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Design Evaluation of a Particle Bombardment System
Used to Deliver Substances into Cells

Eduardo M. B. Campello1,2 and Tarek I. Zohdi3

Abstract: This work deals with the bombardment of a stream of particles pos-
sessing varying mean particle size, velocity and aspect ratio into a cell that has fixed
(known) compliance characteristics. The particles are intended to penetrate the cell
membrane causing zero or minimum damage and deliver foreign substances (which
are attached to their surfaces) to the interior of the cell. We adopt a particle-based
(discrete element method) computational model that has been recently developed
by the authors to describe both the incoming stream of particles and the cell mem-
brane. By means of parametric numerical simulations, treating the stream’s mean
particle size, velocity and aspect ratio as random variables, we explore the synergy
between these parameters and identify basic trends as to how changes in the input
parameters affect the output results, and as to what are the best combinations of
parameter values that lead to (i) the highest amount of particle delivery and (ii) the
lowest level of membrane damage. Conclusions are drawn on this regard based
on statistical assessment of the simulations results. Computational particle-based
models render reliable and fast simulation tools. We believe they can be very useful
to help advance the design of particle bombardment systems.

Keywords: particle bombardment guns; design evaluation; cells; drug delivery;
particle methods; discrete element methods.

1 Introduction

Modern cell biology makes extensive use of delivery mechanisms to deliver foreign
substances into cells. Proteins, drugs, genetic material, biological stains, and many
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other materials are often desired to be transported to the interior of cells to under-
take a specific task. The cell membrane (in case of plant cells, also the cell wall)
constitutes the main physical barrier in this regard. Among the existing technolo-
gies to accomplish such transport, particle bombardment guns have been preferred
in recent years in many applications. This is partly due to their ability to deal with
cells both in vitro and in vivo (i.e., cells either in suspension or in their natural en-
vironment) and with groups of cells simultaneously (instead of only single cells at
a time). Particle guns consist of a channeled accelerator that shoots single parti-
cles or streams of particles of a noble, inert material (usually gold or tungsten) to
which the desired foreign substances are attached. They were first introduced by
Sanford and coworkers in the late 1980s (see the seminal papers [Sanford, Klein,
Wolf and Allen (1987)] and [Klein, Wolf, Wu and Sanford (1987)]), and rely on a
very simple principle: if the incoming particles have the appropriate sizes and are
accelerated to the appropriate velocities, they should readily penetrate thin barrier-
s such as cell walls and cell membranes, thereby entering the cell cytoplasm. The
idea is schematically illustrated in Fig. 1, where typical dimensions are also shown.

In the design of particle guns, the lipid bilayer structure of the cell membrane is
a primary aspect to be considered. Lipid molecules can be idealized as a spher-
ical polar head (representing a phosphoric group) that has one or two elongated
tails (representing hydrocarbon, fatty acid chains). In aqueous media, they orga-
nize themselves into various types of structures due to their amphiphilic properties
(the polar heads are hydrophilic, the hydrocarbon chains are hydrophobic), one
of which is the two-layer formation that is observed in cellular membranes. The
forces that hold them together in such arrangement are not due to strong covalen-
t or ionic bonds, but instead arise from weaker van der Waals, hydrophobic and
hydrogen-bonding interactions. This aspect provides the membrane a very soft,
flexible, almost fluid-like behavior, and yet good response to both stretching and
bending deformations are observed (along with excellent selective permeability).
The transport of substances across the membrane barrier by means of particle bom-
bardment guns is greatly governed by the mechanical characteristics of this struc-
ture.

This work deals with the computational modeling of particle bombardment guns
and aims at establishing a basic framework for design evaluation of these types of
delivery mechanisms. We use a particle-based (discrete element method) model re-
cently proposed by the authors in [Campello and Zohdi (2014)] to describe both the
incoming stream of particles and the cell membrane, and perform parametric simu-
lations of the system by making the stream’s mean particle size, velocity and aspect
ratio as design parameters. More specifically, these parameters are treated as ran-
dom variables whose values are sampled from underlying probability distribution
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Figure 1: Schematic of a particle bombardment gun for the delivery of substances
into a cell.

functions, with which we construct several sets of design vectors. Each design vec-
tor generates a computational particle problem that is then solved numerically with
our particle solver. In this latter, the compliance of the cell is taken into account by
using an appropriate (yet simple) model of the lipid’s bonding interactions, together
with consideration of the cell internal pressure. Both the bonding and internal pres-
sure parameters are assumed to be known and held with fixed values on all analyses.
Two measures (or indicators of performance) are defined to quantify respectively
the delivery success and the membrane damage associated with each design vector
or simulation. After performing all simulations, we compute the mean value, stan-
dard deviation and coefficients of variation of the design parameters and of the two
defined measures. We also compute the correlation coefficients of the two mea-
sures with respect to each of the design parameters. These statistics allow us to
make interpretations such as how variabilities in the input parameters propagate to
the output results, and what are the best combinations of parameter values that lead
to (i) the highest amount of particle delivery and (ii) the lowest level of membrane
damage. Other basic trends in the system can also be identified.

