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Geometrical Modeling of Cell Division and Cell
Remodeling Based on Voronoi Tessellation Method

Liqiang Lin1, Xianqiao Wang2 and Xiaowei Zeng 1,3

Abstract: The Voronoi tessellation is employed to describe cellular patterns and
to simulate cell division and cell remodeling in epithelial tissue. First, Halton se-
quence is utilized to generate the random generators of Voronoi cell points. The
centroidal Voronoi cell center is obtained by probabilistic Lloyd’s method and
polygonal structure of cell distribution is modeled. Based on the polygonal shape
of cells, the instantaneous mechanism of cell division is applied to simulate the cell
proliferation and remodeling. Four kinds of single-cell division algorithms are de-
signed with the consideration of cleavage angle. From these simulations, we find
that cell topological structure varies case by case, but the cell cycle time is almost
the same. With respect to double-cell proliferation, the cycle time is shorter than
single-cell division for the same number of replicated cells, but this doesn’t imply
the direct linear relationship between cycle time and the total number of cell divi-
sions. The current study provides a novel numerical tool for cell division simulation
and may open a door for more realistic and more accurate modeling of the features
of morphogenesis emerging from the complex interactions between geometric and
biomechanical properties of epithelial tissues.

Keywords: Voronoi tessellation, Halton sequence, Lloyd’s method, cell division,
multi-cell proliferation, cell cycle.

1 Introduction

Muscle tissue, epithelial tissue, connective tissue and nerve tissue are the four ma-
jor tissue types in a vast array of metazoans [Cowin and Doty (2007)]. From a
fertilized egg to an embryo, the growth of metazoan happens in the development of
all kinds of tissues. Development of biological tissue generally has three distinct
processes, e.g. growth, remodeling and morphogenesis [Garikipati et al. (2004)].
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Comprehensive overview about the biomechanics of growing tissues can be found
in an excellent review by Taber [Taber (1995)]. From the microscopic level, tissues
are composed of cells and extracellular matrix. Clearly, tissue growth can occur
either through the proliferation of new cells or by the production of extracellular
matrix [Jones and Chapman (2012)]. There is considerable evidence that the cel-
l proliferation and the spatial arrangement of cells during development play a key
role in the tissue-level morphogenesis shape [Baena-López et al. (2005); Lecuit and
Lenne (2007); Resino et al. (2002)]. Studies on critical features of tissue home-
ostasis show that normal tissue growth and renewal is dependent on the positioning
of the cell division axis [Théry and Bornens (2006)]. Most of the cell proliferation
is in the epithelial tissue and around 80% of human cancers progress at epithelial
sheets [Alberts (2008); Jones and Chapman (2012)], which results in a populari-
ty of research into epithelial tissue. In epithelial tissues, cells are packed together
closely [Braga (2000); Hildebrand (2005)], which is different from cell dispersion
in connecting tissue [Tomasek et al. (2002)]. The behavior of cell ensembles is
widely studied by the cell-based models, such as epithelial mono-layers [Brodland
et al. (2007)], multi-cell spheroids [Schaller and Meyer-Hermann (2005)], and
Dictyostelium discoideum slug [Dallon and Othmer (2004)]. Considering a flat
and monolayer epithelial tissue, the images of cells consisting of epithelial tissue
show polygonal or polyhedral structures [Dubertret and Rivier (2000); Gibson et
al. (2006); Meineke et al. (2001)]. Based on polygonal shape of epithelial cell,
Dirichlet domains were employed to describe polyhedral cellular patterns and cell
division for a piece of rat intestine [Honda (1978)]. The weighted Voronoi tessel-
lation was utilized to model the cell shape and simulate the process of increasing
large cell number [Honda et al. (2000)]. Meanwhile, cells are represented as poly-
gons by vertex dynamics models to study the influence of cell mechanics, cell-cell
interaction and proliferation on epithelial packing [Farhadifar et al. (2007)]. Vertex
dynamics models has also been used to simulate cell behavior underlying tissue
convergence and extension [Weliky et al. (1991)], and to study cell rearrangements
by accounting for the balance of forces between neighboring cells within an epithe-
lium [Weliky and Oster (1990)]. Cell movement and arrangement has been studied
on the two-dimensional cellular organization of the intestinal crypt by using off-
lattice Voronoi model [Meineke et al. (2001)].

Despite that epithelial cell behavior has been studied widely, very little is known
about the possible implications of cell pattern geometry for mechanical properties
of tissues or key biological processes, such as planar polarization, cell division and
tissue remodeling [Gibson and Gibson (2009)]. Thus, cell division and cell-cell
interactions also lead to a great deal of interests. The main objective of our present
work is to simulate the cell division and remodeling based on Voronoi tessellation



Geometrical Modeling of Cell Division and Cell Remodeling 205

method. This work is a preliminary study, and we only investigate the geometric
cell proliferation and remodeling (not including cell mechanics and cell-cell inter-
actions).

