xp) for each interfacial point, p, is added to Eq. (8) when
performing the interpolation:

I(x) =
Np

∑
p=1

δ IpΦ(x−xp)+
∫

g
IaΦ(x−xg)dΩg, (9)

where the subscript p denotes the interfacial points, Np is the number of interfacial
points. The correction term needs to be solved for every interfacial point, p. If the
indicator of all the interfacial points is set to be 0.5, i.e. I(xp) = 0.5, then

Np

∑
p′=1

δ Ip′Φ(xp−xp′) = 0.5−
∫

g
IaΦ(xp−xg)dΩg. (10)

Here the subscript p′ is used to differentiate from p in the summation. Solving Eq.
(10) yields the correction value δ Ip for each interfacial point. Once the correction
of the indicator function is solved, the final indicator field for the fixed fluid mesh
can be obtained using Eq. (9).

The surface tension force is calculated using a continuum surface tension force
(CSF) approach [Brackbill, Kothe, and Zemach (1992)], which can convert the sin-
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gular point/surface force into volume force that spans the vicinity of the interface:

Fsv(x) = σk(x)
∇I(x)
[I]

ρ(x)
< ρ >

, (11)

where [I] is the jump of the indicator function and < ρ > is the average density at
the interface.

To make sure the interpolation is performed accurately for near solid surface region
where the influence domain is incomplete, the reproducing kernel particle method
(RKPM) interpolation scheme is chosen [Liu, Jun, and Zhang (1995); Liu, Jun, Li,
Adee, and Belytschko (1995)]. The use of a higher order interpolation function and
the satisfaction of the reproducing condition are essential in accurately calculating
the normal and curvature of the interface, hence in forming a correct contact line.
The details of the RKPM implementation can be found in [Wang, Wang, and Zhang
(2013)].

Once the indicator field is constructed and the surface tension force is calculated,
the Navier-Stokes equations are then solved to obtain the velocity and pressure
fields. The interface is updated using the velocity at each interfacial point u(xp),
which is interpolated from the fluid mesh:

xn+1
p = xn

p +u(xp)∆t, (12)

where n is the current time step, n+1 is the next time step, and ∆t is the time step
size.

During the evolution of the interface, the interfacial points often need to be re-
generated for the following purposes: 1) to maintain sufficient points within each
interfacial segment; 2) to handle topology changes when both the breaking-up and
coalescence occur by adding or deleting points near the contact; 3) to form the ini-
tial contact line by connecting the nearby interfacial points to the solid surface. The
regeneration of the interface is achieved by carefully selecting some points inside
the fluid elements near the interface as the candidate points and projecting them
onto the interface. The point projection scheme is described as follows. We first
consider a candidate point at the position x with indicator value I(x), then project
the point onto the interface along the normal direction of the indicator. We allow x
to move δx so that the indicator of the candidate point achieves 0.5.

I(x+δx) = 0.5. (13)

Since the projection is along the normal direction of the indicator n = ∇I(x)
|∇I(x)| , the

following holds true:

δx×∇I(x) = 0. (14)
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Figure 2: Contact line dynamics.

Based on Eqs. (13) and (14), δx is solved and the candidate point is project-
ed to a new position x′ = x+ δx. This scheme is performed several times until
|I(x′)− 0.5| < ε , where ε is a set tolerance, then a new interfacial point is regen-
erated. The interface topology changes and the formation of initial contact line are
treated by selecting candidate points from alternate side of the interface to ensure
the breaking-up and coalescence of the interface are properly treated. The detailed
description on the points-regeneration scheme can be referred to [Wang, Wang, and
Zhang (2013)].

2.2 Dynamic contact line model

The dynamics of the contact line in our study can be described as follows. At the
microscopic length scale, the contact angle of a moving interface is a constant,
which is equal to the equilibrium contact angle θe (see Fig. 2). The contact angle
is known for a given air-liquid-solid system. Since our numerical simulation does
not directly account for the molecular interactions of the three phases at the micro-
scopic length scale, we use the so-called ‘apparent’ dynamic contact angle which
defines the macroscopic relation between the contact line and the solid surface. A
dynamic contact line model is needed here to relate the dynamic contact angle and
the microscopic interactions of the three phases.