It is evident that there are multiple parameters that govern the response of cells
against the impact by a stream of particles. Yet, with the aim of solely establish-
ing a framework for rapid parametric investigations for design evaluation, and of
showing how the synergy of parameters can be identified, here we work only with
the three parameters stated above. We must mention, moreover, that there exists
a number of other theoretical and/or computational approaches that could be used
to study the transport of substances across the cell membrane, such as stochastic
dynamics [Wang, Sigurdsson, Brandt and Atzberger (2013); Pastor and Venable
(1993)], Monte Carlo simulations [Hac, Seeger, Fidorra and Heimburg (2005);
Pastor (1994)], molecular dynamics models [Tieleman, Marrink and Berendsen
(1997); Delemotte and Tarek (2012); Andoh, Okazaki and Ueoka (2013)], mean



224 Copyright © 2014 Tech Science Press CMES, vol.98, no.2, pp.221-245, 2014

field models [Khelashvili, Weinstein and Harries (2008)], continuum mechanics
models with spatial discretizations [Rangamani, Agrawal, Mandadapu, Oster and
Steigmann (2013)], etc., to name just a few. Yet, at the tens of nano- to a few micro-
time and length scales, we believe that particle-based models are the most suited
when one is interested in the overall, collective behavior of the system. They al-
low for simpler representations of the whole cell and incoming substances (with no
need for detailed descriptions of the complex short-range forces that act between
the polar headgroups and hydrocarbon chains of the lipid molecules). Also, multi-
ple contact/impact with the opening of localized holes on the membrane (localized
“rupture”) is straightforward to characterize. They allow for the construction of
rapid simulation tools. With such tools, particle bombardment guns can be more
thoroughly designed and tested without the need to resort to a great number of
physical experiments. Physical experiments can be expensive and time consum-
ing when dealing with cells, and the number of parameters that can be adjusted
within feasible cost and time is very limited when compared to computational in-
vestigations. For details on particle methods, see e.g. [Bicanic (2004); Pöschel and
Schwager (2004); Duran (1997)].

The paper is organized as follows: in Section 2 we present an overview of the e-
quations that govern the dynamics of particle systems, with emphasis on the several
types of mechanical forces involved herein and their representations; in Section 3
we present a brief description of the particle model adopted here for the cell mem-
brane, which is taken from [Campello and Zohdi (2014)]; in Section 4 we give an
outline of our numerical solution scheme to the system’s equations; in Section 5
we show how we construct the design vectors and the associated particle problem-
s, perform the corresponding numerical simulations, and extract the simulations’
results and statistics; and in Section 6 we derive our conclusions.

Throughout the text, plain italic letters (a,b, . . . ,α,β , . . . ,A,B, . . .) denote scalar
quantities, whereas boldface italic ones (aaa,bbb, . . . ,ααα,βββ , . . . ,AAA,BBB, . . .) denote vectors
in a three-dimensional Euclidean space. The inner product of two vectors is denoted
by

uuu · vvv = u1v1 +u2v2 +u3v3 , (1)

where ui and vi (i = 1,2,3) are the corresponding three components of the vectors,
and the norm of a vector by

‖uuu‖=
√

uuu ·uuu =
√

u2
1 +u2

2 +u2
3 . (2)
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2 Dynamics of Particle Systems

The primary assumption in the computational model that we use is that both the
incoming substances and the lipid molecules of the cell membrane are a collection
of spherical particles forming a discrete dynamical system. A purely mechanistic
(Newtonian) description is then followed (biological and chemical effects are not
considered). The particles are assumed to be small enough so that the effect of
their rotations with respect to their center of mass is unimportant to their overall
motion. Permanent deformations due to contact and collisions are supposed to be
minor and thereby ignored, which means that all particles remain spherical and with
constant radius throughout. Effects of temperature changes are also considered to
be irrelevant – although these can be easily incorporated, following e.g. the scheme
proposed in [Zohdi (2012)].

Let the system be comprised of Np particles, each one with known mass mi and
known radius Ri (i = 1, ...,Np), and let us denote the position vector of a particle
by rrri, the velocity vector by vvvi and the acceleration vector by aaai. According to
Newton’s second law, at every time instant t the following equation must hold for
each particle:

miaaai = fff tot
i , (3)

where fff tot
i is the total force vector acting on the particle. This vector is made up of

the sum of four force contributions as follows

fff tot
i = fff env

i + fff bond
i + fff con

i + fff f ric
i , (4)

in which fff env
i comprises the forces due to the environment (they represent the ef-

fects of the surrounding media or fluid on the particle), fff bond
i are the forces due

to bonding or adhesive interactions with other particles, fff con
i the forces due to me-

chanical contact (or collisions) with other particles and/or obstacles, and fff f ric
i the

forces due to friction that arise from these contacts or collisions.

The forces due to the environment are given by

fff env
i = miggg+ fff pres

i + fff drag
i , (5)

where ggg is the external (i.e. environmental) gravity field, fff pres
i is the pressure force

and fff drag
i is the drag force, both due to the surrounding fluid. In this work, the

pressure force has a given magnitude whereas the drag force is given by following
simple model, which constitutes a source of damping for the system:

fff drag
i =−cenv(vvvi− vvvenv) , (6)
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where cenv is a damping parameter and vvvenv is the (local) velocity of the surrounding
fluid. One should notice that this scheme constitutes a one-way-only kind of cou-
pling between the fluid and the particle, in the sense that the fluid affects the particle
but the particle does not affect the fluid (more elaborate, fully coupled models can
be constructed if necessary, although this increases drastically the complexity of
the solution scheme, since the fluid local velocity and pressure fields need to be in-
troduced as additional variables). Other environmental forces could be considered
in (5), such as electric forces due to external electric fields, magnetic forces due to
external magnetic fields, etc., but these are not considered in the present work.

