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Variable Viscosity and Density Biofilm Simulations using
an Immersed Boundary Method, Part I: Numerical

Scheme and Convergence Results
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Abstract: The overall goal of this work is to develop a numerical simulation
which correctly describes a bacterial biofilm fluid-structure interaction and sepa-
ration process. In this, the first of a two-part effort, we fully develop a conver-
gent scheme and provide numerical evidence for the method order as well as a full
3D separation simulation. We use an immersed boundary-based method (IBM)
to model and simulate a biofilm with density and viscosity values different from
than that of the surrounding fluid. The simulation also includes breakable springs
connecting the bacteria in the biofilm which allows the inclusion of erosion and
detachment into the simulation. We use the incompressible Navier-Stokes (N-S)
equations to describe the motion of the flowing fluid and discretize the fluid equa-
tions using finite differences. We use a geometric multigrid method to solve the
resulting equations at each time step. We note that the use of multigrid is necessary
because of the dramatically different densities and viscosities between the biofilm
and the surrounding fluid. We investigate and simulate the model in both two and
three dimensions.
We also note that our method differs from several previous attempts of using IBM
for modeling biofilm/flow interactions in the following ways: the density and vis-
cosity of the biofilm can differ substantially from the surrounding fluid, and the
Lagrangian node locations correspond to experimentally measured bacterial cell
locations from 3D images taken of Staphylococcus epidermidis in a biofilm.
In the followup article, we will present the results of the validation of this model
and calibration to several experimental scenarios.
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1 Introduction

This is the first of two articles which detail our investigation of the response and
fragmentation of a biofilm in shear flow. Specifically, we study the mechanisms of
biofilm fluid response and detachment in terms of spatially varying biofilm density,
elasticity, and viscosity. In the simulations, we model the surface adherent biofilms
using an extension of the immersed boundary method (IBM) (originally developed
in Peskin (1977)). Our approach differs from the traditional IBM in several ways.
We use experimentally measured biofilm bacterial cell locations as the positions
for our Lagrangian nodes, whereas traditional IBM refines the Lagrangian mesh
along with the Eulerian mesh. An important part of the IBM is in the choice of
approximation of the Dirac delta function which transfers information between the
two grids. We have accordingly adapted the approximation to scale with the radius
of the bacteria rather than with the mesh width. Lastly we note that this work com-
prises the bulk of the lead author’s graduate school dissertation work. For further
details of this and related work, we direct the interested reader to his dissertation
(Hammond (2012)) as well as a previous version of this paper posted on arXiv in
(Hammond, Stewart, Younger, Solomon, and Bortz (2013)). The second article will
address validation of the scheme presented here (Stotsky et.al (2014)).

In this introduction, we first provide a brief background on the biology and biome-
chanics of bacterial biofilms in §1.1. In §1.2, we discuss some alternative mathe-
matical models that have been used to model biofilms (along with advantages and
disadvantages). In §1.3, we introduce the immersed boundary method, and in §1.4,
we discuss the significance of including variable viscosity.

1.1 Biomechanics of Bacterial Biofilms

Biofilms are a phenotype of bacteria that are found in health, industrial and natural
settings. In the medical field, biofilms occur on devices such as contact lenses,
catheters, and mechanical heart valves. In industrial settings, they occur in and
on water pipes, storage tanks, ship hulls, filters, food preparation facilities, etc. In
natural settings, they can be found as slime on rocks in bodies of water or as dental
plaque on teeth.

Physically, biofilms are immobile and consist of a community of bacterial cells
embedded in a dense surface-adherent extracellular matrix (ECM) of polysaccha-
rides. Biofilms are mechanically strong structures that tend to deform and fragment
rather than completely dislodge when subjected to flows. Figure 1 contains an elec-
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Figure 1: Scanning electron microscopy of sessile K. pneumoniae LM21 performed
in mature biofilm formed on Thermanox slides in microfermentor system after 48
hours of development at 20000 times magnification. This image is from Balestrino,
Ghigo, Charbonnel, Haagensen, and Forestier (2008) (used with permission).

tron micrograph of a biofilm of Klebsiella pneumoniae, clearly showing the ECM
interconnecting the bacterial cells.

An important feature of biofilms is that they are known to behave like viscoelastic
fluids (Klapper, Rupp, Cargo, Purvedorj, and Stoodley (2002)). In other words,
they exhibit both viscous and elastic responses upon deformation. Describing the
exact viscoelastic behavior has been the subject of much experimental, theoretical,
and computational research (Aravas and Laspidou (2008); Ehret and Böl (2013);
Klapper, Rupp, Cargo, Purvedorj, and Stoodley (2002); Kreft, Picioreanu, Wim-
penny, and van Loosdrecht (2001); Lau, Dutcher, Beveridge, and Lam (2009);
Pavlovsky, Younger, and Solomon (2013); Picioreanu, Kreft, and van Loosdrecht
(2004); Picioreanu, van Loosdrecht, and Heijnen (2001, 1999, 2000); Rupp, Fux,
and Stoodley (2005)). For example, Klapper et al. and Pavlosky et al. use a linear
Jeffrey’s constitutive law (Klapper, Rupp, Cargo, Purvedorj, and Stoodley (2002);
Pavlovsky, Younger, and Solomon (2013)) while Lau et al. use a Voigt standard
linear solid model for viscoelastic materials (Lau, Dutcher, Beveridge, and Lam
(2009)). Recently, Ehret and Böl use an approach from network theory and model
the ECM as a superposition of worm-like chain networks, and include viscosity
by considering the network junctions to be transient (Ehret and Böl (2013)). Our
model includes elasticity of the biofilm by using simple linear springs (as done in
Alpkvist and Klapper (2007)) to connect the bacterial cells, and includes the vis-
cosity of the biofilm with a modification of the constitutive equations for stress.
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1.2 Mathematical Models of Biofilms

Much research into the mathematical modeling of biofilm growth and fluid/structure
interactions has been conducted in the last three decades (Kreft, Booth, and Wim-
penny (1998); Kreft, Picioreanu, Wimpenny, and van Loosdrecht (2001); Piciore-
anu, van Loosdrecht, and Heijnen (2001, 1999, 2000); Zhang, Cogan, and Wang
(2008a,b)). Below, we summarize several modeling and simulation strategies. This
is not intended to be exhaustive and we direct the interested reader to Klapper and
Dockery (2010); Wang and Zhang (2010) for more in-depth reviews.

The first attempts at mathematical modeling of biofilms were conducted in the
early 1980s (Kissel, McCarty, and Street (1984); Rittmann and McCarty (1980);
Rittmann (1982)). Picioreanu and others (Kreft, Booth, and Wimpenny (1998);
Kreft, Picioreanu, Wimpenny, and van Loosdrecht (2001); Picioreanu, Kreft, and
van Loosdrecht (2004)) advocated for an individual based (IB) approach, which
models the behavior of each bacteria, encompassing ideas such as cell division, cell
motility, metabolism, and death to simulate the growth and formation of colonies.
Hybrid discrete-continuum models were the first methods to couple the flow with
the the biofilm computationally in 2D and 3D simulations. Picioreanu, van Loods-
drecht, and Heijnen developed and used these hybrid discrete-continuum models to
incorporate the flow over the irregular biofilm’s surfaces, convective and diffusive
mass transfer of substrate, bacterial growth, and biomass spreading (Picioreanu,
van Loosdrecht, and Heijnen (2001, 1999, 2000)).

The most sophisticated (purely) continuum models developed are the phase-field
models, which use a one-fluid/two-component formulation in which the ECM and
the bacteria are modeled as one fluid component, while the collective ensemble of
nutrient substrates and the surrounding fluid are the other (Zhang, Cogan, and Wang
(2008a,b)). Two-dimensional simulations of both biofilm growth and biofilm-flow
interaction are presented in Zhang, Cogan, and Wang (2008b), in which shear in-
duced deformation and detachment are illustrated.

We note that our model differs from both these approaches in the way that we
model the biofilm. We treat the bacteria in the biofilm as discrete points, where the
nodal locations in our simulations correspond to the locations of the bacterial cells
within the biofilm. This contrasts from the continuum phase-field models that only
include averaged biomechanical properties of the biofilm. With our mathematical
formulation, just as in the individual based models, we can obtain the cumulative
local stresses as well as attribute different local properties to the biofilm. Our model
can be thought of as an extension of the individual based models, where we accu-
rately account for the interactions with the fluid as well as include the possibility
of fragmentation. We also assume that on the time scale of our simulations there is
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no biofilm growth; so we ignore such factors as nutrient concentrations and growth
rates.

1.3 Immersed Boundary Method

The immersed boundary method (IBM) was originally developed by Peskin to
study blood flow in the heart (Peskin (1977)). The IBM has been used previously
to model and simulate biofilm/fluid interactions by Dillon, Fauci, Fogelson, and
Gaver III (1996) and Alpkvist and Klapper (2007). The authors successfully cou-
pled the fluid to the biofilm; however, they make the assumption that the biofilm
has the same density and viscosity as the surrounding fluid. This choice substan-
tially simplifies the task of solving the N-S equations but does not account for the
fact that biofilms typically have 500× larger viscosity and 12% larger density than
water (Klapper, Rupp, Cargo, Purvedorj, and Stoodley (2002); Ro and Neethling
(1991)). They also use a random distribution of points within a biofilm-shaped shell
to represent the biofilm, which does not account for the true spatial distribution of
bacterial cells within a biofilm.