To apply no-slip boundary condition on the solid surface would yield a stress sin-
gularity at the contact line. To avoid this problem, a Navier-slip boundary condition
is imposed so that the fluid is allowed to slide along the solid surface:
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uw = λ
∂u
∂y

∣∣∣∣
w
, (15)

where uw is the fluid velocity on the solid surface, and λ is a pre-defined slip-
length for a given problem. In reality, the true slip-length is in the order of the
intermolecular distance, here we choose λ = 0.001 for all the numerical examples,
which does not allow too much movement of the contact line.

The shape of the contact line is dependent on the contact angle formed with the
surface and the intrinsic properties of the liquid. An empirical model is demanded
here to reconstruct the contact line by correlating the dynamic contact angle and the
capillary number. The model we use is first presented by Kistler [Kistler (1993)]
and is widely used in other studies [Muradoglu and Tasoglu (2010); Mukherjee and
Abraham (2007); Sikalo, Wihelm, and Roisman (2005); Roisman, Opfer, Tropea,
Raessi, Mostaghimi, and Chandra (2008)]. It is proven to be suitable in dealing
with contact line movement:

θD = fHo f f (Cacl + f−1
Ho f f (θe)). (16)

Cacl = µUcl/σ (Ucl is the capillary number of the contact line; Ucl is the velocity
of the contact line. θe is the equilibrium contact angle. fHo f f is the Hoffman’s
function which is defined as:

fHo f f (x) = arccos

(
1−2tanh

(
5.16

(
x

1+1.31x0.99

)0.706
))

. (17)

Due to hysteresis, the contact line can only advance when the contact angle is
beyond the advancing contact angle θA, or recede when the contact angle is below
the receding contact angle θR. If θA and θR are prescribed for a particular system,
the dynamic contact angle θD can still be computed using Eq. (16) by substituting
θe with θA(when advancing) or θR (when receding).

Under the framework of the connectivity-free front tracking method, the interface
is explicitly presented by interfacial points. Once the interface gets close enough
to the solid surface, the points-regeneration scheme starts to connect the interfacial
points to the surface to form an initial contact line. Therefore, the remaining task
is to use the empirical model to reconstruct the initial contact line and predict the
correct movement.

The schematics of the contact line construction is shown in Fig. 3. At each time
step, if the interfacial points are found to be connected to the solid, the contact
line needs to be reconstructed so that the unit normals of the interfacial points
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Figure 3: Schematics of contact line construction.

connecting to the solid surface obey the predicted dynamic contact angle using Eq.
(16). To determine the dynamic contact angle θD, the contact line velocity Ucl must
be specified. To use the velocity of the three-phase contact point xO as the contact
line velocity, an iterative procedure would be required to determine the location
and the velocity of the three-phase contact point since each of them is affected by
the other. The iteration would not reach convergence when the contact line velocity
approaches zero [Muradoglu and Tasoglu (2010)]. Here we let the tangential (to
the surface) component of a reference point velocity vR to be the velocity of the
contact line Ucl . The reference point xR is located at a distance d from the solid
surface. The distance can be specified as d = ε∆x, where ∆x is the grid spacing,
ε is a scaling factor specified as 0.9 arbitrarily. This reference point is explicitly
generated during the regeneration scheme. The unit normal nR and velocity vR for
this particular point can also be calculated. To determine whether the contact line is
advancing or receding, simply evaluate the sign of vR ·nR. The unit normal for each
interfacial point is defined to be along the outward normal direction. Therefore, if
vR ·nR > 0, then the contact line is advancing; if vR ·nR < 0, then the contact line
is receding.

Once the contact line velocity is determined, the dynamic contact angle, hence the
unit normal for the point connected to the solid surface, can be calculated from
Eq. (16). The contact line is reconstructed using an arc from a perfect circle. The
advantage to use an arc to fit is that the outward unit normal can transit smoothly
from the reference point xR to the end point of the contact line xO. For a 2-D
construction, assuming the coordinates (xR,yR) and the unit normal (nx,ny) for the
reference point are known. The unit normal of the point connected to the solid
(mx,my) is calculated from the dynamic contact angle. The outward normal for the
solid surface is denoted as (px, py). The goal is to find the coordinates of the last
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point of the contact line (xO,yO). Because the reference point and the last point are
along the same circle, assuming the center of the circle is located at (xC,yC), then
the following equations must be satisfied:

(xR− xC)
2 +(yR− yC)

2 = (xO− xC)
2 +(yO− yC)

2, (18)

xR− xC

yR− yC
=

nx

ny
, (19)

xO− xC

yO− yC
=

mx

my
, (20)

(xO− xR)px +(yO− yR)py = d. (21)

To rule out any unrealistic solutions, the following condition must be satisfied:

((xR− xC)nx +(yR− yC)ny) · ((xO− xC)mx +(yO− yC)my)> 0. (22)

Based on the conditions (18) to (22), the coordinates at the point of contact, or
the last point of the contact line are calculated. More interfacial points can be
added between the reference point and three-phase contact point following the arc,
providing a smooth reconstructed contact line.