The forces due to bonding or adhesive interactions with other particles are given by

fff bond
i =

Nb

∑
j=1

fff bond
i j , (7)

where Nb is the number of particles that are bonded to particle i and fff bond
i j is the

(binary) bonding force that acts between particle i and particle j. This force has the
general expression

fff bond
i j = Ki jnnni j , (8)

in which Ki j is a parameter dictating the intensity of the bonding for the pair {i, j}
and nnni j is the unit vector that points from the center of particle i to the center of
particle j, i.e.,

nnni j =
rrr j− rrri∥∥rrr j− rrri

∥∥ . (9)

Vector nnni j will be from now on referred to as the pair’s central direction. Scalar Ki j

can be modeled in a number of ways, such as by using a combination of attractive
and repulsive force coefficients that are functions of the distance between the par-
ticles [Zohdi (2012)] (this can be understood as derived from a generalized Mie’s
potential, of which the classical Lennard-Jones potential [Lennard-Jones (1924)] is
a special case), by using surface energy arguments [Johnson, Kendall and Roberts
(1971); Israelachvili (2011)], direct van de Waals effects, etc. In Section 3 we show
the model that we adopt for the purpose of this work, which was introduced by the
authors in [Campello and Zohdi (2014)] (see also [Campello (2014)]) and is based
on the presence of a fictitious spring-dashpot device connecting particles i and j.

The forces due to contact and collisions with other particles are modeled here with
an overlap-based scheme. Accordingly, the contact force is assumed to be a func-
tion of the amount of geometrical overlap or penetration (i.e., “deformation”) be-
tween the particles in contact. We follow Hertz’s elastic contact theory (see e.g.
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[Johnson (1985)]) and adopt the following expression for fff con
i :

fff con
i =

Nc

∑
j=1

fff con
i j ,

fff con
i j = 4

3

√
R∗E∗δ 3/2nnni j +dδ̇nnni j ,

(10)

where Nc is the number of particles that are in contact with particle i, fff con
i j is the

(binary) contact force that acts between the contacting pair {i, j},

R∗ =
RiR j

Ri +R j
and E∗ =

EiE j

E j(1−ν2
i )+Ei(1−ν2

j )
(11)

are the effective radius and the effective elasticity modulus of the contacting pair
(in which Ei,E j and νi,ν j are the elasticity modulus and the Poisson coefficient of
particles i and j, respectively),

δ =
∥∥rrri− rrr j

∥∥− (Ri +R j) (12)

is the geometric overlap (or penetration) between the pair in the pair’s central di-
rection, δ̇ is the rate of this penetration (the superposed dot denotes differentiation
with respect to time), and d is a damping constant that is introduced to allow for
some energy dissipation. Fig. 2 (top part) provides a schematic illustration of the
contact/collision for a colliding pair.
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Figure 2: Contact/collision between two particles.
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The damping constant d is taken here following the ideas of [Wellmann and Wrig-
gers (2012)], which means

d = 2ξ

√
2
√

R∗E∗m∗δ 1/4 , (13)

wherein ξ is the damping rate of the collision (which must be specified) and m∗ is
the effective mass of the colliding pair, i.e.,

m∗ =
mim j

mi +m j
. (14)

The damping rate ξ enables us to enforce the type of energy dissipation that shall
occur during the collision in the pair’s central direction. If the colliding pair is seen
as a one-dimensional spring-dashpot system (SDS) of mass m∗ and damping rate
ξ , its dynamics can be fully controlled by specifying appropriate ξ ’s. Recalling
the solution to a vibration problem of a 1-D SDS, it follows that: (1) when ξ = 0,
no damping exists and the collision is a perfectly elastic, energy-conserving one
(undamped SDS); (2) when 0 < ξ < 1, small to moderate damping exists and en-
ergy dissipation occurs at small to moderate rates (underdamped SDS); (3) when
ξ = 1, strong damping exists and rapid energy dissipation is observed (critically
damped SDS); and (4) when ξ > 1, very strong damping with rapid dissipation is
observed (overdamped SDS). Equation (13) is a generalization of the ideas pro-
posed by Cundall and Strack in their seminal work [Cundall and Strack (1979)],
wherein only critically damped collisions were considered.

The forces due to friction, which arise from the contacts/collisions, are modeled
by assuming that the friction coefficients of all colliding pairs are small enough so
that a continuous slide (with an opposing dynamic friction force) is to be expected
during the entire duration of the contact/collision (see Fig. 2, bottom part). By
“continuous slide” we mean that there is to be no stick between the contacting pair.
Although a stick-slip model could be considered, we find it to be unnecessary for
the problem that we are concerned with in this work. Thereby, here we write

fff f ric
i =

Nc

∑
j=1

fff f ric
i j ,

fff f ric
i j = µd

∥∥ fff con
i j

∥∥τττ i j ,

(15)

where fff f ric
i j is the (binary) friction force that acts between the colliding particles i

and j, µd is the coefficient of dynamic friction for the colliding pair, and

τττ i j =
vvv jt − vvvit∥∥vvv jt − vvvit

∥∥ (16)
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is the tangential direction of the contact/collision, which is the direction of the
tangential relative velocity of i and j, in which

vvvit = vvvi− (vvvi ·nnni j)nnni j

vvv jt = vvv j− (vvv j ·nnni j)nnni j .
(17)

