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Abstract: Mechanical deformation of tissues in the female pelvic floor is be-
lieved to be central to understanding a number of important aspects of women’s
health, particularly pelvic floor dysfunction. A 2008 study of US women reported
the prevalence of pelvic floor disorders in the 20 and 39 years range as 9.7% with
the prevalence increasing with age until it reaches roughly 50% in the 80 and older
age group [Nygaard, Barber, Burgio, and et al (2008)]. Clinical observation indi-
cates a strong correlation between problems such as pelvic organ prolapse/urinary
incontinence and vaginal childbirth. It is thought that childbirth parameters like
fetal weight, duration of labor, and pelvic bony and soft tissue geometry can mod-
ulate the level of injury sustained during childbirth. However, it is difficult to study
the impact of childbirth parameters non-destructively in living women. Therefore,
realistic, efficient, computational modeling capabilities are necessary to study the
mechanical response of the organs and muscles during childbirth under varying
conditions, in order to develop and test hypotheses for childbirth related injury.
Furthermore, manufacturers of embedded prosthetic devices, such as those used to
treat prolapse, may benefit from the ability to predict the mechanical performance
of their prostheses in situ, and this potential benefit highlights the need for a capa-
bility to rapidly develop analytical models of the pelvic floor. This paper discusses
an algorithm to automatically generate an analysis-suitable geometry from medical
images. The automated analysis capability is demonstrated in modeling vaginal
contracture, as might occur in cases of women treated with radiation for cervical
cancer.
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1 Motivation

Modern engineering analysis has led to major improvements in product design and
innovation. Integrated geometric design tools, Computer Aided Design (CAD),
with finite element packages are ubiquitous. Building on this success, researchers
and practitioners would like to extend the application of engineering analysis to
problems of existing systems, i.e. ones that were not created within a CAD sys-
tem. Such domains might include forensics and reverse engineering; analysis of
the natural environment; and the life sciences. An emerging area of great interest is
bringing the success of engineering analysis enjoyed in product design to medicine.
The goal is to be able to engineer specific medical treatments for each patient, re-
ferred to as patient-specific medicine. The common thread linking these diverse
domains is that the geometry of the problem to be analyzed does not come with a
ready mathematical description, as in CAD, but rather in the form of a set of dis-
crete points. The challenge, then, is to develop an analysis-suitable description of
the problem domain directly from the point set.

One option for developing an analysis-suitable geometric representation is to mesh
the point set for use in finite elements, as in Fig. 10. This does have some diffi-
culties, in particular, developing a mesh that is topologically sound, i.e. does not
intersect or overlap, does not have holes or gaps, etc. can be quite difficult. In prac-
tice, an analyst often must manually assist in the meshing process. Such efforts are
often time-consuming and expensive in human time. Efforts have been made to au-
tomate the task of generating quality finite element meshes for complex geometry
with some success. Generic template meshes have been mapped to patient specific
geometry in order to curtail human effort [Salo, Beek, and Whyne (2013),Baghda-
di, Steinman, and Ladak (2005) and Bucki, Lobos, and Payan (2010)]. Yet simu-
lating large deformations proves troublesome for these meshes.

Another option is to avoid generating such a quality mesh by using a mesh free
method. The computation of mesh free shape functions requires that each point be
associated with a compact support and that the compact supports overlap such that
they cover the domain. Each point must also associate with a portion of volume.
Many of the proposed methods for computing particle volume and supports rely on
Voronoi diagrams or other mesh concepts. Generating such diagrams can be ex-
pensive in R3, so avoiding them is crucial in developing an automatic and efficient
method.

We propose a new method based on a mesh free Galerkin formulation, in particu-
lar the Reproducing Kernel Particle Method(RKPM). In the mesh free method, no
mesh is required for the analysis, and hence the troubles of meshing are avoided.
Some implementations of mesh free methods still use a background mesh for in-
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tegrating the weak form, but this mesh is not required to meet the more rigorous
standards demanded by finite elements, and hence, can be generated fairly easily.

The crux of the algorithm is the determination of the particle distribution, particle
interactions, support size and representative volume associated with each particle.

2 Background

The female pelvic floor muscles form a complex structure that is responsible for
supporting the pelvic organs such as rectum, vagina, bladder, and uterus. These
muscles and associated connective tissues are ultimately anchored to the bony
pelvic scaffold, and play a major additional role in maintaining continence of urine
and bowel contents, while allowing for important physiologic activities like urina-
tion, defecation, menstrual flow, and biomechanical processes like childbirth and
sexual intercourse.