2 Methodology

2.1 Halton sequence

In statistics, the most prominent type of quasi-random number sequences has been
the Halton sequences [Chi et al. (2005); Halton (1960)] Halton sequence is de-
signed to generate points in unit space (0−1 space) for numerical methods such
as Monte Carlo simulations. In one dimension, to generate a sequence of N in-
teger numbers, the standard Halton sequence is used by taking a prime number
pr (pr ≥ 2), and locating the sequence of N integers 1,2,3, · · · ,n, · · ·N in terms of
the base pr [Bhat (2003); Hess and Polak (2003)]:

n = ∑
M
m=0 nm pm

r (1)

where m is an index of the power to which the base is raised and M = logpr
(n) =

ln(n)/ ln(pr). Here n(n = 1,2, · · · ,N) can be represented in digitized form in radix-
pr notation as: nMnM−1 · · ·n1n0. By reversing the order of n(n = 1,2, · · · ,N), the
Halton sequence in the prime base pr is obtained lying in the unit space (between
0 and 1) [Halton (1960)]:

Hr (n) = ∑
M
m=0 nm p−m−1

r (2)

Based on Halton sequence method, it is easy to generate quasi-random point distri-
bution in a unit plane. Take prime number 2 as an example, the first element of the
Halton sequence is: 1

2 . Now take each of the two parts and divide them into 2 parts
again. The dividing points constitute the next elements in the Halton sequence: 1

4
and 3

4 . By this procedure, we can get a series of Halton sequence as following:
1
2 ,

1
4 ,

3
4 ,

1
8 ,

5
8 ,

3
4 · · · . Similar sequences are defined for other numbers, such as prime

3(1
3 ,

2
3 ,

1
9 ,

4
9 ,

7
9 ,

2
9 · · ·).

In two-dimensional (2D) space, a point in the space should have two coordinates,
x and y. If we set prime 2 as Halton sequence base along x axis and 3 as Halton
sequence base along y axis. For instance, the Fig.1 illustrates the two-dimensional
distribution of 64 Halton sequence points.

2.2 Voronoi tessellations

Given an open domain Ω ⊆ RN , and the Voronoi domain is considered here as
partitioning of a plane with a set of n random distinct points {zi}n

i=1 [Du et al.
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Figure 1: Distribution of Halton sequence points in 2D space.

(1999); Jayabal and Menzel (2011); Ju et al. (2002)]. The points {zi}n
i=1 are called

generators. The Voronoi tessellation diagram is defined as convex polygons and
each polygon contains exactly one generating kernel point and every point in a
given polygon is closer to its generating point than to any other ones. The polygon
boundary segment ab is defined such that ab is perpendicular to the closest point
connection line zi− z j, as shown in Fig.2. For a 2D case, the Voronoi region, or
Voronoi tessellation assigned to generator {zi}n

i=1, can be written as:

Vi =V (Xzi) =
{

X : d (Xzi ,X)< d
(
Xz j ,X

)}
for zi 6= z j (3)

where Xzi represent the coordinates of kernel point i; d (Xzi ,X) denotes the Eu-
clidean distance between Xzi and X ; X belonging to Voronoi region of {zi}n

i=1 is
closer to generator {zi}n

i=1 than other generators, as shown in Fig.2.

If a density function ρ (X)≥ 0 defined on domain Ω is given, then for each Voronoi
region Vi , the mass centroid of z∗i of Vi can be defined as:

z∗i =

∫
Vi

Xρ (X)dX∫
Vi

ρ (X)dX
for i = 1, · · ·n. (4)

In the case of zi = z∗i , this Voronoi tessellation is called as centroidal Voronoi tessel-
lation. Generally, an arbitrary choice of generating points {zi}n

i=1 in a region is not
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Figure 2: Schematic of Voronoi diagram.

the mass centroids of the corresponding Voronoi regions initially from Halton se-
quence distribution. Fig.3 shows the Voronoi tessellation using 64 Halton sequence
points of section 2.1 as generators and the density ρ (X) = 1.

Figure 3: The Voronoi regions corresponding to 64 Halton sequence points in a unit
square.