3 Particle Model for the Cell Membrane

We follow the membrane model that has been proposed by the authors in [Campello
and Zohdi (2014)] and adopt a two-dimensional, circular-shaped idealization of the
cell, as depicted in Fig. 3 (a fully three-dimensional one can be considered without
any modification, at the only expense of having more particles in the system). For
simplicity, the presence of other substances on the membrane surface rather than
lipids (proteins, sugars, cholesterols, etc.) is ignored. Within this setting, each lipid
molecule is represented by a spherical particle (corresponding to the molecule’s
headgroup) that is bonded to its neighboring ones of the same layer by means of
spring-dashpots (SDs), as indicated in the upper zoom of Fig. 3. To capture the
“through-the-thickness” or “transverse” bonding that maintains the two layers to-
gether (which is in great part due to hydrophilic/hydrophobic interactions with the
surrounding aqueous media), transversal SDs are placed connecting particles in the
cell’s radial direction. And to account for circumferential interactions between the
two layers, crosswise SDs are introduced. The scheme is as depicted in the lower
zoom of Fig. 3, where the dashpots are not shown for the sake of clarity. Each SD
has stiffness ki j, damping constant ci j and initial length L0i j.

Accordingly, on each particle i of the membrane there act five bonding forces,
corresponding to the five SDs that are connected to i. This allows us to write, for
each of these particles:

fff bond
i =

5
∑
j=1

fff bond
i j ,

fff bond
i j = ki j∆Li jnnni j− ci j(vin− v jn)nnni j ,

(18)

where

∆Li j =
∥∥rrri− rrr j

∥∥−L0i j (19)

is the elongation of the spring that connects particles i and j and

vin = vvvi ·nnni j and v jn = vvv j ·nnni j (20)

are the central components of the particles’ velocities. To allow for the bonds to
break (rupture) if the particles are pulled apart strongly enough, each SD is provided
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Figure 3: 2D representation of the cell membrane and bonding between lipid parti-
cles.

with a critical strain εcrit
i j , which leads to a critical elongation ∆Lcrit

i j . Once this
critical value is reached, the corresponding SD is turned off, that is, it does not
enter the summation in equation (18).

The cell compliance or response to mechanical loads is governed not only by this
arrangement of SDs but also by the presence of an internal pressure. We consider
here that there exists a positive pressure gradient from the interior to the exterior of
the cell, which leads to an outward pressure force

fff pres
i = f p

i ννν i (21)

on each of the membrane’s inner layer particles. In this case, f p
i is the intensity

of the pressure force (which is to be specified) and ννν i is the local normal direction
of the membrane surface at the inner particle i, pointing outwards. Direction ννν i

is computed for each inner particle by taking successive cross-products involving
the particle’s position vector rrri and its immediate neighboring ones rrri−1 and rrri+1
of the inner layer, and then normalizing the result. One should notice that, since
pressure forces are live loads (in the sense that they change their local direction as
the membrane deforms), each ννν i has to be recomputed at every time instant. The
intensity f p

i , however, is kept here as constant for the sake of simplicity.
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One important aspect in this membrane model is how to come up with appropriate
values for the springs’ stiffnesses. As proposed in [Campello and Zohdi (2014)],
here we estimate their values from surface tension arguments, since the value of
the surface tension (or interfacial free energy per unit area) for hydrocarbon-water
interfaces is well documented in the literature. This is reported as being around 50
mJ/m2 for monolayers (although the presence of the hydrophilic headgroup may
reduce it to something closer to 20 mJ/m2, see e.g. [Israelachvili (2011)]), so that
for bilayers it must be multiplied by two. We check the obtained value against the
one that follows from the (more or less known) maximum internal pressure that the
cell can undergo before membrane rupture. From static equilibrium arguments on
one isolated particle, one can equate the force due to this internal pressure to the
resultant (in the radial direction) of the forces of the springs that are connected to
the particle. By assuming that all springs have the same stiffness, ki j follows.

The reader should notice in this model that, since each lipid bonding is assumed
to behave according to a one-dimensional constitutive relation, more complex laws
such as nonlinear hyperelasticity with progressive damage and rupture (allowing
for non-abrupt breaking of the bonds) can be straightforwardly considered.

Remark 1. It is important to notice the role of the crosswise SDs. They can be
understood as arising from the small lateral interactions that exist between the hy-
drocarbon chains of adjacent lipid molecules. Their presence is crucial in providing
a combined bending behavior for the two layers. Not having them causes each layer
to deform as independent sheets upon bending, which is not a realistic behavior.

Remark 2. For a pair of bonded (neighboring) lipid molecules, the spring stiffness
ki j and the dashpot constant ci j can be understood as “homogenized” properties
that represent the overall (average) behavior of the intermolecular interactions be-
tween the two molecules. In fact, we believe that many of the physical properties
of the cell membrane can be qualitatively described without the need to resort to
detailed representations of the complex short-range forces that act between the po-
lar headgroups and hydrocarbon chains of its lipid molecules. In an analogy with
gas-liquid phase interactions in thermodynamics, for example, the classical van der
Waals equation of state contains no information on the characteristics and range
of intermolecular forces, and yet renders a very satisfactory representation of the
phase behavior.