The IBM has been used more recently in the modeling of immersed elastic struc-
tures in viscous flows in Huang and Sung (2009); Luo, Mittal, Zheng, Bielamowicz,
Walsh, and Hahn (2008); Strychalski and Guy (2012); Zhuo and Dillon (2011), in
which the authors use constitutive viscoelastic models including Maxwell, Voigt,
and Jeffrey’s models to incorporate forces in the immersed structures into the IBM.
Similarly, our ultimate goal is to establish an appropriate constitutive model for the
forces in the biofilm with the help of experimental collaborators and to include this
in our IBM formulation.

1.4 Variable Viscosity

It is generally agreed that biofilms behave like a viscoelastic fluid and there has been
a several efforts to match the behavior of biofilms with conventional mechanical
viscoelastic models (Aravas and Laspidou (2008); Klapper, Rupp, Cargo, Purve-
dorj, and Stoodley (2002); Lau, Dutcher, Beveridge, and Lam (2009); Pavlovsky,
Younger, and Solomon (2013)).1 However, these efforts have not produced a con-
sensus on the best mathematical model. This is, in part, due to the fact that the
viscoelastic properties in biofilms are highly variable with different growth con-
ditions (Chen, Zhang, and Bott (2005)) and even in the same growth conditions
(Aggarwal, Poppele, and Hozalski (2010)).

In this work, we chose to treat the fluid in the entire domain as a Newtonian viscous
1 We also note that adding viscosity through the use of local damping forces (a typical mechanical

model for a viscoelastic material) leads to problematic stability restrictions.
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fluid with a spatially varying viscous coefficient. We couple the biofilm to the fluid
within the entire biofilm region via the viscous term in the N-S equations. We
note that a similar approach has recently been attempted in a single fluid IBM (Fai,
Griffith, Mori, and Peskin (2013, 2014)). Their approach, however, is not directly
applicable to a system with continuously varying viscosity.2 Others have used two
materials (fluid-fluid or fluid-solid), but couple them only at the interface (Luo,
Mittal, Zheng, Bielamowicz, Walsh, and Hahn (2008); Zhang, Cogan, and Wang
(2008b)).

We now describe the organization of this paper. In §2 we provide our mathematical
formulation, which is a variation of the immersed boundary method literature. In
§3, we describe our numerical method, based on a multigrid approach. In §4, we
provide numerical convergence results for our method. In §5, we provide simula-
tion results in both two and three dimensions, running our simulations for a variety
of experimentally obtained biofilms with varying parameters such as spring con-
stants, densities, viscosities. Finally, we provide conclusions in §7 and a discussion
of possibilities for future work in §8.

2 Mathematical Formulation

In this section, we provide the mathematical formulation for our simulations. We
use an Eulerian mesh to describe the system as a whole and solve the dimensionless
N-S equations at each time step on the mesh. The Lagrangian nodes are used only
to compute information about the bacteria/biofilm (location, velocity, local density,
force) and then transfer the information back onto the Eulerian mesh using the
Dirac delta function.3 For convenience, we provide a list in Appendix A of the
variables and parameters used in this work.

We now introduce the mathematical equations used in our model. The dependent
Eulerian variables are velocity u(x, t), pressure p(x, t), density ρ(x, t), and Eule-
rian force density f(x, t), where x is the independent Eulerian variable and t is time.
The dependent Lagrangian variables are position of the nodes X(q, t), velocity of
the nodes U(q, t), and the Lagrangian force density F(q, t), where q = (q,r,s) is
the independent Lagrangian variable. The equations of motion for the biofilm-fluid
interaction are
2 They consider the simulation of a tumbling red blood cell with an interior viscosity higher than the

surrounding fluid. Mathematically this means there is a discontinuity in the viscosity across the
cell membrane.

3 The Dirac Delta function is approximated in the actual implementation (see Equation (16)).
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ρ(x, t)
(

∂u
∂ t

+u ·Ou
)

= −Op+O ·
(

µ(x, t)
(
Ou+(Ou)T

))
+ f(x, t) (1)

O ·u = 0, (2)
∂X
∂ t

(q, t) = U(X(q, t), t), (3)

f(x, t) =

ˆ
Ωb

F(q, t)δ (x−X(q, t))dq, (4)

ρ(x, t) = ρ0 +

ˆ
Ωb

ρbδ (x−X(q, t))dq, (5)

U(X(q, t), t) =

ˆ
Ω

u(x, t)δ (x−X(q, t))dx, (6)

where µ is the dynamic viscosity, ρ0 is the mass density of the fluid, ρb is the
additional mass density of the biofilm from that of the surrounding fluid, Ω is the
flow domain, Ωb ⊂ Ω is the space occupied by only the biofilm, and δ (x) is the
Dirac delta function. Equations (1) and (2) form the incompressible Navier-Stokes
(N-S) equations with spatially varying viscosity and a forcing term that represents
the forces applied by the biofilm on the fluid. We omit the force of gravity from
(1) since the biofilms we wish to model are at most 20% greater density than wa-
ter (Masuda, Watanabe, and Ishiguro (1991); Ro and Neethling (1991)); thus, the
gravitational force is negligible compared to the other forces involved. Equation
(3) is the equation of motion of the biofilm, where U(q, t) is the velocity of the
biofilm. The systems of PDE’s given by (1)-(2) is coupled to (3) by the integrals
given in (4)-(6).

To avoid numerical inaccuracies due to roundoff errors, we non-dimensionalize
these equations using the non-dimensional variables defined as

t∗ = t
T , x∗ = x

L , u∗ = u
u0

, p∗ =
p−pLtube
p0−pLtube

,

O∗ = LO, ρ∗ = ρ

ρ0
, f∗ = f

f0
, µ∗ = µ

µ0
,

where p0 is the pressure at the upstream end of the tube, pLtube is the pressure at the
downstream end of the tube, T is the characteristic time scale, f0 is the characteris-
tic force density, and L is the characteristic length. We use the scaling parameters
defined in Table 10. Dropping the stars from the dimensionless variables, Equations
(2) and (4)-(6) remain the same as in the case with dimensions, while Equations (1)
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and (3) become

σρ(x, t)
∂u
∂ t

+ρ(x, t)u ·Ou = −εOp+Re−1O ·
(

µ(x, t)
(
Ou+(Ou)T

))
(7)

+
L f0

ρ0u2
0

f(x, t), (8)

σ
∂X
∂ t

(q, t) = U(q, t), (9)

where σ = L
Tu0

is the Strouhal number, ε =
p0−pLtube

ρ0u2
0

is the Euler number, and Re =
ρ0Lu0

µ
is the Reynolds number of the fluid.

The initial velocity profile is the exact solution to the incompressible Navier-Stokes
equations in a square or circular tube with rigid walls and no-slip conditions at the
walls. The velocity profile for a circular cylinder can be found in many textbooks
in fluid dynamics (such as Zamir (2000)), and a series solution for the laminar flow
velocity profile for a square tube was derived by Spiga and Morino (1994).

3 Numerical Method

In this section, we describe the numerical formulation for our simulations, which is
based on the Immersed Boundary Method. Our numerical task is to solve the sys-
tem defined by Equations (1)-(6), and we now provide the details of our numerical
approach.

The incompressible flow Navier-Stokes equations, (1)-(2), are discretized on a fixed
uniform Eulerian lattice, while the biofilm equations are discretized on a moving
Lagrangian array of points that do not necessarily coincide with the fixed Eulerian
mesh points of the fluid computation. We represent the interaction equations (4)-(6)
with a smoothed approximation δ̃ to the Dirac delta function (see Equation (16)).
Our numerical approach was inspired by the solving technique used by Zhu and
Peskin (2002) to simulate a flapping filament in a soap film.

The discretized equations corresponding to Equations (4)-(6) are given by

fn(x) =
η

∑
s=1

Fn(s)δ̃ (x−Xn(s), ω), (10)

ρ
n(x) = ρ0 +

η

∑
s=1

ρbδ̃ (x−Xn(s), ω)d3
0 , (11)

Un+1(s) = ∑
x

un+1(x)δ̃ (x−Xn(s), ω)h3, (12)
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where the superscript n denotes numerical approximations at a particular time step
n, η is the total number of Lagrangian discretization points, the sum in Equation
(12) is over all the discrete points of the form x = (ih, jh, kh) with i, j, and k are
integers, h is the Eulerian mesh width, and d3

0 is the average volume element of
the Lagrangian nodes (computed by dividing the total volume of the biofilm by
the total number of Lagrangian nodes distributed within it). Following convention,
we replace (q, r, s) from the mathematical formulation with only s, which we use
as an indexed label with a unique number assigned to each Lagrangian point (Zhu
and Peskin (2002)). In Equation (10), F(s) is now the total elastic force on the
Lagrangian node associated with marker s, as opposed to an elastic force density.
This is because we calculate the force explicitly depending on which other nodes it
is connected to.