The major components of the pelvic floor are outlined in Fig. 1(a) and Fig. 1(b).
A thorough description of the functional anatomy of the female pelvic floor can
be found in [Ashton-Miller and DeLancey (2007)] , [Hoyte and Damaser (2007)]
and [Herschorn (2004)] . The levator ani muscle group, as shown in Fig. 1(b) is
the ultimate supporting structure responsible for holding organs in the body, and is
rightfully the main focus of most studies regarding pelvic floor dysfunction [Hoyte,
Schierlitz, Zou, Flesh, and Fielding (2001),[Venugopala Rao, Rubod, Brieu, Bhat-
nagar, and Cosson (2010)],[Lien, Mooney, DeLancey, and Ashton-Miller (2004)].
The vagina, Fig. 1(c), is suspended across the pelvis, and is anchored, in large part
to the levator ani, and less so, the Obturator internus muscles. The vagina, in turn,
supports the bladder, and works with the levator ani to keep the rectum in a position
appropriate for fecal continence at rest, and bowel evacuation when appropriate.

Many finite element studies have been produced of the levator ani muscles rang-
ing from shell element models to full volume element models [Hoyte, Damaser,
Warfield, Chukkapalli, Majumdar, Choi, Trivedi, and Krysl (2008)],[Martins, Pa-
to, Pires, Jorge, Parente, and Mascarenhas (2007)],[Noritomi, da Silva, Dellai,
Fiorentino, Giorleo, and Ceretti (2013)]. These models have been valuable tools
in learning about the mechanics of the pelvic floor, but many of the models fo-
cus solely on the levator ani, without considering the interaction between the other
pelvic structures. To help address this deficit, focus is placed on the vagina for
the examples in this paper. Since a mesh is required for finite element analysis,
the geometry is often idealized, both due to the piece-wise polyhedral approxi-
mation and the need to make adjustments to the points to create a quality mesh.
Our aim is to accurately represent the geometry and produced studies involving
multi-component interactions. In [Doblaré, Cueto, Calvo, Martínez, Garcia, and
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(a) Pelvic organs: Bladder(Yellow), Vagina(Orange), Rec-
tum(beige)

(b) Pelvic floor muscles: Obturator(magenta), levator
ani(blue), pelvis(gray).

(c) The Vagina.

Figure 1: Major components of the female pelvic floor
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Cegoñino (2005)], the prospects of performing meshfree analysis for biomechanics
problems is discussed with several Galerkin methods being described. They chose
to use the natural element method which is closely tied to Voronoi diagrams, on the
basis that essential boundary conditions are easily applied. The ease of applying the
essential boundary conditions comes at the cost of generating a mesh of the domain,
though the authors say the mesh generation requires no interaction with the user.
They showed successful examples involving mostly bony tissue and some cartilage.
Meshfree methods have been used successfully in other areas of biomechanics in-
cluding the heart [Liu and Shi (2003)],and the brain [Horton, Wittek, Joldes, and
Miller (2010)],[Miller, Horton, Joldes, and Wittek (2012)]. In a similar vein, a
hybrid meshfree - mesh-based method based on the Reproducing Kernel Element
Method (RKEM) was undertaken in [Simkins, Jr., Kumar, Collier, and Whitenack
(2007) and Jr., Collier, Juha, and Whitenack (2008)]. RKEM details can be found
in [Liu, Han, Lu, Li, and Cao (2004).Li, Lu, Han, Liu, and Simkins, Jr. (2004), Lu,
Li, Simkins, Jr., Liu, and Cao (2004) and Simkins, Jr., Li, Lu, and Liu (2004)].

3 RKPM

The Reproducing Kernel Particle Method (RKPM) is a meshfree method in the gen-
eral class of so-called Meshfree Galerkin methods, which includes other methods
such as the Element Free Galerkin (EFG) method. The general process described
in this paper is applicable to many of the meshfree methods, but we review the
RKPM here for completeness. The general formulation is available in a number of
papers and texts, such as [Li and Liu (2002) and Liu, Jun, and Zhang (1995)]. The
approach presented here is that of [Li and Liu (2004)].