4 Time Integration Scheme for Solution of the System’s Dynamics

For the solution of the system’s dynamics, we start by considering the acceleration
vector aaai of each particle, which may be computed from equation (3). By definition,
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this vector also follows from the time-continuous differential equation

dvvvi

dt
= aaai . (22)

Integration of (22) between time instants t and t +∆t, together with (3), furnishes

vvvi(t +∆t) = vvvi(t)+
1
mi

∫ t+∆t

t
fff tot

i dt . (23)

The integral on the right-hand side of (23) is difficult (if not impossible) to be
evaluated analytically because of the intricate dependence of fff tot

i with time. A nu-
merical approximation is thus necessary and here we adopt the following scheme,
which corresponds to the use of a generalized trapezoidal rule:∫ t+∆t

t
fff tot

i dt ≈
[
φ fff tot

i (t +∆t)+(1−φ) fff tot
i (t)

]
∆t , (24)

with 0 ≤ ϕ ≤ 1. If φ = 0, the integration corresponds to an (explicit) forward
Euler scheme; if φ = 1, to an (implicit) backward Euler one; and if φ = 0.5, to the
(implicit) classical trapezoidal rule. By inserting (24) into (23), one has

vvvi(t +∆t) = vvvi(t)+
∆t
mi

[
φ fff tot

i (t +∆t)+(1−φ) fff tot
i (t)

]
. (25)

On the other hand, by definition the velocity vector vvvi of each particle is related to
the particle’s position by the time-continuous differential equation

drrri

dt
= vvvi . (26)

This equation can also be integrated between t and t +∆t, yielding

rrri(t +∆t) = rrri(t)+
∫ t+∆t

t
vvvidt . (27)

The integral in (27) is also difficult to be evaluated analytically, and then we adopt
the following approximation, similarly to what was done in (24):∫ t+∆t

t
vvvidt ≈ [φvvvi(t +∆t)+(1−φ)vvvi(t)]∆t . (28)

By introducing (28) into (27), one arrives at

rrri(t +∆t) = rrri(t)+ [φvvvi(t +∆t)+(1−φ)vvvi(t)]∆t . (29)
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Expressions (25) and (29) constitute a set of equations for i = 1, ...,Np particles,
with which the velocity and position vectors of each particle at t +∆t may be com-
puted once vvvi(t) and rrri(t) are known. This computation, however, cannot be per-
formed directly, since (25) requires the evaluation of fff tot

i (t +∆t), which is in turn
a function of all unknown position and velocity vectors rrr j(t +∆t) and vvv j(t +∆t):

fff tot
i (t +∆t) = f̂ff

tot
i
(
rrr1(t +∆t),rrr2(t +∆t), ...,rrrNp(t +∆t),

vvv1(t +∆t),vvv2(t +∆t), ...,vvvNp(t +∆t)
)

= f̂ff
tot
i (rrr j(t +∆t),vvv j(t +∆t)) , j = 1,2, ...,Np

(30)

(the notation with a superposed hat introduced above indicates that the quantity is a
function of the arguments inside the parentheses). This fact means that all equations
are strongly coupled, and a recursive solution is thereby necessary. We adopt here
a fixed-point iterative scheme, whose main steps are as summarized in (31). The
scheme is relatively easy to be implemented and it is noteworthy that no system
matrix is required. Also, adaptivity of the time step size can be straightforwardly
incorporated.

GIV EN QUANT IT IES: t = 0, ∆t = known, φ = known, rrri(t), vvvi(t) = known;
(1) INIT IALIZE T IME-ST EP :

K = 0 (iteration counter)
rrrK

i (t +∆t) = rrri(t), vvvK
i (t +∆t) = vvvi(t) (predictor)

(2) FOR i = 1, ...,Np DO :
fff tot,K+1

i (t +∆t) = fff tot
i

(
rrrK

j (t +∆t),vvvK
j (t +∆t)

)
vvvK+1

i (t +∆t) = vvvi(t)+ ∆t
mi

[
φ fff tot,K+1

i (t +∆t)+(1−φ) fff tot
i (t)

]
rrrK+1

i (t +∆t) = rrri(t)+
[
φvvvK+1

i (t +∆t)+(1−φ)vvvi(t)
]

∆t
(3)CHECK FOR CONV ERGENCE :

compute err(rrr) and err(vvv)
IF (err(rrr) OR err(vvv)> TOL) ⇒ K = K +1, GOTO (2) (iterate)
IF (err(rrr) AND err(vvv)≤ TOL) ⇒ t = t +∆t, GOTO (1) (move to next time step)

(31)

Remark 3. According to (31), one may think that velocities and positions are to be
fully updated only after one complete iteration. This would correspond to a Jacobi-
type of scheme and is presented like so in (31) only for the sake of algebraic sim-
plicity. What we actually do in step (2) of the algorithm is: for each particle i, we
compute fff tot,K+1

i (t+∆t) using the velocities and positions of the previous particles
that have just been updated within the current iteration, that is, using vvvK+1

j (t +∆t)
and rrrK+1

j (t +∆t), j = 1,2, ..., i− 1. For j ≥ i, the values of the previous iteration,
i.e., vvvK

j (t +∆t) and rrrK
j (t +∆t), are used. This resembles a Gauss-Seidel scheme,
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which (as it is well known) converges at a faster rate than the Jacobi method, if the
Jacobi method converges, or diverges at a faster rate, if the Jacobi method diverges.
For details on this subject, the reader is referred to [Axelsson (1994)].