3.1 Dirac Delta Approximation

In Peskin (2002), he defines δh(x) as

δh(x) = h−3
φ

( x
h

)
φ

( y
h

)
φ

( z
h

)
, (13)

where φ(r) is a symmetric function with compact support such that δh satisfies a
unity condition,

∑
x∈gh

δh(x−X)h3 = 1, ∀X, (14)

and a first-moment condition,

∑
x∈gh

(x−X)δh(x−X)h3 = 0, ∀X . (15)

We replace this δh, that is used in standard IBM implementations, with one that
scales with ω instead of the grid spacing h as

δ̃ (x, ω) = ω
−3

φ

( x
ω

)
φ

( y
ω

)
φ

( z
ω

)
. (16)

We deviate from the standard scaling of the Dirac Delta approximation for two
reasons. The first is that we wish to give a presence to the bacterial cells that is
representative of the true volume of the cells. Thus, in the simulations, we make
ω in (10)-(12) equal to the radius of a bacterial cell that we are modelling. Equa-
tion (10) then spreads the force over a volume that is slightly larger than the cell,
ensuring that the entire space occupied by the cell in the fluid is influenced by the
force. The second reason we use this scaling is because, during the mesh refine-
ment analysis described in §4.3.3, we discovered that the implementation with the
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scaling by h restricts us to less than first-order convergence of the velocity, u. Using
a scaling that is independent of the mesh-width fixes this issue and leads to greater
than first order convergence. We also note that this class of modification is not a
new practice and was used by Lim and Peskin to improve accuracy and to introduce
material length scales in IBM in Lim and Peskin (2012). However, using δ̃ in place
of δh, these conditions are simultaneously satisfied only when ω = nh for some
n ∈ N+. In practice, this is not a major concern as many IBM formulations use a
Dirac delta approximation that satisfies the unity condition, but does not satisfy the
first-moment condition. Accordingly, we choose the function

φ(r) = φ2 =

{ 1
4

(
1+ cos

(
πr
2

))
; if |r| ≤ 2,

0; if |r|> 2.
(17)

as is done in Zhu and Peskin (2002) because it is a better match with the choices
made for ω and h.4

3.2 Elastic Forces and Breaking Criteria

For a model of the elastic forces, we follow Alpkvist and Klapper (2007) who used
Hooke’s Law to describe the elastic force between the connected Lagrangian nodes.
Thus, the elastic force on each Lagrangian point using Hooke’s Law is

Fn(s) =
η

∑
k=1

Is,k
ds,k

ds,k
Ts,k , (18)

where T is the tension between nodes s and k, I is the connectivity matrix defined
as

Is,k =

{
1 bacteria s connected to bacteria k
0 otherwise ,

and ds,k is the vector pointing from Lagrangian node s to k with magnitude ds,k.
The tension from the spring connecting node s and k is formulated as

Ts,k = Ks,k(ds,k− rs,k),

where rs,k is the rest length of the spring connecting nodes s and k, and Ks,k is its
Hookean spring coefficient. We choose to define each spring coefficient as

Ks,k =
Fmax

rs,k
, (19)

4 For a thorough analysis of the errors induced by using δ̃ , we direct the interested reader to Ham-
mond (2012); Hammond, Stewart, Younger, Solomon, and Bortz (2013)
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where Fmax is the force required to break the spring. We define the spring coeffi-
cients in this way to ensure that all of the springs, regardless of initial length, break
with a force of Fmax when they are stretched to a length of 2rs,k. In our simula-
tions, we vary Fmax to attain specific results (such as detachment; see §5.1 more
details). As is done in Alpkvist and Klapper (2007), we model the failure of the
ECM by breaking the connections between the Lagrangian nodes as the springs
used to connect them exceed twice their resting length. We note that this condition,
however, is not based on experimental evidence, and in future work we will adapt
this breaking criteria according to experimental results. In section §8, we discuss
future adaptations to the breaking criteria in terms of the yield stress of polymers.

3.3 Variable Viscosity

It is known that ECM density decreases with distance from an individual cell. To
account for this, the exact form of µ(x) used in our simulations is

µ(x) = max
1≤s≤η ,s∈N

[
(2ω)D (µmax−µout) δ̃ (x−X(s), ω)+µout

]
, (20)

where µmax is the viscosity at a bacterial node, µout is the viscosity of the surround-
ing fluid, D is the spatial dimension, and ω is a parameter we can use to stretch
the influence of the additional viscosity. We made this choice for µ(x) because we
wanted a viscosity that would decrease at the same rate as the elastic force with
the distance from the bacterial cell. To illustrate how the viscosity will decay, in
Figure 2 we depict a 1D example of the effect of ω and h on the viscosity distribu-
tion, µ(x), from two interacting cells. In the subsequent work, we will change this
function to suit the specific viscous properties of the particular biofilm.

3.4 Solution Strategy

We employ a projection method (Brown, Cortez, and Minion (2001)) to solve the
incompressible Navier-Stokes equations numerically, building on the method used
by Zhu and Peskin (2002). This method introduces a velocity field (at an interme-
diate time), ũ(x, t), which is the solution to the difference equation

ρn
(

σ
ũn+1

k −un
k

4t + 1
2(u ·D

0uk +D0 · (uuk))
n
)

= 1
Re D0 ·

(
µn
(

D0ũn+1
k +D0

h,kũn+1
))

+ L f0
ρ0u2

0
fn
k ,

(21)

where k denotes the kth component of that vector. In this discretization, D0 ·(aD0φ)
is defined for scalar functions a(x) and φ(x) using the midpoint values of a as

D0 ·
(
aD0

φ
)
=

3

∑
i=1

a
(
x+ h

2 ei
)

φ(x+hei)−φ(x)
h −a

(
x− h

2 ei
)

φ(x)−φ(x−hei)
h

h
, (22)
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and D0 ·
(

aD0
h,ku
)

is defined as

D0 ·
(
aD0

h,ku
)

=
a
(
x+ h

2 ek
) uk(x+hek)−uk(x)

h −a
(
x− h

2 ek
) uk(x)−uk(x−hek)

h
h

+

+
3

∑
i 6=k

(
a(x+hei)

ui(x+hei+hek)−ui(x+hei−hek)
2h

2h
(23)

−
a(x−hei)

ui(x−hei+hek)−ui(x−hei−hek)
2h

2h

)
.

To complete the discretized incompressible Navier-Stokes system, we have the fol-
lowing two equations:

σρ
n
(

un+1− ũn+1

4t

)
= −εD0 pn+1 , (24)

D0 ·un+1 = 0 . (25)
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Figure 2: Examples of 1D µ(x) with two Lagrangian nodes, one at x = 5/32 on an
Eulerian node and the other at x = 5

32 +
2π

150 , with ω = 1
50 . These Lagrangian nodes

(cells) are close enough that there is a region of interaction. These plots illustrate
the effect of using different spatial steps: (a) h = 1

32 , (b) h = 1
64 (c) h = 1

128 (d)
h = 1

512
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We point out here that summing Equations (21) and (24) leads to the discretized
version of Equations (7)-(8), with the exception that the evaluation of the viscous
term is at the intermediate value of the velocity ũn+1. We solve for pressure by
applying D0 to both sides of Equation (24) and using Equation (25) to obtain

D0 ·
(

1
ρn D0 pn+1

)
=

σ

ε

D0 · ũn+1

∆t
. (26)

To solve equations (21) and (26), we use Gauss-Seidel as a smoother in a multigrid
solver. At each time step, we solve Equations (7)-(8) for ũn+1, substitute it into
(26), solve for pn+1, and finally solve for un+1 using (24). Then the velocity is
transferred from the Eulerian points to the Lagrangian points using (12). With
Un+1 computed, the new Lagrangian node locations are computed using Euler’s
method as

Xn+1(s) =
∆t
σ

Un+1(s)+Xn(s).

The forces between the Lagrangian points are then recalculated and transferred
to the Eulerian points using Equation (10). Finally, the values of ρn and µn are
evaluated using the new Lagrangian locations.

3.5 Multigrid

In this section, we discuss the elements of multigrid that we use in our solution strat-
egy. For more details on multigrid, see Briggs, Henson, and McCormick (2000).

In our solver, we use the conventional Gauss-Seidel iterative method with red-black
ordering. In the multigrid scheme, we use full-weighting restriction to go from
fine to coarse grids, and we use linear interpolation to go from coarse back to fine
grids. The finest grid is the grid with step size h and the grids become coarser by
increasing the step size by a factor of 2. This halves the number of nodes in each
dimension, allowing for significantly faster computations on the coarser grids. The
number of levels in the multigrid solver depends on both the dimensions of the
computational domain as well as h. In our simulations, we iterate using multigrid
V-cycles until we reach a sufficiently low value for the norm of the residual,∥∥ f h−Ahṽh

∥∥ ,
at each time step. Here, Ahvh = f h is the linear discretization of a PDE, and the
residual is rh = f h−Ahṽh, where ṽ is an approximation to v. The residual provides
a bound on the true error in the solution of the linear system since we have this
relationship between the error and the relative residual error:∥∥eh

∥∥
‖vh‖ ≤ cond(Ah)

∥∥rh
∥∥

‖ f h‖ , (27)
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where eh = vh− ṽh, rh = f h−Ahṽh, and cond(Ah) is the condition number of Ah.
In §4, we give approximations for the condition numbers for our matrices.

3.6 Boundary Conditions

The computational domain used in our example simulations is a section of a tube
with the biofilm centered in the direction along the axis of the tube (see sigure in
§5). In the 2D case, flow is along the x-axis and, in 3D, it is along the z-axis.
The boundary conditions we used in these simulations were derived from exact
solutions for the velocity and pressure in the case of laminar flow. We now provide
the boundary conditions in both the 2D and 3D cases.