The method can be easily extended to the 3-D case. Whenever a reference point is
selected and its unit normal is obtained, the contact line is constructed in the plane
formed by the unit normal of the reference point (n) and the normal of the solid
surface (p), similar to the 2-D contact construction. The actual locations of the
newly constructed points can be obtained by transforming the coordinates from the
2-D plane to the 3-D space.

Once the contact line construction is completed, a smooth indicator field is then
obtained following the CFFT method. With accurate evaluations of the interface
(contact line) normal by adopting the RKPM interpolation, the following condition
can be automatically satisfied:(

∇I
|∇I|

)
wp

= nwp. (23)

The subscript wp denotes the interfacial point that directly connects the surface.
nwp is the unit normal calculated from the dynamic contact angle. Condition (23)
is used as a boundary condition for the front capturing method when solving the
advection equation. Our approach achieves this condition using a different manner,
as described in this section.
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2.3 Numerical procedure

The overall numerical procedure can be summarized as follows.

1) Perform the points-regeneration scheme to regulate the interfacial points, deal
with the topology changes such as breaking-up and coalescence if occur, and con-
nect the interface to the solid surface when interface gets sufficiently close.

2) If a contact line is detected, calculate the contact angle θ . If θR < θ < θA, the
contact line movement is under hysteresis, there is no need to reconstruct. If θ > θA

or θ < θR, reconstruct the contact line following the procedure mentioned above.

3) Construct a smooth indicator field based on the interface using the CFFT method.

4) Calculate the fluid properties and the surface tension force using Eqs. (3), (4)
and (11). Solve the Navier-Stokes equations to obtain the velocity and pressure
fields for the fluid.

5) Finally, update the interface based on the velocity field as xn+1
p = xn

p +u(xn
p)∆t.

Then go back to step 1) for the next time step.

3 Numerical Examples

The examples to be studied here use non-dimensionalized dimensions and material
parameters.

3.1 Drop spreads on a horizontal surface

This numerical study is to examine the spreading of a drop on a horizontal solid
surface due to gravity. Opposing to the spreading, the surface tension force tries to
maintain the sphericity of the drop. The movement of the contact line is constrained
by the dynamic contact angle, where the drop eventually reaches an equilibrium
shape. With a given static or equilibrium contact angle (θe), the final shape of the
drop can be uniquely determined.

A 2-D circular drop is initially placed on a horizontal surface. The schematic is
shown in Fig. 4. The computational domain is a 6× 2 rectangular box, which is
discretized using 53,200 uniform quadrilateral elements. The drop with a radius of
0.5 is placed at the bottom center of the box. The density and viscosity ratios of the
liquid drop and the ambient air are ρl/ρg = 1000 and µl/µg = 100, respectively.

To analyze the final shape of the drop, we perform the simulations with and without
the dynamic contact line model. For the cases with dynamic contact line model, we
perform the simulation for 3 different equilibrium contact angles (θe = 60◦, 90◦

and 120◦) with Eotvos number Eo = 1.0. The Eotvos number, Eo = ρlgR2
0/σ ,

represents the ratio of gravity and capillary force, where ρl is the density of the
drop, R0 is the radius of the initial drop, g is the gravity, and σ is the surface tension.
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2.0	  

6.0	  

R=0.5	  

Figure 4: Schematic of a drop spreading on a horizontal plane.

In this example, surface hysteresis is not considered. The final shapes of the drop at
equilibrium of these 4 cases (one without the dynamic contact line model and 3 with
the dynamic contact line model) are shown in Fig. 5. We can observe that when the
dynamic contact line model is used, the final shapes of the drop are successfully
reproduced for their corresponding equilibrium contact angles. However, when the
dynamic contact line model is not used, the drop shape is purely controlled by
the gravity and the surface tension force. Without any mechanism to constrain the
contact line, the drop shape does not account for any wettability of the surface. In
this case, the equilibrium contact angle converges to around 100◦.