Remark 4. The two error measures in step (3) of (31) are taken as normalized
(nondimensional) measures, and are given respectively by

err(rrr) =
∑

Np
i=1

∥∥rrrK+1
i (t +∆t)− rrrK

i (t +∆t)
∥∥

∑
Np
i=1

∥∥rrrK+1
i (t +∆t)− rrri(t)

∥∥ and

err(vvv) =
∑

Np
i=1

∥∥vvvK+1
i (t +∆t)− vvvK

i (t +∆t)
∥∥

∑
Np
i=1

∥∥vvvK+1
i (t +∆t)− vvvi(t)

∥∥ .

(32)

5 Parametric Numerical Simulations

To perform the parametric simulations we are concerned with in this work, we de-
vise the model problem that is depicted in Fig. 4. Accordingly, we consider the
bombardment of a prokaryotic cell of an ideally circular shape. The cell has ex-
ternal radius Rcell = 60 nm, membrane thickness of 10 nm and its lipid molecules
have diameter φlipid = 2.5 nm. The stream is consisted of particles that occupy
a rectangular region of length L and width w, the area of which is constrained to
be 15% of the cell area (we say “area” but in a broader sense what we want to
constrain is the stream’s volume). Such a constraint is adopted to prevent large vol-
umes of particles from being delivered to the interior of the cell, which could cause
excessive swelling and eventually cell rupture. The stream particles are consisted
of a polymeric material and their diameters follow a Gaussian distribution of mean
φmean and standard deviation σφ = 0.1φmean. Their travelling velocity when leaving
the tip of the gun is v. In our computational model, these particles are randomly
placed within the region L×w by means of a standard random sequence addition
algorithm, with a packing ratio of 50% (for details on this and other types of par-
ticle packing algorithms, the interested reader is referred to [Zhang and Torquato
(2013)], and references therein).

For the analysis of different scenarios of delivery success and membrane damage
upon bombardment of the cell, we consider the design parameters of the delivery
system to be φmean, v and w (with L being constrained by L = 0.15πR2

cell/w). This
leads to a parameter space that can be represented by a design vector ΛΛΛ as indicated
below:

ΛΛΛ = {φmean,v,w} . (33)

The indicators of performance for each design vector (i.e. measures that indicate
whether a design ΛΛΛ performs favorably or unfavorably) are taken as the delivery
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Figure 4: Model problem.

ratio DR and the membrane damage DAM. We define these two measures respec-
tively by

DR =
Nstream

interior
Nstream

total
, (34)

where Nstream
interior is the number of stream particles that are found in the interior of the

cell at the end of a simulation and Nstream
total is the total number of stream particles,

and

DAM =
Nbroken

∑
i=1

Lbroken
i −Lbroken

0i

Lbroken
0i

, (35)

where Nbroken is the number of broken lipid bonds at the end of a simulation, Lbroken
i

is the length (or separation) of the broken bond i at the end of the simulation, and
Lbroken

0i is the initial length of the broken bond i. Such a damage measure allows us
to quantify the “cumulative strain” of the broken bonds, which can be understood
as an indicator of the “total relative size” of the permanent holes that are opened
on the membrane due to impact by the stream. Another quantity of interest would
be the ratio DAM/Nbroken, which provides the average strain of the broken bonds or
the strain per broken bond. Notice that the value of Nbroken is not a good measure
of damage, since it does not provide information on the extent of the open holes.

We generate M sets of N design vectors by sampling values of the design param-
eters from underlying uniform probability distribution functions. Each design pa-
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rameter is constrained to fall within the following intervals:

φmean ∈
[
0.5φlipid ,2φlipid

]
= [1.25,5.0] nm ,

v ∈ [50,150] nm/ns ,
w ∈ [10,30] nm .

(36)

It is assumed that the samples are statistically independent, although they need not
be identically distributed. For each design vector, a computational particle problem
is generated and resolved. In each of these problems, as mentioned above, the
particles of the stream are created by random sequence addition with a packing
ratio of 50%.

Once all problems are resolved, the obtained values of DR and DAM are processed
to obtain their mean value µ , standard deviation σ , coefficient of variation COV
(the ratio of mean to standard deviation) and correlation coefficients COR (with
respect to each of the design parameters) within each set. These allow us to i-
dentify basic trends of the system. The coefficients of variation, for example, are
non-dimensional measures of dispersion of the obtained DR and DAM, and provide
a zero-order estimate of the extent to which the variabilities in the input parame-
ters propagate to the output results. The correlation coefficients, in their turn, are
first-order estimates of the strength and direction of the relation between any two
parameters (one input and one output). If the greatest values of the input parame-
ter mostly correspond to the greatest values of the output parameter, and the same
holds for the smallest values, i.e., if the parameters tend to show similar behavior,
the correlation coefficient between these two parameters is positive. In the opposite
case, it is negative. The higher the value of COR, the stronger is the linear relation
between the two parameters. The overall framework for the parametric simulations
is as summarized in Algorithm 1 (this framework is based on the scheme proposed
by [Mukherjee and Zohdi (2014)] for the design evaluation of porous material lay-
ers).