3.6.1 2D Boundaries

The no-slip boundary condition exists at the walls of tube and requires that the
velocity be zero there, so we use that as the boundary condition at the walls. The
velocity at the upstream boundary (x = 0) is held at the conventional laminar flow
velocity given by

u1(y) =
κ

2µ
(y2−2ay), (28)

where a is the radius of the tube, y is the displacement from the bottom edge of the
tube, κ is the linear rate at which the pressure decreases through the tube, and u1 is
the x-component of the velocity (i.e., u = (u1, u2)). At the downstream boundary,
a Neumann condition is applied to the velocity by enforcing that(

∂

∂x
u(x,y)

)
x=xdown

= 0 ∀y,

where xdown represents the x value at the downstream boundary.

The boundary conditions for pressure come from the laminar flow equation for
pressure given by

p(x) = κx+ p(0). (29)

In our simulations, we hold the pressure at the upstream boundary at p(0) and
at p(xdown) at the downstream. At the top boundary, we hold the pressure at the
values given by Equation (29) and, at the bottom boundary (the boundary on which
the biofilm is attached), we use a Neumann boundary(

∂

∂y
p(x,y)

)
y=0

= 0, ∀x.
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3.6.2 3D Boundaries

In the 3D simulations, we orient the square tube along the z-axis. The no-slip
boundary condition exists at the walls of tube and requires that the velocity be zero
there so we use that as the boundary condition at the walls. Derived by Spiga and
Morino (1994), the velocity at the upstream boundary is held at the laminar flow
velocity given by

u3(x,y) =−
16κa2

µπ4 ∑
n,m>0,odd

sin(nπx/a)sin(mπy/a)

nm(n2 +m2)
, (30)

where a is the width of the tube and u3 is the z-component of the velocity (i.e.,
u = (u1, u2, u3)). At the downstream boundary, a Neumann condition is applied to
the velocity by enforcing that(

∂

∂ z
u(x,y,z)

)
z=zdown

= 0 ∀x, y.

The boundary conditions for pressure come from the laminar flow equation for
pressure given by

p(z) = κz+ p(0), (31)

where z = 0 is the upstream boundary. In our simulations, we hold the pressure at
the upstream boundary at p(0) and at p(zdown) at the downstream. At the top and
side boundaries, we hold the pressure at the values given by Equation 31 and, at
the bottom boundary (side with attached biofilm), we use the Neumann condition
given by (

∂

∂y
p(x,y,z)

)
y=0

= 0 ∀x, z.

4 Convergence

In this section, we provide numerical evidence for the convergence of our sim-
ulation strategy. For the purposes of the 2D and 3D convergence analysis con-
ducted in later sections, we require the following notation. We present the fol-
lowing notation in 3D (the 2D versions are analogous but without the z elements).
Define the Eulerian grid function p-norm for an arbitrary 3D vector field, w(x) =
(w1(x),w2(x),w3(x)), by

‖w‖p =

(
∑
i, j,k

∣∣w(xi,y j,zk)
∣∣ phD

)1/p

, (32)
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where D is the spatial dimension, 1≤ p < ∞, and∣∣w(xi,y j,zk)
∣∣=√w1(xi,y j,zk)2 +w2(xi,y j,zk)2 +w3(xi,y j,zk)2.

Then
‖w‖

∞
= max

i, j,k

∣∣w(xi,y j,zk)
∣∣ .

Additionally, on the Lagrangian grid define the Lagrangian grid function p-norm
for a vector field, X = (X1(s),X2(s),X3(s)), as

‖X‖p =

(
η

∑
s=1
|(X1(s), X2(s), X3(s))|p dD

0

)1/p

,

where 1 ≤ p < ∞ and dD
0 is the average volume element of the Lagrangian nodes.

Then
‖X‖

∞
= max

1≤s≤η
|(X1(s), X2(s), X3(s))| .

Note that both of these grid function norms are derived from using discretizations
of the integrals used in a typical function p-norm (see Appendix A of LeVeque
(2007) for more details).

There are three parts to our simulation validation process: 1) we illustrate that in the
absence of the biofilm our numerical simulation converges to the analytical solu-
tion; 2) we verify that our multigrid technique is correctly accelerating the conver-
gence of our chosen relaxation scheme; and 3) we determine the convergence rate
of the simulations with a biofilm using a mesh refinement convergence analysis.

Before discussing the results of our validation process, we provide a brief descrip-
tion of the two primary sources of error present in our simulations, §4.1. We also
setup our simulations with a detailed description of initial Lagrangian node posi-
tions in §4.2. Then we provide 2D simulation validation in §4.3 and 3D validation
in §4.4.

4.1 Discussion of Errors

In our numerical scheme, we have two sources of error: 1) discretization error is
introduced by discretizing the Navier-Stokes equations in space and time; and 2)
algebraic error is introduced when we attempt to solve the resultant systems of
linearized equations.

As it is impossible to compute the true algebraic error, we use the norm of the
residual to deduce an upper bound on the algebraic error using Equation 27. Recall
that Equation 27 indicates that the relative algebraic error at each timestep is no
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larger than the condition number of the matrix times the relative residual norm
(recall that ‖r‖‖ f‖ is the relative residual norm). We do not construct these matrices
during the actual simulations because we do not need them to solve the systems.
However, we did construct them to find their condition numbers and found that the
condition numbers for the matrices used in the computations for ũn+1 and pn+1

are O
(
h−2
)

(this is true for both 2D and 3D simulations). The simulations that
resulted in the plots given in §5.2 and §5.3 were run using h = 1

128 , and thus the
matrix condition numbers were approximately 104.

Our goal in the simulations is to ensure that the algebraic error falls well below
the discretization error at each time step, so the total error will be dominated by the
discretization error. In theory, the discretization error is at best O(h2)≈C (1/128)2≈
C×6×10−5, for C > 0, with our discretization. Using a stopping criteria of 10−9

for the relative residual at each timestep should suffice (i.e., from Equation (27)).

We continue to the next time step only when the computed relative residual, ‖rh‖
‖ f h‖ ≤

10−9, because this implies
∥∥eh
∥∥≤ cond(A)∗10−9 ≈ 10−5.

Another factor influencing the capability of our simulations is that after, extensive
simulation, we discover that our linear solver is limited to converging to a relative
residual norm of about 10−11 (possibly from machine precision issues). With h =

1
512 , the condition number is O(105) and the discretization error is O(10−6), so the
algebraic error is at best bounded by about 10−11×105 = 10−6 (see Equation (27)),
and we can no longer be certain that the algebraic error falls below the discretization
error at each timestep. For this reason, we restrict h to be larger than 1

512 in all of
the simulations and convergence analysis.

4.2 Simulation Setup

In these convergence simulations, we constructed an experimentally motivated mush-
room shaped biofilm (shown in Figure 3(a)). We carved this shape from a 1.6 µm
slice cut from data points generated in the Younger and Solomon labs at the Univer-
sity of Michigan. These data points are 3D bacterial cell locations from 3D Leica
SP2 confocal laser scanning microscopy images taken of Staphylococcus epider-
midis RP62A (ATCC 35984) grown in a Stovall 3 channel flow cell for 24 hours
at 37◦C in tryptic soy broth with 1% glucose added under a wall shear stress of
0.01Pa. For further details of how the coordinates were computed, see Stewart,
Satorius, Younger, and Solomon (2013).

From this data, the average Lagrangian volume element, d3
0 , is calculated to be

approximately 4.036 µm3, and thus we use d0 = 1.59 µm in both the 2D and 3D
simulations. We connect the initial distribution of cells with a distance based con-
nection criteria. Our inspiration for the connection distance criteria came from
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the closeup images of biofilms such as the one shown in Figure 1. We observed
that each bacterial cell is connected to neighboring cells that are within about 2d0.
Thus, we varied the connection criteria in our algorithm between 1.5-2.5×d0 in an
effort to find one that resulted in a biofilm that was sufficiently connected but not
overcrowded. This resulted in the choice of a connection criteria of dc = 2.8 µm.
In other words, we placed spring connections between Lagrangian nodes at the be-
ginning of the simulation with every node connected to every other node less than
2.8 µm away. Admittedly, this value of dc is arbitrary, and future work will include
deriving a method to determine this connection criteria through image analysis of
closeup images of biofilms similar to figure 1. The mushroom shaped biofilm has
a height of about 8.5 µm and width of about 8 µm (see figure 3). In the conver-
gence simulations, the maximum spring force, Fmax, is set to 5×10−6 N. The fluid
parameters for these convergence simulations are provided later in Table 9.
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Figure 3: Mushroom-shaped biofilm at t = 0 in the middle of the computational
domain attached to the bottom (y = 0) of the tube. (a) This is the shape used in the
2D simulations, and (b) 3D mushroom shaped biofilm at t = 0.

Note that δ̃ is a function of ω , a scaling parameter we must choose that determines
the volume/area of influence when the forces and density are transferred to the
Eulerian grid. We must also point out here that a more accurate representation of the
Dirac delta function occurs when ω ≥ h. Thus, for the purpose of the convergence
simulations, we use ω = 1.0 µm in the transfer equations, (10) and (11). However,
in our simulations, we use ω = 0.5 µm since the actual radius of Staphylococcus
epidermidis is known to be about 0.5 µm (Todar (2012)). Using a characteristic
length of L = 50 µm, we have the non-dimensionalized ω∗= ω

L = 1
50 . Dropping the

star from the dimensionless variable, we use ω = 1
50 in the convergence simulations

and ω = 1
100 in the results simulations. We desire that ω ≥ h, so that the Lagrangian

forces are spread at least two Eulerian mesh widths in every direction (as is done in
the traditional IBM (Peskin (2002))). Using ω = 1

50 in the convergence simulations
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allows h = 1
64 ,

1
128 ,

1
256 to obey these criteria. We again note that one of the reasons

for using ω in the scaling of Equation (16) as opposed to h is that better spatial
convergence rates are achieved since the scaling is independent of h.