2.3 Probabilistic Lloyd’s method

In order to determine the centroidal Voronoi tessellation, there are many methods to
obtain the center point of Voronoi region, such as MacQueen’s method and Lloyd’s
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method [Linde et al. (1980); Lloyd (1982); MacQueen (1967)]. Here, a modified
Lloyd’s method is employed through probabilistic theory. This modified Lloyd’s
method is based on probabilistic method and is viewed as probabilistic Lloyd’s
method. Given a region Ω and a density function ρ (X) ≥ 0 defined for all X ∈ Ω

to generate n initial generators then the procedure is as following:

1. Generate an initial n enerators {zi}n
i=1 in Ω , e.g. by using a Halton sequence

method;

2. Construct the Voronoi sets {Vi}n
i=1 associated with {zi}n

i=1;

3. Choose m random points
{

y j
}m

j=1 in Ω and m� n according to the probabil-
ity density function ρ (X), e.g., by a Monte Carlo sampling method;

4. Collect j = 1, . . . ,k sampling points y j closest to zi gathering together in the
set Mi ; if the set Mi is empty, do nothing; otherwise, calculate the average
coordinate znew

i of the set Mi and assign zi = znew
i ;

5. If the new kernel points meet some convergence criterion, eg. total number
of iterations , then terminate; otherwise, return to step 2.

Figure 4: A visual description of probabilistic Lloyd’s method.

A visual description about the probabilistic Llyod’s method is shown in Fig.4. The
hollow circles denote the previous positions of the generators and the dashed lines
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denote the edge of their corresponding Voronoi tessellation. The hollow squares
represent the random Monte Carlo sampling points during a single iteration of this
algorithm. The solid dark circles denote the average coordinate of random sampling
points or the new positions of the kernel points. The red arrows denote path from
the previous generators to new generators. Fig.5 shows the centroidal Voronoi tes-
sellation after iterations from the initial 64 Halton sequence points with the density
function ρ (X) = 1

Figure 5: Centroidal Voronoi diagram for a constant density function.

3 Cell characteristics and cell division simulation

3.1 Cell characteristics

A typical cell has a complicated structure in real world [Jones and Chapman (2012);
Lodish (2008)]. For epithelial cell, it is characterized by a cuboidal cell shape,
nuclei localized at the base of the cell, and asymmetrical distribution of proteins
at the membrane [Braga (2000)]. Generally, cell cycle involves five main states:
Resting phase(G0 phase), Increasing phase (G1 phase), Synthetic phase (S phase),
Pre-mitotic phase (G2 phase), and Mitotic phase(M phase) [Lipkin et al. (1963)].
Cell division models are categorized by two main features of mechanism based on
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how mother cell separates into daughter cells. The first mechanism involves daugh-
ter cells being placed beside the mother cell instantaneously [Bodenstein (1986)].
The other mechanism considers actual mitotic steps (including M phase and inter-
phase), and is a more physically realistic model for cell division [Bodenstein and
Stern (2005); Gibson et al. (2011)]. In fact, in order to simplify the problem, many
studies on epithelial cells were based on polygonal shape disregarding the detail
feature inside the cells [Aegerter-Wilmsen et al. (2010); Dahmann et al. (2011);
Oates et al. (2009)]. Therefore, here we also focus on the polyhedral shape model-
ing without considering the detailed feature inside the cell, such as cell nucleus and
cytoplasm. The complicated cell cycle is ignored and we only considered M phase
in this study.

3.2 Division procedure

By using the instantaneous cell division mechanism we are able to numerically
simulate the evolution of epithelial cell division and cell rearrangements. In order to
simulate the development of polygonal cells based on Voronoi tessellation method,
the original Voronoi generator is generated by Halton sequence. The prime base on
x axis is 2 and prime base along y axis is 3. After several iterations controlled by
iteration steps, the polygonal diagram is the centroidal Voronoi cells, see Fig.6(a).
We select one cell (the maximum area cell or a random cell), grow the cell volume
to almost twice of the normal cell and divide it by the following algorithm: the cell
is divided by introducing a new edge that is formed at a specific cleavage angle or
a random angle and the new edge passes through the center of Voronoi cell, which
will divide the cell into two equal parts, see Fig.6(b). Through this algorithm,
the original cell center point is separated into two points and the connection line
between these two new points is perpendicular to the new edge. Then, the two
daughter cells are relaxed to the new configuration according to the probabilistic
Lloyd’s method, see Fig.6(c). The cell division continues via repeating the above
processes

3.3 Simulation results

In cell division simulation, we start with a centroidal Voronoi tessellation of 16 cells
and simulate proliferation by repeating procedures described in Section 3.2. First,
four single-cell division cases are considered. Case 1: Maximum area cell is picked
as the division cell and the cleavage angle is specified along 45◦ or −45◦ plane .
Case 2: Maximum area cell is selected and the cleavage angle is random. Case
3: The division cell is selected randomly and the cleavage angle is specified along
45◦ or −45◦ plane. Case 4: Both division cell and cleavage angle are random
during the division moment. Initially, there are 16 cells in a predetermined lattice
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Figure 6: Cell division process in a restricted lattice-based box.

model, the dimension of the model is 100µm× 100µm . The initial average cell
size used in these simulations is around 25µm [De Paiva et al. (2006)]. The number
of cells is increasing during the division process. And after cell remodeling, the
cell topological structures are shown in Figs.7-10. The total cell number increased
from 16 to 81 and total cell cluster volume increased from 100µm× 100µm to
approximately 225µm×225µm. Many morphogenetic processes are accomplished
by coordinated cell rearrangements. These rearrangements are accompanied by
substantial shifts in the neighbor relationships between cells [Weliky and Oster
(1990)].