The problem domain is discretized by a collection of particles, each representing
a certain volume and mass of material. A function f defined on the domain is
approximated by an expression

I f (x) =
∫

Ω

Kρ(x−y,x) f (y)dy (1)

where Kρ is a smooth kernel function, and I is an approximation operator. In
RKPM, the form of the kernel is chosen to be

Kρ(x−y,x) = PT (
x−y

ρ
)b(x)Φ(x−y;ρ). (2)

The parameter ρ is called the smoothing length and is the characteristic length scale
associated with each particle. The window function Φ is a non-negative, smooth
function that is compactly supported with support radius of length ρ . The vector P
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contains the monomial terms of a polynomial of some order. In the present work, a
tri-linear basis is used, so

PT (x) =
[
1 x y z xy yz zx xyz

]
. (3)

Finally, the vector b, which we term the normalizer, is computed at each evaluation
point as a correction function to enforce consistency conditions on the approxima-
tion. The consistency conditions lead to a set of equations

∑
I

Kρ(x−xI,x)∆xI =1

∑
I

(
x− xI

ρ

)
Kρ(x−xI,x)∆xI =0

∑
I

(
y− yI

ρ

)
Kρ(x−xI,x)∆xI =0

∑
I

(
z− zI

ρ

)
Kρ(x−xI,x)∆xI =0

...

∑
I

(
x−xI

ρ

)α

Kρ(x−xI,x)∆xI =0



(4)

where α is a multi-index with ||α|| = n. Upon substituting Eq. 2, leads to the
following set of linear equations

m0(x) m1(x) · · · mn(x)
m1(x) m2(x) · · · mn+1(x)

...
...

...
...

mn(x) mn+1(x) · · · m2n(x)




b0(x)
b1(x)

...
bn(x)

=


1
0
...
0

 (5)

or, M(x)b(x) = P(0). The individual entries mi(x) are computed from

mi(x) = ∑
I

(
x−xI

ρ

)i

Φ(
x−xI

ρ
)∆Vi.

The system Eq. 5 is called the moment equation whose solution yields the values
for the normalizer b(x). The present work is based upon the observation that the
actual domain is defined where the moment matrix is non-singular. Conversely,
where the moment matrix is singular, there is no body.
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4 Overall process

Readily available programs, such as the 3D Slicer (www.slicer.org), can read the
data generated by the imaging machines, convert the images to point clouds, and
generate meshes. This is not quite a satisfactory result, because the resulting im-
ages, while visually appealing, do not stand up under the scrutiny required for
analysis. In particular, the meshes generally have duplicate points, edges and faces;
holes and discontinuities; and topological variations such as intersecting faces. The
first of these problems can easily be rectified, but the latter problems generally
require manual intervention to guide software in repairing the mesh.

Meshfree Galerkin methods build their function spaces directly from point sets, and
thus are not plagued by the same issues as mesh-based methods. This feature makes
meshfree methods attractive for life science applications. The basic approach we
follow is:
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Raw MRI Images
↓

Labelmaps

Labelmaps
↓

Raw Point Set

Raw Point Set
↓

Geometric Description

Geometric Description
↓

Decimation &
Point Placement

↓
Organ Connections

Loading
↓

Analysis
↓

Post Processing

Figure 2: Algorithm outline
Figure 2: Algorithm outline

A patient specific model is created first by producing a sequence of images of the
pelvic floor via some method such as magnetic resonance imaging, MRI. In these
raw images the various organs and tissues are not distinguished, in order to segre-
gate the organs into individual models the images must be segmented as in Fig. 3.
The resulting image is called a labelmap. Automatic segmentation is an open re-
search topic, currently the images are at least partially segmented by hand. Some
methods for segmenting the pelvic floor are discussed in [Ma, Jorge, Mascarenhas,
and Tavares (2012)]. After the labelmaps are generated, the discrete point set rep-
resentation of the models are produced. The images are integer arrays with each
index referring to a pixel, or color value. Each pixel is representative of an area
with pre-defined dimensions. When the labelmaps are stacked, the space between
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Figure 3: Labeled Image. (1)Levator ani, (2)Vagina, (3)Obturator, (4)Pelvis

consecutive images is represented with voxels, or volume elements. The voxels are
transformed into the raw point set in R3 based on their dimensions and location in
image space. The raw point set is then used to reconstruct the continuous geome-
try of the object via an implicit representation described in § 5. The reconstructed
geometry is an adequate description of the domain that is useful for placing RKPM
analysis suitable particles as warranted. Then constructing a decimated point set
for the purpose of analysis can be accomplished by generating a regular grid of
points and eliminating any points not in the domain. Figure 4 shows the sequence
of progression from the raw point set in Fig. 4(a) to the decimated point set in
Fig. 4(c). The volume reconstructed from the raw point set is shown in Fig. 4(b).
Once all of the organs of interest are processed and have their final points placed in
their respective domains, any organs that will interact during the simulation must
be connected. The current method is to model connective tissue as linear springs
between organs. After the organs are connected any applicable loading conditions
and essential boundary conditions are applied.