4.3 Two-Dimensional Validation

In the absence of a biofilm, we expect that using a centered finite difference approx-
imation for the second derivatives allows exact convergence to the second-order
polynomial solution (Equation (28)). That is to say, we expect the numerical solu-
tion to converge to the analytical within machine precision. Reassuringly, we find
that the biofilm-free simulations converge exactly to the steady state laminar flow.5

To illustrate, we started with an initial velocity profile that is one-half of that of
the laminar flow velocity profile. The error in the simulation converged (within
machine precision) in less than 300 time iterations for all spatial resolutions (see
Figure 4 for example with h = 1/128 and dt = 0.0001).
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Figure 4: Exact error in biofilm-free 2D simulation with h = 1
128 . The solution is

compared to the exact solution, equation (28), using a maximum norm.

5 In the 3D simulations, we do not see exact convergence since the laminar solution is not a second-
order polynomial. See §5.3 for details on the convergence properties of the 3D laminar flow case.
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4.3.1 Multigrid performance

Next, we provide numerical evidence that the multigrid technique convergences
optimally to the solutions of Equations (21) and (26). We define a work unit as
the cost of performing one relaxation on the finest grid (see Briggs, Henson, and
McCormick (2000)). In Figure 5(a), we depict (for the pressure computation) the
work units required to reach the minimum residual error as a function of allowed
levels in the multigrid. This result shows that the number of work units required
decreases significantly with each added multigrid level. This means that the multi-
grid method correctly accelerates the convergence of our iterative method by doing
computations on the coarser grids. For example, with just one allowed level of
multigrid, the relaxation uses only the finest resolution grid and requires about 105

work units, whereas with 6 multigrid levels we only require about 102 work units
to achieve the same error. Note that there is no reduction in the number of required
work units with the addition of a 7th level in the multigrid, so we use at most 6 lev-
els in our 2D solvers. The data in this plot was obtained using our 2D simulation
with a mushroom shaped biofilm similar to those shown in §5.2.
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Figure 5: Decrease in work units required to reach the minimum residual error as
the number of multigrid levels is increased in the (a) 2D simulations, (b) and 3D
simulations.

4.3.2 Empirical Estimate of Convergence Rate in Time

Similar to the development in Mori and Peskin (2008), we define a measure of error
by

Ep(q(T );∆t) =
∥∥∥q∆t(T )−q∆t/2(T )

∥∥∥
p
, (33)

which is the error difference at time t = T in a computed quantity, q, using a tempo-
ral refinement of a half timestep. Then, an empirical estimate for the convergence
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rate is calculated using

rp(q(T );∆t) = log2

(
Ep(q(T );∆t)
Ep(q(T ); ∆t

2 )

)
. (34)

We compute the approximate convergence rate in time using the E2 and E∞ errors
in the Eulerian variable, u, and in the Lagrangian variable, X. We simulate until
t = T = 0.01s using temporal step sizes that ranged from ∆t = 1/5000 to ∆t = 1/80000,
decreasing by a factor of 2 at each level. The Eulerian grid is discretized with a step
size of h = 1/256.

The empirical convergence rates from our temporal refinement are provided in Ta-
ble 1. The immersed boundary method, as we have implemented it, is formally
second-order in space and first order in time, but, for problems with sharp inter-
faces that do not have smooth solutions, it is limited to first-order accuracy in space
and time. Thus for our problem we expect only first order accuracy. The con-
vergence rates in time given in Table 1 show first-order convergence in time as is
expected. In Figure 6(a), we depict the exact values of Ep(q(T );∆t) for q = X and
q = u. We show log2 in the x and y axes so that the empirical convergence rates
from Table 1 appear as the slope of the line segments.

4.3.3 Empirical Estimate of Convergence Rate in Space

For this refinement study, we define a measure of error by

Ep(q(T );h) =
∥∥∥qh(T )− I2h

h

(
qh/2(T )

)∥∥∥
p
, (35)

which is the error difference at time t = T in a computed quantity, q, using a spatial
refinement of a half. In this definition, I2h

h is the restriction operator from a fine to
a coarse grid. Then, an empirical estimate for the convergence rate is calculated
using

rp(q(T );h) = log2

(
Ep(q(T );h)
Ep(q(T ); h

2)

)
. (36)

We note that the estimates for convergence rates given by Equations (34) and (36)
have a fairly simple derivation using a Taylor series expansion (see Ferziger and
Peric (2002) or LeVeque (2007)).

In the spatial refinement analysis, we did not refine the Lagrangian grid with the
Eulerian grid, so the same number of Lagrangian points were present in all of the
simulations. In addition, full weighting restriction is used in the definition of the
error, Equation (35), for the error in u. We also used a fixed timestep of ∆t =
10−4 until t = T = 0.01s for all of these simulations. The computed convergence
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rates from this refinement are provided in Table 2. The ∞-norm convergence rates
given in Table 2 show greater than first-order convergence in space for the error
in the Lagrangian variable X and in the Eulerian variable u. The seemingly large
convergence rates for the lower resolution grids (h = 1

16 ,
1
32 ,

1
64 ) can be explained

by the fact that using ω = 1
50 in the Dirac delta approximations does not allow the

Lagrangian forces to be adequately represented in the Eulerian grid. This leads
to larger errors in the coarse-grid simulations. Therefore, the best estimates for
the convergence rates are the ones using the three resolutions all obeying ω > h
given in the 4th and 7th columns of Table 2. In Figure 6(b), we depict the exact
values of Ep(q(T );h) for q = X and q = u. We show log2 in the x and y axes so
that the empirical convergence rates from Table 2 appear as the slope of the line
segments. We discuss possibilities for improvement in the convergence rates later
in the conclusion sections.

We also used a grid refinement analysis to find the empirical convergence rate with
spatial refinement when the density of the biofilm is two times that of the surround-
ing fluid. This analysis was done to show that the first order convergence rate is
maintained with the increased density in the biofilms. The results of this conver-
gence analysis are shown in Table 3 and Figure 6(c).

Finally, we compute the empirical convergence rates for our 2D simulation with
variable viscosity. In this convergence study, (table 4 and figure 6(d)) we use a
non-dimensionalized value of biofilm viscosity of µmax = 500, which means that the
viscosity at the location of a Lagrangian node is 500 times that of the surrounding
fluid. First-order convergence in space is maintained, even with this very large
biofilm viscosity.
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−
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r ∞
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r ∞
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r ∞
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);
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−

4

2
)

u 1.32 1.31 1.08 1.29 1.28 1.07
X 1.12 1.45 0.54 1.04 1.23 1.07

Table 1: Empirical convergence rates with temporal refinement. rp(q(T );dt) is the
convergence rate in the variable, q, at t = T using the p-norm and the three time
steps dt, dt/2, dt/4.
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Figure 6: Empirical error estimates with (a) temporal refinement: Ep(q(T );∆t) is
the p-norm of the error as defined by equation (33), (b) spatial refinement with
constant density and viscosity: Ep(q(T );h) is the p-norm of the error as defined
by equation (35), (c) spatial refinement and increased biofilm density, (d) spatial
refinement and increased biofilm viscosity. In all plots, we show log2 in the x
and y axes so that the empirical convergence rate appears as the slope of the line
segments.
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u 2.03 2.10 2.25 1.83 1.90 1.67
X 1.24 4.00 3.53 1.95 3.30 3.77

Table 2: Empirical convergence rates with spatial refinement. rp(q(T );h) is the
convergence rate in the variable, q, at t = T using the p-norm and the three Eulerian
step sizes h, h/2, h/4.
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u 1.42 1.43 1.19 1.01 1.54 1.23
X 0.50 2.97 1.63 1.19 2.92 1.63

Table 3: Empirical convergence rates with spatial refinement and increased biofilm
density. rp(q(T );h) is the convergence rate in the variable, q, at t = T using the
p-norm and the three Eulerian step sizes h, h/2, h/4. In this experiment, the density
of the biofilm is double that of the surrounding fluid.
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u 0.91 0.89 0.85 0.88 1.62 1.08
X 2.02 1.12 1.44 1.87 1.21 1.59

Table 4: Empirical convergence rates with spatial refinement and increased biofilm
viscosity. rp(q(T );h) is the convergence rate in the variable, q, at t = T using the
p-norm and the three Eulerian step sizes h, h/2, h/4. In this experiment the viscosity
of the biofilm is 500 times that of the surrounding fluid.