In order to analyze the effect of Eo number on the final shapes of the spreading
drop, the simulations are performed for Eo number varying from 0.01 to 50, which
is achieved by adjusting the ratio of gravity and surface tension.

To further analyze the effect of the Eo number on the final shapes of the spreading
drop, the simulations are performed for Eo number varying from 0.01 to 50, which
is achieved by adjusting the ratio of gravity and surface tension. When Eo << 1,
the capillary force has a dominant role in the movement of the drop, the shape
of the drop cap remains round. According to [Dupont and Legendre (2010)], the
maximum height of the drop H0 measured from the solid surface is independent of
Eo, and can be determined as a function of the equilibrium contact angle as:

H0 = R0(1− cosθe)

√
π

2(θe− sinθecosθe)
. (24)

When Eo >> 1, the gravity controls the shape of the drop and the maximum height
H∞ of the drop is a function of both θe and Eo number:

H∞ = 2
R0√
Eo

sin
(

θe

2

)
. (25)
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(a) θe = 60◦

(b) θe = 90◦

(c) θe = 120◦

(d) Without dynamic contact line model

Figure 5: Final shapes of the drop for different equilibrium contact angles and
without dynamic contact line model.
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Figure 6: Normalized maximum height vs. Eo.
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Figure 7: Schematic of a drop moving on an oblique surface.

Here we compare the normalized maximum height of the drop (H/H0) at equilibri-
um for a large range of Eotvos number (0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10,
50) on a hydrophilic (θe = 60◦) and a hydrophobic (θe = 120◦) solid surfaces with
analytical prediction (Eqs. (24) and (25)) in Fig. (6). It can be clearly seen that
the computed drop height agrees very well with the asymptotic solutions obtained
from Eqs. (24) and (25). The transition of the final shape of the drop from a round
cap to a puddled shape as Eo number increased is clearly seen. This simple test
shows that the dynamic contact line model that is coupled into the CFFT algorithm
can accurately construct the contact line according to a given contact angle. The
final shape of the spreading drop can be successfully obtained.

3.2 Drop spreads on an oblique surface

In this example, a drop with hysteresis moving on an oblique surface with various
Eo number is simulated. When the surface inclination angle is at a critical inclina-
tion angle αC, the gravity and capillary force balance with each other, which is also
called the critical condition(See Fig. 7). If the inclination angle of the surface is
larger than αC, both the front and the trailing edges of the drop would start to move.
The critical inclination angle is also influenced by the given hysteresis angles, and
can be calculated as [Dupont and Legendre (2010)]:
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ρAgsinαC = σ(cosθR− cosθA), (26)

where A is the entire surface area of the 2-D drop. θA and θR are the receding
and advancing angles, respectively. The upper case A and R denote the predefined
advancing and receding contact angles based on hysteresis. We use the lower case
a and r to describe the actual advancing and receding contact angles obtained from
the numerical calculation based on the dynamic contact line model. Re-arranging
the equation with Eo number we get:

sinαC =
2

πEo
(cosθR− cosθA). (27)

In this set-up, a semi-circular drop is placed on a solid surface. The schematic is
the same as previous numerical example. The inclination angle of the solid surface
is adjusted by manipulating the direction of the gravity. The density and viscosity
ratios of the liquid drop and air are 1000 and 100, respectively. Three sets of Eo
numbers 0.5,1 and 2 and two sets of hysteresis angles (θA,θR) = (100◦,80◦) and
(120◦,60◦) are chosen. The equilibrium contact angle is set to be 90◦. For each
combination of an Eo number and a set of hysteresis angles, a series of inclination
angles with an increment of 5◦ or 10◦ near and away from the estimated critical
inclination angle are examined using the simulation model. Each simulation is run
until the system reaches equilibrium. From the simulations, a critical inclination
angle is identified by linear interpolation of inclination angles right before and after
the the drop reaches hysteresis. An example is shown in Fig. 8 for the combination
Eo = 1 and (θA,θR) = (120◦,60◦). This figure shows the variation of the advanc-
ing and receding contact angles for a range of selected inclination angles α from
10◦ to 90◦. When the inclination angle increases, the drop starts to deform in order
to maintain a balance between the gravity and the capillary force. The advancing
contact angle reaches beyond the hysteresis angle (θA = 120◦) first and exceeds a
little during the rest of the simulation, which agrees with the experimental obser-
vation in [ElSherbini and Jacobi (2006)]. Similar numerical simulations [Dupont
and Legendre (2010)] also confirm this conclusion. The receding contact line starts
to move around α = 39◦, at which point the drop starts to slide due to both the
advancing and receding contact lines are moving. The drop shapes when α = 20◦,
40◦ and 80◦ are shown in Fig. 9. The evolution of the drop and the sliding behavior
after the drop reaches the critical condition (α = 80◦) can be clearly seen.