In Fig.11, we plot the cell division number versus division cycle time for the four
cases and we notice that the cell division number increases sharply at the initial
stage and become slower as cell division proceeds, which implies the division con-
sumption time increases as cycle increases [Lesher et al. (1961)]. In fact, if consid-
ering the cell apoptosis, the cell division curve will drop down after several hours
and the tangent of the curve will be negative. Cells stop dividing or die because
the genetic factors are getting lower and lower after each replication. For instance,
the telomeres, protective bits of DNA on the end of a chromosome required for
replication, get shorten with each copy, eventually being consumed.

In real world, there might be multiple mother cells dividing simultaneously to de-
velop the tissues [Porter et al. (1973)]. Fig.12 shows the process of two cells
proliferation at the same time. The division procedure is the same as in section 3.2
and the cleavage angle is specified along 45◦ and −45◦. The cell topology after re-
arrangements is shown in Fig.13. In addition, the cell division number versus cycle
time for simultaneously double-cell division and single-cell division is plotted in
Fig.14.
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Figure 7: Cell topology and morphology (Case 1).

Figure 8: Cell topology and morphology (Case 2).
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Figure 9: Cell topology and morphology (Case 3).

Figure 10: Cell topology and morphology (Case 4).
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Figure 11: Reduced division time vs. cell division number.

Figure 12: Doublecell division process.

4 Discussions and conclusions

We have developed a numerical simulation tool and used it to simulate cell division.
Different cleavage angles are investigated. Actually, the cleavage plane is crucial to
numerous processes and may determine the position of the two daughter cells after
division [Fernández-Miñán et al. (2007)]. Some studies on control of cleavage-
plane orientation indicated that the consequences of cleavage-plane misorientation
can cause polycystic kidney disease and organ malformation to tumorigenesis [Fis-
cher et al. (2006); Gibson et al. (2011); Gong et al. (2004); Quyn et al. (2010);
Saburi et al. (2008)]. In our simulations (Case 1, Case 2, and Case 4), we show
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Figure 13: Cell topology and morphology (Double-cell division).

Figure 14: Reduced division time vs. cell division number.



216 Copyright © 2014 Tech Science Press CMES, vol.98, no.2, pp.203-220, 2014

that different cleavage angle results in different cell topological distributions in the
same lattice-based model, see Fig.7, Fig.8 and Fig.10. Meanwhile, the position of
the daughter cells after division is dependent on the cleavage-plane angle. In return,
this might determine the cleavage-plane orientation. Comparing Fig.7 and Fig.9,
we can see the position of replicated cells affects the subsequent morphogenic de-
velopment as well. If the replicated cells are constrained in a small region, this
condition may result in cyst. Polycystic kidney disease studies indicate that early
cyst formation is associated with an increase in the number of cell in the circumfer-
ence of dilated tubules [Boletta and Germino (2003); Fischer et al. (2006); Gresh
et al. (2004)]. Double-cell division simultaneously influences the structure of cell
topology, see Fig.9 and Fig.12. Current cell proliferation alters the local cell topol-
ogy, which is associated with the interplay between cell shape and cleavage-plane
orientation. For instance, a pentagon may become a hexagon because of the divi-
sion of surrounding cells. In turn, this behavior affects the preceding cell division
plane angle and polarization.

From the relationship of cell division number and cell division cycle shown in
Fig.11 and Fig.14, as cell division proceeds, the division consumption time increas-
es with the increase of cell cycles. The distance between data points also indicates
that the cell division time increases as division cycle increases. Besides, the behav-
ior of two mother cells dividing at the same time doesn’t shorten the cycle time by
half to reach the same number of new replicated cells.

The limitations of the current study are obvious, first of all, we don’t consider the
whole cell cycle during cell replication, such as cell physical growth and apoptosis
[Evan and Vousden (2001)]. Second, cell division doesn’t involve any external fac-
tors or interactions among cells, such as cell deformation [Zeng and Li (2012)] and
cell-cell interaction or extracellular matrix effects [Curtis and Seehar (1978); Folk-
man and Moscona (1978)]. Third, the daughter cell is generated instantaneously
beside the mother cell, which doesn’t consider the actual mitotic process. The cell
division model presented in this work is a primitive one. In our future study, we
will consider cell deformation, cell-cell interaction, cell physical growth and apop-
tosis. The current study provides a numerical tool and may open a door for more
realistic and more accurate modeling of cell division, especially for epithelial cells.
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