4.3.4 Time-Step Stability Restrictions

Finally, we investigated the stability of the method computationally as it depends
on the spatial and temporal refinement and the stiffness of the springs. Analytically,
stability applies to a numerical scheme and not to a computational run, but here we
follow Mori and Peskin (2008) and give a simple definition of the stability for each
computational run. Using the square of the 2-norm defined by equation (32) on u
(i.e. ‖u‖2

p) gives a value which is proportional to the kinetic energy in the system.
We call the simulation stable if magnitude of the total velocity (as measured by the
total kinetic energy) does not have a time of extreme growth during the simulation.
Moreover, this kinetic energy should remain relatively close to the value of the
total kinetic energy in the case of no biofilm. Using this definition of stability, we
found, through experimentation with many combinations of h, ∆t, and Fmax, that we
have timestep restrictions that scale with the mesh-width, h, and with the maximum
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Lagrangian force, Fmax. The restrictions are approximately given by

4t ≤C1h

and
4t ≤ C2

Fmax
,

where C1 and C2 are positive proportionality constants. Specific values of C1 and
C2 change depending on the parameters of the simulation. In future simulations,
we hope to avoid these timestep restrictions by using an implicit or semi-implicit
method as is done in Mori and Peskin (2008) and Newren, Fogelson, Guy, and
Kirby (2007). All of the simulations shown in this work and used in the conver-
gence testing used time-steps satisfying these two restrictions.

4.4 Three-Dimensional Validation

In this subsection, we provide some numerical evidence validating the 3D simu-
lations. We first validate in the absence of a biofilm using the exact laminar flow
solution. Then, we validate the multigrid method in the presence of a biofilm and,
finally, we provide the empirical convergence rates for the simulation in the pres-
ence of a biofilm.

We first tested the rate of convergence of our method on the laminar flow case
without the interference of a biofilm. To illustrate the convergence rate in the
absence of a biofilm, we started with an initial velocity profile that is one-half
of that of the laminar flow velocity profile, given by Equation (30). We ran the
simulation enough timesteps until the approximate solution converged, with only
discretization error remaining, to the exact solution for six spatial step sizes, h ={1

4 ,
1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128

}
. We computed the discretization error (using the exact lam-

inar solution, Equation (30), for computations) for each of the step sizes and found
that the error is O(h2). This can be seen in Figure 7, where on the vertical axis we
have the log2 of the error so that the convergence rate appears as the slope in the
plot.

Next, in Figure 5(b), we depict (for the pressure computation) the work units re-
quired to reach the minimum residual error as a function of allowed levels in the
multigrid approach. This again implies that the multigrid method correctly acceler-
ates the convergence of our iterative method for the 3D simulations with a biofilm.
Note that there is only a slight reduction in the number of required work units with
the addition of a 6th level in the multigrid, and we saw no reduction with 7 levels,
so we use at most 6 levels in our 3D solvers.

Finally, as was done for the 2D case in §4.3.3, we compute the empirical conver-
gence rates for our 3D simulation in the presence of the biofilm shown in Figure
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3(b) with all of the same fluid parameters used in the 2D analysis. Using the p-
norms defined above, we can compute the convergence rates using Equations (34)
and (36) (see Figure 8(a) and Table 5). For the temporal convergence analysis, we
used ω = 1

50 and h = 1
64 . This analysis resulted in first-order convergence in all

measures except rp(q(T );∆t) in which it has an average convergence rate of about
0.6. Next, we found empirical convergence rates for spatial refinement (see Table
6 and Figure 8(b)). As expected, we observe a greater than first-order convergence
rate in both the Eulerian velocity, u, and the Lagrangian position, X. Next, we con-
ducted a spatial refinement analysis with a biofilm that has double the density of
the surrounding fluid (see Table 7 and Figure 8(c)). Finally, we did the spatial re-
finement study for our simulations with µmax = 500, and again achieved first-order
spatial convergence (see Table 8 and Figure 8(d)).

This concludes our validation section, and we now present the results of our nu-
merical simulations.
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u 0.71 0.35 0.64 1.04 1.18 0.83
X 0.90 1.03 1.11 0.90 1.02 0.88

Table 5: Empirical convergence rates in the 3D simulations with temporal refine-
ment are shown for u and X. rp(q(T );∆t) is the convergence rate in the variable, q,
at t = T using the p-norm and the three Eulerian step sizes ∆t, ∆t/2, ∆t/4.
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u 1.46 1.47 1.11 0.97 0.98 0.99
X 3.25 1.84 3.11 3.91 1.75 3.17

Table 6: Empirical convergence rates in the 3D simulations with spatial refinement
are shown for u and X. rp(q(T );h) is the convergence rate in the variable, q, at
t = T using the p-norm and the three Eulerian step sizes h, h/2, h/4.
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u 1.44 1.47 1.15 1.05 0.94 0.74
X 2.61 1.94 2.24 2.72 1.81 2.91

Table 7: Empirical convergence rates with 3D spatial refinement and increased
biofilm density. rp(q(T );h) is the convergence rate in the variable, q, at t = T
using the p-norm and the three Eulerian step sizes h, h/2, h/4. In this experiment,
the density of the biofilm is double that of the surrounding fluid.
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u 1.07 0.82 0.45 0.54 0.96 1.40
X 2.31 1.15 1.43 2.70 1.32 1.98

Table 8: Empirical convergence rates with 3D spatial refinement and increased
biofilm viscosity. rp(q(T );h) is the convergence rate in the variable, q, at t = T
using the p-norm and the three Eulerian step sizes h, h/2, h/4. In this experiment,
the viscosity of the biofilm is 500 times that of the surrounding fluid.
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Figure 8: Empirical errors in the 3D simulations with (a) temporal refinement:
Ep(q(T );∆t) is the p-norm of the error as defined by Equation (33), (b) spatial
refinement with constant density and viscosity: Ep(q(T );h) is the p-norm of the
error as defined by Equation (35), (c) spatial refinement and increased biofilm den-
sity, (d) spatial refinement and increased biofilm viscosity. We show log2 in the x
and y axes so that the empirical convergence rate appears as the slope of the line
segments.

5 Simulations Results

In this section, we present the results of our numerical simulations. First, we briefly
discuss the reality of elastic forces in biofilms. Then we provide 2D results in §5.2
and 3D results in §5.3.

5.1 Discussion of Elastic Maximum Force, Fmax

We now provide a brief discussion of the physical reality of the values of Fmax

used in our simulations. The cohesive strength6 in biofilms has been found exper-
imentally to be highly heterogeneous, with repeated experimental measurements

6 The cohesive strength is a measure of the forces that interconnect the biofilm’s cells.
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on the same biofilm yielding vastly different strength measurements. For example,
49 cohesive strength measurements taken on only two samples of Staphylococcus
epidermidis yielded measurements between 61-5182 Pa (Aggarwal, Poppele, and
Hozalski (2010)). These biofilms were grown on a 22mm diameter disc rotating at
75 rot/min so the fastest speed, ∼ 86 mm/s, was at the perimeter of the disc (i.e. very
slow flow growth conditions). The adhesive7 and cohesive strengths have also been
shown to vary significantly with changes in growth conditions such as flow rate and
nutrient concentration. Changes in these growth conditions influence the amount of
ECM production in the biofilm as well as the compactness of the biofilm, which has
a direct effect on its strengths (Chen, Zhang, and Bott (2005); Ohashi and Harada
(1996); Chen, Zhang, and Bott (1998)). We note here that the required values we
find for Fmax for the biofilms to remain attached in our 2D and 3D simulations are
consistent with the cohesive strength measurements provided in Aggarwal, Pop-
pele, and Hozalski (2010). Since the diameter of Staphylococcus epidermidis is
about 1 µm, in 3D, we multiply the cohesive strengths by 1 µm2 to get an approx-
imation for the range of forces on the surface area of one cell. Using the range of
61-5182 Pa yields a range of forces from 6.1×10−11 N to 5.18×10−9 N. In 2D, we
multiply the cohesive strengths by the cell diameter to get a rough approximation
for the range of forces on the surface perimeter surrounding one cell. Using the
range of 61-5182 Pa yields a range of forces from 6.1×10−5 N to 5.18×10−3 N.
Our values for Fmax are at the low end of these ranges. The actual strength of the
biofilm is most likely larger than our Fmax values since the positional data was from
a biofilm that was not fragmenting in the flow conditions in which it was grown,
and we used the same flow conditions in our simulations. Thus, in order to see
detachment under these flow conditions, we had to lower the value of Fmax. We
could alternatively increase the flow rate to necessitate a larger Fmax requirement to
avoid detachment. One eventual goal of this work is that, if the approximate value
of Fmax is known for a particular type of biofilm, then our simulations can be used
to predict the flow rates required to break different shaped biofilms.

5.2 Two-Dimensional Simulations

In this section, we provide results from our 2D simulations, which represent a cross-
section of a biofilm attached to the inside of a tube and subjected to fluid flow in
a computational domain of 150 µm by 50 µm. The parameters for our simulations
are given in Table 9.

In all simulations, we implement a breaking condition on the springs of two times
the rest length. The initial configuration for the biofilm in these simulations is
shown in Figure 3. The spring connections between Lagrangian nodes are put

7 The adhesive strength is a measure of the forces that connect a biofilm to the surface.
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Parameter Values for the Simulations
Tube Radius 25×10−6 m
Fluid Dynamic Viscosity 1.0×10−3 kg/m·s

Fluid Density 998 kg/m3

Maximum Fluid Velocity 10−3 m/s

Table 9: The values of parameters used in the 2D simulations.

in place at the beginning of the simulation with every node connected to every
other node less than dc away (the reason for this connection distance is given
above in §4.2). The mushroom shaped biofilm has a height of about 8.5 µm and
width of about 8 µm (width of about 2 µm at the thinnest part) . We use a non-
dimensionalized ω = 1

100 to match the radius of Staphylococcus epidermidis and
choose h = 1

128 in all of the simulations shown, so that ω > h.