The critical angle identified from the simulation for different Eo number and hys-
teresis angles are listed in Table (1). We also compare the numerical and theoretical
critical angles obtained from Eq. (27), shown in Fig. 10. A very good agreement
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Figure 8: Advancing and receding contact angle for different inclination angles for
Eo = 1 and (θA,θR) = (120◦,60◦).

Figure 9: Drop shapes at α = 20◦, 40◦ and 80◦ for Eo = 1 and (θA,θR) =
(120◦,60◦).
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Table 1: Calculated critical angle.

(θA, θR) Eo=0.5 Eo=1.0 Eo=2.0
(100◦, 80◦) αC = 27◦ αC = 14◦ αC = 6◦

(120◦, 60◦) No Motion αC = 39◦ αC = 20◦

0 0.5 1 1.5 2 2.5 3
0

0.5

1
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r/
A

 

 
Numerical
Experimental data fit

Figure 11: Normalized receding contact angle vs. Bo before the drop reaches crit-
ical condition. The experimental data fit is obtained from [ElSherbini and Jacobi
(2006)].

is achieved. For the combination of Eo = 0.5 and (θA,θR) = (120◦,60◦), there is
no motion for the drop. That is because during the entire simulation the receding
contact angle θr never reaches the predefined receding contact angle of θR = 60◦,
and the capillary force completely balances with the gravity. Therefore the drop
hangs onto the surface.

In a previous work, ElSherbini and Jacobi [ElSherbini and Jacobi (2006)] found
a linear relationship between the minimum receding contact angle of a 3-D liquid
drop and Bo number (Bo = ρlgD2 sinα

σ
) before the drop reaches the critical condition:

θr/θA = 0.01Bo2−0.155Bo+0.97. (28)

This relationship is based on the experimental data using various testing surface,
liquid, drop size, and inclination angle combinations, which result in different hys-
teresis angles and liquid properties. To see if our simulation can reproduce this rela-
tionship, we plot the non-dimensionalized receding contact angle θr/θA for various
Bo numbers before the drop reaches the critical condition in Fig. 11. We may notice
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Figure 12: Schematics of a drop impacts on a solid surface.

that θr/θA decreases almost linearly when Bo increases, which is consistent with
the linear relationship obtained from the experimental data. However, the experi-
ment is performed for 3-D drops with θr been the minimum receding contact angle
and the experiment θA been restricted to from 49◦ to 112◦. Those factors could be
the reasons for the small discrepancy of the simulated results and the linear fit from
the experimental data.

3.3 Drop impacts on a solid

To show the robustness of the implementation, we simulate a more complicated
case with a drop impacting onto a round solid obstacle. The geometry setup is
shown in Fig. 12. The computational domain is a 6× 12 rectangular box, which
is discretized with 11,1861 quadrilateral elements. A round obstacle is placed at
the center of the box with a diameter of 2.0. A drop with a diameter of D = 1.6
is placed at a distance of 10.0 measured from the bottom. All the boundaries are
set as Navier-slip boundary conditions. The density and viscosity ratios of the drop
and the ambient air are 1000 and 100, respectively. The time step size is 0.001.
The gravity acts along the negative vertical direction. The shape of the drop when
moving in the ambient air is governed by the gravity and surface tension force. The
non-dimensional Reynolds and Eo numbers are defined as:
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(a) τ = 1.12 (b) τ = 2.24 (c) τ = 3.35 (d) τ = 4.25

(e) τ = 4.70 (f) τ = 5.03 (g) τ = 5.59 (h) τ = 6.15

(i) τ = 7.27 (j) τ = 7.60 (k) τ = 7.83 (l) τ = 10.06

Figure 13: Shapes of the drop when impacting on the solid with Re = 14.1, Eo =
12.8.
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(a) τ = 0.56 (b) τ = 1.68 (c) τ = 2.24 (d) τ = 2.80

(e) τ = 3.07 (f) τ = 3.35 (g) τ = 3.91 (h) τ = 4.19

(i) τ = 4.47 (j) τ = 4.75 (k) τ = 4.92 (l) τ = 5.59

Figure 14: Shapes of the drop when impaction on the solid with Re = 141, Eo =
12.8.