In all particle problems of step 2 of the algorithm, the following additional assump-
tions are made. The overlap-based model for collisions (equations (10) to (14))
requires that the collisions be resolved with small time-steps, such that both δ and
δ̇ in (10) be accurately computed. Here we use ∆t = 0.0002 ns, chosen so as to en-
sure at least five time steps per collision. This value is arrived at by estimating the
duration of a typical collision by means of the Hertz’s formula for elastic collisions
[Johnson (1985)], and then dividing the result by five:

duration∼= 2.87
(

m∗

R∗(E∗)2vrel

)1/5

⇒ ∆t ≤ duration
5

, (37)

where vrel is the relative velocity of the colliding pair in the pair’s central direction
at the beginning of the collision. The natural frequencies of the lipid bonds, given
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Algorithm 1. Framework for (sampling based) parametric simulations for design evaluation of a particle 

bombardment gun 

1. Generate design vectors mn  (M  sets of N  design vectors) by sampling parameters from 

underlying uniform distributions, with (36) 

2. For each set m  ( 1,...,m M ) do 

    For each design vector n  ( 1,...,n N ) do 

i. Generate particle problem for design vector mn  

ii. Run particle problem for mn  

iii. Compute DR  and DAM  for mn  at the end of the simulation 

    End for 

End for     

3. For each set m  ( 1,...,m M ) do 

i. Compute mean ( ), standard deviation ( ) and coefficient of variation   (COV ) of 

the input parameters and of the output results 

ii. Compute the correlation coefficients (COR ) of DR  and DAM  with respect to each 

of the input parameters 

End for 

 

approximately by
√

ki j/m∗, must also be checked against (37) in order to avoid
poor capturing of the bond vibrations. Such a small time step size leads us to adopt
the explicit version (φ = 0) of our time integration scheme in all simulations (an
implicit integration would be highly inefficient, since it would perform iterations
no matter how small or big ∆t is).

As with respect to the cell’s surrounding medium, besides the pressure gradient of
equation (21) we assume that particles outside of the cell do not experience any
pressure forces, whereas all particles experience drag according to equation (6).
A rigid wall is placed at the opposite side of the stream to prevent the cell from
undergoing large overall rigid body motions when impacted by the stream. Other
data are as follows:

• Mass density of the stream particles = 1000 kg/m3 = 1×10−6 fg/nm3;

• Mass density of the membrane particles = 900 kg/m3 = 9×10−7 fg/nm3;

• Cell internal pressure force magnitude: f p
i = 32.7×10−5 nN;

• Drag force parameters: cenv = 0.000005 nN·ns/nm and venv = 0;

• Spring constant for the lipid bond forces: ki j = 5×10−3 nN/nm;

• Dashpot constant for the lipid bond forces: ci j = 0.00001 nN·ns/nm;

• Critical strain of circumferential bonds: εcrit
i j = 0.5;
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• Critical strain of radial and cross-wise bonds: εcrit
i j = 0.1;

• Elasticity modulus of stream and membrane particles (needed to resolve col-
lisions): E jet = Elipid = 100 nN/nm2;

• Poisson coefficient of stream and membrane particles (needed to resolve col-
lisions): ν jet = νlipid = 0.25;

• Damping rate for particle-particle collisions: ξ = 0.1;

• Coefficient of dynamic friction for particle-particle collisions: µd = 0.1;

• Gravity is neglected (ggg = o);

• Initial distance between stream front and cell exterior = 10 nm;

• Rigid wall properties: µd = 0.1 and ξ = 0.1;

• Time step size = 0.0002 ns;

• Final time at the end of each simulation = 10 ns.

We adopt M = 20 and N = 20, which implies a total of 400 simulations. Table 1
presents the results for the coefficients of variation and Table 2 the results for the

Table 1: Results for coefficients of variation (COV ) of input parameters and output
results in five representative sets of simulations. Values are normalized by the COV
for the mean particle diameter.

φmean v w DR DAM
set 1 1.000 0.612 0.663 2.025 2.417
set 2 1.000 0.585 0.751 2.890 3.225
set 3 1.000 0.678 0.747 2.252 2.469
set 4 1.000 0.721 0.819 3.160 3.203
set 5 1.000 0.669 0.881 2.485 2.544

correlation coefficients for five representative sets of simulations with varying mean-
s and standard deviations of the input (design) variables. In Table 1, all values are
normalized by the COV ’s for φmean (these tended to be the highest when compared
to the COV ’s for v and w). The main conclusions that can be drawn from these
results are as follows:
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Table 2: Results for correlation coefficients (COR) of the output results with respect
to each of the input parameters in five representative sets of simulations.

set 1
φmean v w

set 2
φmean v w

DR 0.237 0.881 -0.160 DR 0.056 0.789 -0.201
DAM 0.600 0.531 0.054 DAM 0.811 0.504 -0.029

set 3
φmean v w φmean v w

DR 0.216 0.723 -0.023 set 4 DR 0.394 0.876 0.201
DAM 0.821 0.586 0.352 DAM 0.706 0.641 0.339

set 5
φmean v w

DR -0.052 0.851 -0.128
DAM 0.599 0.468 -0.326

• Variabilities in the mean particle size are more amplified in DAM than in
DR (though the difference is not very pronounced). By similar observations,
variabilities in the stream’s velocity show a stronger effect also over DAM
than over DR.

• The coefficients of variation for DR show a (slightly) wider range of values
than those for DAM. This can be partly explained by the more “discrete”
nature of DR as compared to DAM.

• To a first-order estimate, the stream’s velocity is the input parameter that has
the most effect on DR, whereas the stream’s mean particle size is the one
with the most effect on DAM. The stream’s width, in its turn, proves to have
the least effect in all cases.

• The correlation coefficients of DR and DAM with respect to φmean and v tend
to be always positive, which means that, to a first-order estimate, increases
in these input parameters are accompanied by increases in the output results
(and conversely for decreases).