In the first simulation, the maximum spring force, Fmax, is set to 5.00×10−7 N, and
the results are provided in Figure 9. The biofilm bends over in the flow, and the
connections in the thin part of the biofilm break as they stretch too far. The blue
streamlines in (b), (c), and (d) of Figure 9 and in all of the other 2D simulation
plots follow the trajectories given by the velocity field, u.

We point out that the values of the spring constants are well within physically re-
alistic values (see the discussion in §5.1), although, in this work, we have chosen
these values for the qualities they give to the simulations rather than experimental
evidence of the elastic strength of biofilms. For example, in these 2D simulations,
we investigated several simulation runs with various spring constants until we ob-
tained those that exhibited the above described behaviors.

Next, we conducted a simulation of the same mushroom shaped biofilm with all
of the same parameter values, but we gave the biofilm additional density of ρb =
998 kg/m3 compared to the ambient fluid. We know this density is larger than what
is seen in actual biofilms (at most 20% greater density than water (Masuda, Watan-
abe, and Ishiguro (1991); Ro and Neethling (1991))), but we chose it to show an
exaggerated example of increasing the biofilm density. These result is provided
in Figure 10(b) and illustrates that the added density essentially adds momentum
to the biofilm. This additional momentum causes the biofilm to curl over into the
slower flow region and thus prevents detachment.

Finally, we conducted a simulation of the same mushroom shaped biofilm with
all of the same parameter values as the first simulation, but we increased Fmax to
5.00×10−6 N. The effect of these stronger springs is that the thin part of the biofilm
does not stretch enough to break the connections. The result is depicted in Figure
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(10)(c). We can see from these simulations that either increasing the biofilm density
or strengthening the springs causes similar results, but, with the increased density,
the biofilm has more of a curling action.

In the next simulation, we use all of the same parameters described in the first
simulation, with the addition that the biofilm has a 500× larger viscosity than the
surrounding fluid, so µmax = 0.5 kg/m·s. Comparing simulation results illustrated in
Figure 10(d) and Figure 10(a), which show the biofilm configurations just before
detachment, we observe a longer time until detachment in the high viscosity case.
This is the expected outcome of increasing the viscosity in the biofilm. We note
here that we used ω = 1

100 in the equation for µ(x) in Equation (20) because we
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Figure 9: 2D Simulation of a mushroom shaped biofilm with the same density as
the surrounding fluid. Time t is in seconds and the distance is in microns. In this
simulation, ρ0 = 998 kg/m3, ρb = 0, Fmax = 5.00× 10−7 N. The blue streamlines
follow the velocity field. In this simulation, the top of the biofilm stretches in the
flow, and the top breaks off as the connections in the the middle separate as they
exceed the breaking criteria of twice the rest length. As expected in a laminar shear
flow, the broken piece then tumbles end over end through the flow.
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wanted to spread additional viscosity over the same region that the elastic forces
are spread to. We achieve an even longer detachment time in the simulation by
widening the influence of additional viscosity by using, for example ω = 1

50 .
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Figure 10: Snapshots in time (t in seconds) of cell distributions resulting from 2D
simulation of mushroom shaped biofilm with four different property configurations.
In (a), the biofilm has the same density and viscosity as the surrounding fluid (just
before detachment), (b) increased Fmax, (c) density twice as large as the surrounding
fluid density, and (d) viscosity is 500× that of the surrounding fluid (just before
detachment). The blue streamlines follow the velocity field.

5.3 Three-Dimensional Simulations

In this section, we provide results from our 3D simulations, which use the same
parameter values as in the two dimensional simulations (see Table 9). The differ-
ence is that the simulation in 3D represents flow through a square shaped tube with
a side length of 50 µm. Note that these 3D simulations reproduce qualitatively the
same results as in the 2D ones.
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Our 3D simulations were run on a 50× 50× 150 µm computational domain. We
simulate on a mushroom shaped biofilm with a height of about 8.5 µm and a diame-
ter of about 7.5 µm. This shape is carved from the same set of data points described
in §4.2. The spring connections between Lagrangian nodes are put in place at the
beginning of the simulation, with every node connected to every other node less
than dc = 3 µm away. Note that, for the 3D simulations, we increased dc slightly
to establish enough connections in the biofilm. We again use ω = 1

100 to match the
radius of Staphylococcus epidermidis and choose h = 1

128 in all of the simulations
shown, so that ω > h. In the first simulation, the maximum spring force, Fmax, is set
to 1.25×10−12 N. We again chose the value of these spring constants in order to il-
lustrate specific behaviors. The results of the first simulation are shown in §11. The
mushroom shaped biofilm bends over and stretches in the flow. The connections in
the midsection of the biofilm exceed their breaking length and the top of the biofilm
breaks off into the flow. Next, we ran a simulation of the same mushroom shaped
biofilm, but we added ρb = 998 kg/m3 additional density to the biofilm compared to
the surrounding fluid. The final result is provided in Figure 12(b) and illustrates
that the added density increases the momentum of the biofilm. This allows for the
mushroom to curl over into the flow and increases the time until detachment. We
also ran a simulation of the same mushroom shaped biofilm, but we increased Fmax

to 1×10−11 N and kept the biofilm density the same as the surrounding fluid. The
result is provided in Figure 12(c). The effect of these stronger springs is that the
thin part of the biofilm does not stretch enough to break the connections. We can
see from these simulations that either increasing the biofilm density or strengthen-
ing the springs causes similar results, but with the increased density the biofilm just
curls over.

Finally, we provide one 3D simulation to show that, with increased biofilm viscos-
ity, they produce qualitatively the same behavior as in the 2D case. In the simulation
result shown in Figure 12(d), we use the same parameters as the first 3D simulation,
but we use a viscosity in the biofilm that is a factor of 500 times that of the sur-
rounding fluid. Just as in the 2D case, this results in a longer time until detachment
(compare time in Figure 12(a) and Figure 12(d)).

For ease of comparison, we now provide the figures in the order in which they were
discussed in this section.

6 Realistically Shaped Biofilm Simulation

The biofilm shapes used in §5.2 and §5.3 were intentionally carved from the data
in a way to provide a weak point at which it would be most likely to break. This
was done in order to verify the expected effects of varying the different parameters
in the simulation. In this section, we provide results of the simulation on a biofilm
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Figure 11: Full 3D simulation of a mushroom shaped biofilm with the same density
as the surrounding fluid. The time t is in seconds and the distance is in microns. As
the biofilm stretches in the flow, the strain in the midsection exceeds the breaking
length of the connections, and the top of the biofilm breaks off into the flow. Then
the broken piece tumbles end over end through the flow, and the base retracts back.
In this simulation, ρ0 = 998 kg/m3, ρb = 0, Fmax = 1.25×10−12 N.

that is a subset of points taken directly from the real biofilm data set. In reality,
this biofilm was surrounded by more cells on all sides, which would change the
behavior of the fluid structure interactions. However, we use this to show the results
of the simulation on a real top heavy biofilm shape that was grown in a lab. The
Staphylococcus epidermidis data set discussed in §4.2 was supplied as positions in
three 30×30×15 µm sub-domains of a biofilm.

In Figure 13(a), we show the biofilm taken from a 2× 30× 15µm subset of one
data set that has been connected with dc = 2.8 µm. For the 2D representation, we
collapse the 2 µm dimension, leaving only the (x,y) coordinates of the data. The
most interesting feature of this biofilm is that in the region from x = 60 µm to
x = 67 µm the biofilm exhibits a mushroom shape similar to the one we used in
§5.2.

We now provide two simulation results on this realistically shaped biofilm. The
first simulation (see Figure 13) uses a biofilm density equal to the surrounding
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Figure 12: Snapshots in time (t in seconds) of cell distributions resulting from 3D
simulation of mushroom shaped biofilm with four different property configurations.
In (a), the biofilm has the same density and viscosity as the surrounding fluid (just
before detachment), (b) increased Fmax, (c) density twice as large as the surrounding
fluid density, and (d) viscosity is 500× that of the surrounding fluid (just before
detachment).

fluid and uses Fmax = 7.5× 10−7 N. In this simulation, the mushroom shaped part
pushes against the biofilm behind it, then rolls over the top of it as it breaks from its
base, forming a long streamer-like biofilm.8Then the streamer breaks completely
off leaving two distinct attached structures. In the second simulation, we use a
biofilm density of ρb = 120 kg/m3 and kept everything else the same. Although the
density is only 12% larger than the surrounding fluid, it has a large impact on the
outcome of the simulation. In this simulation, the effect of the increased density
of the biofilm is a longer breaking time (compare time in Figure 14(b) and Figure
14(c)). This occurs since the increased momentum causes the first detached piece
to continue further down, pulling the whole streamer lower (compare the height of
the detaching pieces). The fluid forces continue to push the streamer until it breaks
into the flow.
8 Streamers are a natural occurrence in biofilms. Examples in Klapper, Rupp, Cargo, Purvedorj, and

Stoodley (2002); Rusconi, Lecuyer, Guglielmini, and Stone (2010).
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Figure 13: Simulation on a 2D slice of a real biofilm with the same density as
the surrounding fluid. Time t is in seconds and the distance is in microns. In
this simulation, ρ0 = 998 kg/m3, ρb = 0, Fmax = 7.5×10−7 N. The blue streamlines
follow the velocity field. In this simulation, the mushroom shaped part pushes
against the biofilm behind it (b), then rolls over the top of it as it breaks from its
base (d). Then a large portion of the biofilm breaks completely off leaving 2 distinct
bases (f).