64 Copyright © 2014 Tech Science Press CMES, vol.98, no.1, pp.41-67, 2014

Re =
ρlg1/2D3/2

µl
; Eo =

ρlgD2

σ
. (29)

The values of gravity and surface tension force are manipulated so that two Reynold-
s number cases with Eo = 12.8 are studied: 1) Re = 14.1; 2) Re = 141. The equi-
librium contact angle for both cases is set to be 90◦. The advancing and receding
angles (θA,θR) are set as (100◦, 80◦), respectively.

Figs. 13 and 14 show the drop shapes at different non-dimensional times for case 1
and case 2, respectively. Due to gravity, the drop falls and impacts onto a round ob-
stacle. When the drop is close enough to the solid surface, the points-regeneration
scheme helps form the contact line by connecting the interfacial points to the solid
obstacle (Figs. 13(b) and 14(b)). Then the movement of the contact line conforms
to the dynamic contact line model (using Eq. (16)) and the given surface hysteresis.
For case 1 that has a relatively small Reynolds number, the drop tends to drip down
(Fig. 13(c)). When the surface tension force can no longer be balanced with the
gravity of the drips, the drop breaks up into small ones. As shown in Fig. 13, the
drop undergoes two stages of breaking-up and forms two large drops and two small
ones (Fig. 13(d)). The two large drops coalesce during falling (Fig. 13(f)) and
eventually impact on the bottom surface and form a round cap (Fig. 13(h)). Due to
the accumulative precision error, the small drops are not formed at the exact same
time. Both of them eventually merge with the two large drops. In case 2 where the
Reynolds number is 141, as shown in Fig. 14, a different scenario happens. The
original drop hits the round obstacle with a larger impact velocity. Therefore the
impact is much more dramatic compared to the low Reynolds number case. The
drop breaks up into small ones that slash around. Instead of forming a round cap at
the bottom surface, the topology of the interface changes constantly. It even climbs
onto the side walls during the spreading of these broken drops.

4 Conclusions

In this work, we propose and set up a numerical framework to model drop spread-
ing and impact by coupling a connectivity-free front tracking (CFFT) method with
a dynamic contact line model with surface hysteresis. This numerical method can
be used as a tool to perform bloodstain pattern analysis as it aims at accurately
predicting the drop behaviors such as motion, impact and spreading under gravi-
ty, viscosity and surface tension force. The CFFT method explicitly represents the
interface using interfacial points without the need to maintain the connectivities.
Therefore, the topology change can be easily handled for blood drop spattering.
In order to provide more accurate simulation for contact line problem, we adopt a
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macroscopic dynamic contact line model to predict the contact angle. This mod-
el is implemented by reconstructing the contact region of the air-liquid interface
to adjust the actual geometrical contact angle according to the model prediction.
With the explicit interfacial points representation, the reconstruction is accurately
performed and the dynamic contact angle constraint is successfully imposed.

Several test cases are shown to validate the method. In the drop spreading due to
gravity case, the normalized maximum height of the drop agrees very well with the
theoretical prediction. By performing the drop movement on an oblique surface
case, we find the critical angles of the oblique surface with various Eo number and
surface hysteresis to match well with the theoretical ones, and numerical results of
the receding angles for the inclined drop agree with the experimental data. Finally,
the method is applied to a more complicated case by impacting the drop onto a solid
obstacle. The drop undergoes frequent interface topology changes. The formation
and movement of the contact lines when the drop interacts with solid surfaces are
well presented. The results show the different behaviors of the drop due to different
Reynolds numbers hence the impact velocities, which indicates great flexibility and
robustness of the method.

We acknowledge that the implementation as well as the test cases were limited
to 2-D at this point due to the complex and heavy computational cost involved in
constructing 3-D surfaces without interfacial connectivity. However, this work is
to demonstrate the applicability in accurately modeling drop spreading and impact
problems that are not trivial in many numerical aspects. To our knowledge, this is a
first attempt in combining a connectivity-free multiphase approach with a dynamic
contact line model, which shows great promises in building a robust numerical
framework to be widely adopted in BPA and forensic science.
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