• The correlation coefficients of DR and DAM with respect to w show no con-
sistent trend, except that their values are always smaller than those with re-
spect to φmean and v.

• To a first-order estimate, the stream’s velocity has a stronger influence on DR
than on DAM. This indicates that designs with larger velocities will result in
an increase in the delivery rate that is larger than the accompanying increase
in the membrane damage.
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• To a first-order estimate, the stream’s mean particle size has a remarkably
stronger influence on DAM than on DR. This indicates that designs with
larger particles will result in an increase in the membrane damage that is
much larger than the accompanying increase in the delivery rate.

 

0

20

40

60

80

100

120

140

160

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Mean diameter versus
DAM

0

20

40

60

80

100

120

140

160

0 50 100 150 200

Velocity versus
DAM

0

5

10

15

20

25

30

35

0.0 1.0 2.0 3.0 4.0 5.0 6.0

Mean diameter versus
DR

0

5

10

15

20

25

30

35

0 50 100 150 200

Velocity versus
DR

D
R

 (
%

) 

D
A

M
 

D
R

 (
%

) 
Mean particle diameter (nm) Mean particle diameter (nm) 

D
A

M
 

Stream velocity (nm/ns) Stream velocity (nm/ns) 

Figure 5: Graphs of output results as a function of input (design) parameters. Re-
sults of all 400 simulations are shown.

It is also of interest to investigate which combinations of parameter values in ΛΛΛ

lead to the best/worst cases in terms of performance of the delivery system. Such
an investigation can be initiated by inspecting graphs such as those on Figs. 5 and 6.
One can notice, for example by inspecting Fig. 6(a), that the highest delivery rates
are obtained for v’s ranging from 125 to 150 nm/ns, irrespective of the stream’s
mean particle size. At these velocities, from Fig. 6(b) one finds that small damage
levels are obtained only for streams consisted of small particles (roughly, φmean not
greater than 2.0 nm). Therefore, designs with 125 ≤ v ≤ 150 nm/ns and 1.25 ≤
φmean ≤ 2.0 nm tend to perform more favorably. On the other hand, from Fig. 6(a)
one realizes that designs with v ≤ 100 nm/ns (roughly) tend to show the lowest
delivery rates, especially if they are consisted of small particles. And from Fig.
6(b), one may conclude that the highest levels of damage are obtained for designs
with medium- to big-sized particles (roughly, φmean ≥ 2.5 nm) and moderate to
large velocities (v ≥ 75 nm/ns). Snapshots of deformed configurations of the cell
when impacted by the stream in a typical simulation can be found in Fig. 7.
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Figure 6: Bubble graphs of output results. The size of the bubbles is proportional
to the result’s value. (a) DR as a function of mean particle diameter and stream
velocity. (b) DAM as a function of mean particle diameter and stream velocity.
Results of all 400 simulations are shown.
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Figure 7: Sequence of snapshots (deformed configurations) of the cell upon bom-
barded by the stream in a typical simulation (sequence is from left to right, top to
down). Results shown are for φmean = 0.65 nm, v = 136 nm/ns and w = 16 nm.

It must be said, though the above observations are helpful to identify basic or pre-
liminary trends of the system, that it may not be possible to find a unique “min-
imum” or “maximum” among all possible combinations of parameter values. In
this context, a more rigorous approach for the investigation of best/worst scenar-
ios would be by using non-convex, non-derivative optimization algorithms (e.g.
genetic algorithms) based on an objective function that includes DR and DAM as
arguments. This is not done in the current paper and is left here as a suggestion for
future work.

6 Closing Remarks

The main purpose of this work was to present a basic computational framework
for parametric simulation and design evaluation of particle bombardment systems
intended to deliver substances into cells. It is grounded on a random sampling
scheme for selected design parameters combined with a particle-based (discrete
element) method for description of the mechanical problem. It can be implemented
with small effort by researchers interested in the field. The main advantages of
such an approach are that the overall (collective) behavior of these systems can be
qualitatively studied in a wide range of parameter values, and yet at a relatively little
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computational cost. It allows for the identification of basic trends of the system
upon changes on the design parameters, and offers a good picture for investigation
of best/worst case scenarios.

We remark that our intention here was simply to show how the framework works
from a general perspective. To this end, we have selected as design parameters only
the stream’s mean particle size, width and incoming velocity. Of course, the influ-
ence of other parameters could have been studied as well, such as the cell’s internal
pressure, bonding stiffnesses, friction coefficients, etc. These quantities could have
also been treated as random variables and have the effects of the variabilities of
their values assessed.

Kernel density estimation techniques (e.g. with a Gaussian kernel) can be used
to construct the probability distribution functions of both DR and DAM. This can
be straightforwardly done from the mean values of these output parameters in ran-
domly selected sets of simulations. From the generated distributions, probabilities
of excellence of specified thresholds of DR and DAM (e.g. the probability that the
value of DAM is higher than a given value) can be obtained. This can be very useful
information. Also, based on these distributions one may define an index of success
(or, equivalently, an index of failure) to quantify how well a cell will respond upon
impact by a stream of particles with given design parameters (or, in other words,
how well a delivery system with given design parameters will succeed in delivering
substances to the interior of a cell).

Particle-based computational models allow for the construction of rapid simulation
tools. We believe they are a very useful approach for design evaluation of delivery
mechanisms, lessening the number of (costly and delicate) physical experiments
and thus helping advance the design of particle-gun delivery systems.
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