5 Geometric Description

The initial geometry is obtained from a discrete point set, thus the continuous ge-
ometry must be reconstructed. As discussed earlier, the moment matrix in Eq. 5 is
non-singular inside of the domain. The linear dependence of the moment equations
is based largely on the number of particles in the support and the spatial distribution
of these particles. If properly constructed, the moment matrix is well-conditioned
and invertible everywhere in a domain. The moment equations quickly become lin-
early dependent as the limits of the domain are approached. We now use this fact
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(a) Point set from labelmaps: 37376 points

(b) Geometry reconstruction

(c) Decimated Points: 16119 points

Figure 4: Geometry reconstruction and point decimation of a vagina model
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to build a function to describe the geometry implicitly. In numerical linear algebra,
the condition number of a matrix is a measure of “how singular” a matrix is. The
condition number is defined [Saad (2003)] as

κ(A) := ||A|| ||A−1||, κ ∈ [1,+∞) (6)

The best conditioned matrix has κ = 1, a singular matrix has κ→∞. Therefore we
can define our geometry based on the condition number of the system of equations:

F (x) = κ (M(x))−1 (7)

Where M(x) is the moment matrix at a point and κ , is a function returning the
condition. Notice that in Eq. 7 the reciprocal condition number is used and the
range of the function is (0,1], with κ−1 = 0 indicating a singular matrix. Then the
reconstructed domain is defined as:

1. int(Ωε) :=
{

x ∈ Rn
∣∣∣ ε < F (x)< 1

}
2. ∂Ωε :=

{
x ∈ R3

∣∣∣F (x) = ε

}
3.
{
R3− Ω̊ε

}
:=
{

x ∈ Rn
∣∣∣F (x)< ε

}
Where 1 is the interior and 2 is the boundary of the domain and ε is small. With this
definition, the boundary of the domain is defined as a contour of Eq. 7. The shape
of the reconstructed boundary can be controlled through the radius of support. As
the support radius grows any surface features are smoothed over, conversely as the
support radius is decreased any surface features become more sharply defined.

The set of points derived from the image Xi, are the discrete representation of the
domain, Ω. Developing a meshfree function space directly from a general point set
is a non-trivial task due to the need for accurate integration weights and support
radius. The set of points can actually be thought of as the vertices of a hexahedral
mesh that is usually referred to as the voxel model. Appropriate representative par-
ticle volume ∆VI , and support radius ρ can be assigned using data from the voxel
elements. Due to aliasing artifacts the voxel mesh is not suitable for representing
the smooth geometry of biological tissue, and it would not generate a smooth solu-
tion to the PDE’s if used for a finite element model. Yet, by using the vertices to
construct a meshfree representation of the geometry, the representation is smooth.
The objects of interest in the pelvic floor are smooth, not rough. One critique of the
proposed method is that it may not represent the actual geometry precisely enough.
On the other hand, a voxel mesh, as in Fig. 5, is clearly not a smooth body, and
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itself is inaccurate due to the aliasing and rough discretization inherent in a digital
medical image. Refer back to Fig. 1(c) for an example of a smooth representation.
A detailed study and quantification of this issue is the subject of an upcoming paper.

Figure 5: Voxel mesh representation of the vagina

5.1 Example in 1D

In order to illustrate this definition of the geometry, a one dimensional example is
plotted over a unit domain. The domain is discretized with ten particles and their
integration weights are assigned as described in [Li and Liu (2004)]. The particles
are uniformly distributed throughout the domain, so a suitable support radius is
defined as

ρ = α∆x (8)

where ∆x is the particle spacing and α is the dilation coefficient. The shape func-
tions and the corresponding geometry representation are shown for dilation coeffi-
cient values of 1.2, 1.4 and 1.6. The dashed vertical lines in Fig. 6 are bounds for the
area starting at the first boundary particle and extending out until the moment ma-
trix is singular to machine precision. This area will be referred to as the rind of the
reconstructed domain. Notice that as the dilation coefficient is increased this rind
grows in size. This would correspond to a smoothing of geometric features, which
might or might not be desirable. The shape functions plotted in Fig. 6 show the cor-
relation between support coverage and moment matrix condition. As a reminder,
the moment matrix is computed via nodal integration, each term in the summation
is a rank one matrix representative of a particles contribution. If this integral is
dominated by a single term, the overall condition of the moment matrix is poor,
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(f) Reciprocal condition number, α = 1.6

Figure 6: 1D Shape functions and reciprocal condition number
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conversely when each of the terms are equally weighted the moment matrix is well
conditioned. This shows up in Fig. 6(b), Fig. 6(d), and Fig. 6(f) as the fluctuations
in F (x). In Fig. 6(b), these fluctuations are much greater than in the in Fig. 6(d)
and Fig. 6(f). The peaks are higher between particles, indicating a well conditioned
moment matrix and no dominating term in the integral, and the valleys are much
lower at a particle, indicating a poorly conditioned moment matrix and thus one ter-
m in the integral is dominating. Since we are choosing the surface based on some
threshold value F (x) = ε , these fluctuations could cause trouble if the functions
falls below ε in an undesirable location. This could result in holes in the domain
where none exist. A safe method for representing sharp surface features, meaning
using a small value for α , is to increase the dilation coefficient of internal particles
while keeping the boundary particle dilation coefficients the same as in Fig. 7. This
method minimizes the size of the rind, while smoothing the fluctuations in F (x).