In the final simulation, we show that increasing the viscosity in the “realistically”
shaped biofilm has larger impact on the results than in the case of the previous
standalone mushroom shaped biofilm. In this simulation, we increased the biofilm
viscosity to 50× the surrounding fluid with µmax = 0.05 kg/m·s. Although this is 10×
less than in the previous variable viscosity simulation, it has a larger impact on this
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wider biofilm, doubling the detachment time from the case of constant viscosity
(compare Figure 14(b) and Figure 14(d)).
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Figure 14: Snapshots in time (t in seconds) showing the detachment time and con-
figuration at detachment of a 2D slice of a real biofilm with initial configuration in
(a). In (b), biofilm has the same density and viscosity as the surrounding fluid, (c)
12% larger density, and (d) 50× larger viscosity than the surrounding fluid. The
blue streamlines follow the velocity field.

6.1 Numerical Concerns

We note that there remains one pressing concern that will be the focus of our future
work. When adapting the multigrid scheme for large values of µmax, we do not
achieve expected speed ups in convergence rates. We use restriction to transfer the
viscosity to the coarse grids works for small values of µmax, but we found that,
for larger values of µmax, this technique leads to a very slowly converging solver.
Intriguingly, we found that using our restriction operator to define the coarse grid
viscous values and then scaling the values leads to faster convergence. Specifically,
we define the coarse grid viscosity as

µlh(x) = γlhIlh
l
2 hµ l

2 h(x), (37)
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where lh denotes the grid whose mesh width is l times h (l = 2, 4, 8, 16, . . .),
γlh ∈ (0,1] is the scaling which maximizes the convergence of the solver, and µh(x)
is defined by Equation (20). Through repeated experimentation, we found that
using γlh ∈ [.7,1] resulted in the fastest convergence rates in the 2D and 3D simu-
lations. This approach is admittedly ad-hoc. However, the consistency with which
we achieved dramatic speed ups strongly suggests the existence of an underlying
mathematical principle to be discovered.

For our future work, the highest priority is to resolve the problem of slow con-
vergence for large µmax. There are three approaches that may lead to resolving this
issue. The first would be to mathematically derive optimal values for the scaling pa-
rameters, γlh. Second, we could ensure that our discretization satisfies the Galerkin
condition. Lastly, and probably the best choice, would be to re-implement the ge-
ometric multigrid as an algebraic multigrid method (AMG, see Ch. 8 of Briggs,
Henson, and McCormick (2000)).

7 Conclusions

In this work we developed a simulation to model the flow-induced fragmentation of
biofilms. In this simulation, we have provided a way to adjust the biofilm density
and viscosity, which had not been addressed in previous IBM biofilm models. We
also have control of the fluid flow rate, density, viscosity, and elastic forces within
the biofilm. We used experimentally measured biofilm bacterial cell locations as
initial positions for our Lagrangian nodes. This is dramatically different than the
traditional IBM, in which methods usually refine the Lagrangian mesh along with
the Eulerian mesh. We adapted the Dirac delta approximation to scale with the
radius of the bacteria rather than with the mesh width. This implies that the infor-
mation that transfers from the Lagrangian grid to the Eulerian grid (i.e., density,
viscosity, and elastic force) is spread over a set distance rather than scaling by the
mesh width, h. This adapted Dirac Delta approximation improves our numerical
convergence rates as well.

We used a projection method to split the incompressible Navier-Stokes equations
to solve separately for an intermediate velocity and the pressure, and then used a
Gauss-Seidel iterative method with multigrid to solve the resulting equations. Us-
ing an iterative solver, as opposed to a spectral method, to solve these systems was
necessitated by the fact that biofilms have spatially varying density and viscosity.
With this solver we achieved first order convergence in both space and time.

For the numerical simulations, we carved a mushroom shaped biofilm from the
bacterial cell locations and ran simulations with varying parameters. We first ran
the simulation on a simplistic shape in order to validate the effect of the various
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parameter changes on the outcome of the biofilm. By adjusting the maximum elas-
tic force, Fmax in the biofilm, we controlled the detachment phenomenon. We also
showed that slight changes in the density of the biofilm has a large effect on the
outcome of the simulation. This is an important conclusion as usually modelers
ignore the differences in biofilm density. Finally, we showed that we can increase
the detachment time in the simulations by increasing the viscosity of the biofilm.
Finally, we ran simulations on more realistically shaped biofilms, which showed
how a larger biofilm with different shapes will react to fluid flow forces. Adjusting
these parameters will be a necessary component when we attempt to match these
simulations to experimental data.

8 Future Work

As mentioned in the introduction, this is the first of two articles which detail our
investigation into modeling and simulating the response and fragmentation of a
biofilm in shear flow. The second article (currently in preparation Stotsky et.al
(2014)) will involve using the results of our simulation to match biofilm rheological
properties (such as those reported in Pavlovsky, Younger, and Solomon (2013)).
Below we provide an overview of potential improvements, some of which will
appear in the followup article and some which will be pursued in subsequent work.

There are straightforward ways to include more biologically realistic terms to in-
terpret biofilm internal stress dynamics, cell volume, and fragmentation dynamics.
In its current form, our simulations can be used to make predictions in detachment
times of biofilms, as well as general behavioral responses of biofilms to various
flow conditions. We do plan to include the fact that bacterial cells displace fluid.
While we have adapted the Dirac delta function approximation to transfer the cell
parameters (F , ρ , µ) to the Eulerian grid, the current simulation does not actually
assign a size to the cells. As a result, the cells are free to pass through each other.
We first plan to alter the model for the bacterial cell so that it displaces fluid. An
important step in this process will be to identify a collision detection strategy. We
will base ours on some combination of potentials for electrostatic, steric, and Van
der Waals forces.

Our current simulation also uses a spring-breaking criteria of double the rest length,
and assumes that the bonds are linearly elastic until the breaking point. This is not
an accurate assumption, as it is known that biofilms are composed of polymer based
ECMs. These structures are linearly elastic for small strains and then experience
plastic deformation (permanently altering the bonds in the ECM and thus the rest
length) before finally fracturing. In the future, we will use biofilm yielding data
from experiments such as Aggarwal, Poppele, and Hozalski (2010) to determine
accurate approximations for yield points and fracture points in the biofilm. We
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plan to include plasticity into the simulations by changing the equations for stress,
Equation (18), when the bond has been stretched beyond its yield point.

We also have several plans for improving our numerical method. Our current simu-
lation is limited to first-order accuracy. Guided by the results in Brown, Cortez, and
Minion (2001), we will derive the numerical boundary conditions for our projection
method to ensure second order accuracy for both velocity and pressure computa-
tions. To improve the accuracy of the immersed boundary method, we could also
adapt our modeling method to either an immersed interface method (Li and Ito
(2006)) in which we adapt the finite difference approximations close to the inter-
face or a blob projection immersed boundary method as discussed in Cortez and
Minion (2000) in order to obtain second-order spatial accuracy. Another limita-
tion of our current numerical scheme is the time-step stability restrictions, which
limit the size of the elastic forces between the cells. We plan to eliminate these
restrictions altogether by changing to a semi-implicit or implicit method of trans-
ferring the data between the Eulerian and Lagrangian grids, as is shown in Newren,
Fogelson, Guy, and Kirby (2007).

Finally, with large biofilm densities and viscosities, our multigrid method in its
current formulation does not converge as fast as expected. We plan to fix this by
appropriately adapting our implementation of the geometric multigrid (by satisfy-
ing the Galerkin condition) or by changing to an algebraic multigrid approach.
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Appendix A:

In this appendix we provide a list of variables and parameters used in this paper.

d0 Average Spring Rest Length

δ Dirac Delta Function

δh Discretized Dirac Delta Function from Peskin

δ̃ Our Modified Discretized Dirac Delta Function

D Spatial dimension, D = 2 for 2D simulations and D = 3 for 3D simulations

ei Unit Vector in the ith direction

η Total Number of Lagrangian Points

f Eulerian Force Density

F Lagrangian Force

Fmax Maximum Lagrangian Force

h Spatial Discretization of finest grid

K Hookean Spring Coefficient

µ Dynamic Fluid Viscosity

µmax Maximum Biofilm Viscosity

p Pressure

q = (q, r, s) Lagrangian Coordinates

ρ Density

ρ0 Uniform Fluid Density

ρb Additional Density in Biofilm

s Lagrangian Node Marker
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t Time

T Tension in Spring

u Eulerian Velocity

ũ Intermediate Velocity

U Lagrangian Velocity

x = (x1,x2,x3) Cartesian Coordinates

Appendix B: Scaling Parameters

Scaling Parameters
Description Scaling Primary Specific values

parameter dimensions chosen for
simulations

Characteristic Length L {L} 50 microns
Characteristic Speed u0 {L/t} 10−3m/s

Characteristic Frequency T {t} 1s
Reference Pressure Difference p0− pLtube

{
mL−1t−2

}
.8144Pa

Characteristic Density ρ0
{

mL−3
}

998 kg/m3

Characteristic Viscosity µ
{

mL−1t−1
}

10−3 kg/ms

Characteristic Force Density f0 {F/L3} varies
Table 10: Shows the scaling parameters and their descriptions.