Figure 7: Reciprocal condition number: boundary particles α = 1.2, interior parti-
cles α = 1.5

Increasing the number of particles in the domain would also remedy this problem,
yet by simply controlling the dilation parameter we can can get the same effect
without adding more degrees of freedom.

5.2 Example in 3D

The ideas discussed in one dimension hold true for three dimensional models. A
volume rendering of the vagina is shown in Fig. 8(a), the plane slicing through
the model shows the location of the plot in Fig. 8(b). Fig. 8(c) shows the moment
matrix reciprocal condition number is then plotted over the line drawn across the
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middle of Fig. 8(b). The top portion of the model is essentially a thin walled tube,
and this shows up in the line plot across the body as two peaks in the function. The
second peak shows the same fluctuations that were discussed in the one dimensional
example.

In order to perform an analysis in an efficient manner, it is important to limit the
number of particles in the model. Since the goal of the method is to maintain patient
specific features in the model, we need to show that decimation of the model does
not significantly alter the geometry we are representing. The images in Fig. 9 depict
the volume renderings for three different particle sets. The first representation with
112,128 particles, Fig. 9(a) is derived directly from a medical image. The volume
rendering of this representation, Fig. 9(b) has well defined features such as the
indentation of the front wall and the ridges along the side walls. The raw point
representation was decimated to 26,809 particles, shown in Fig. 9(c). The volume
rendering for this representation still has the well defined indentation and the ridges
on the side wall are still defined. The third representation in Fig. 9(e), has a particle
count of 3,339. While this representation retained the overall shape of the original
model, the indentation on the front wall and the ridges on the side wall are not
as well defined. The tetrahedral Finite Element mesh in Fig. 10 shows some of
the same geometric features as our volume reconstructions, yet the surface is not
smooth.

6 Application Example

We seek to develop a computer simulation to perform virtual studies of mechanical
problems involving the pelvic floor. Ultimately, the goal is to provide an automatic,
or nearly automatic, process to perform engineering analysis on objects defined by
medical images. Vaginal contraction was chosen as the first test case because it is
simpler than a full childbirth simulation, yet has direct relevance to actual medi-
cal procedures and involves all aspects of the computational problems we seek to
address. Vaginal contraction is a long term side effect of pelvic radiation therapy
and is caused by the development of scar tissue. This scar tissue results in a short-
ening and narrowing of the vagina and has associated difficulties and treatments
as described in [Bruner, Lanciano, Keegan, Corn, Martin, and Hanks (1993)] and
[Decruze, Guthrie, and Magnani (1999)].

For the present study, the vagina, obturator and pelvis are the organs under consid-
eration. In order to model vaginal contraction, a -2.5% strain was applied to the
vagina over a series of seven static load steps, leading to a large overall decrease in
width and length. The lateral vaginal wall was attached to the Obturator internus
via linear springs, and the Obturator internus was anchored to the pelvic bones via
essential boundary conditions. For simplicity the cervix was modeled as a fixed
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(a) Volume with cut plane

(b) 2D Plot

(c) Line Plot

Figure 8: Vagina plots
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Decimation of vagina model: 112,128 particles → 26,809 particles →
3,339 particles
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Figure 10: Finite Element mesh of the vagina

Figure 11: Original Configuration

Figure 12: Distortional strain plotted on final configuration.
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rigid body and the vagina was connected to it via linear springs. The organs were
discretized with 16119, 17691, and 18553 particles for the vagina, left obturator
and right obturator, respectively. The original undeformed configuration is shown
in Fig. 11. The distortional strain is plotted on the final configuration in Fig. 12.

7 Conclusion

An algorithm for completely automated generation of analysis-suitable geometries
from discrete point sets was presented. The method appears to work well on organs
found in the female pelvic floor and comparisons were made to voxel mesh ge-
ometries. Finally, to demonstrate that the resulting geometry is analysis-suitable, a
simulation of vaginal contracture was performed and presented using the geometry
representation from the algorithm.
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