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Disclosing the Complexity of Nonlinear Ship Rolling and
Duffing Oscillators by a Signum Function

Chein-Shan Liu1

Abstract: In this paper we study the nonlinear dynamical system ẋ = f(x, t) from
a newly developed theory, viewing the time-varying function of sign(‖f‖2‖x‖2−
2(f ·x)2) =−sign(cos2θ) as a key factor, where θ is the intersection angle between
x and f. It together with sign(cosθ) can reveal the complexity of nonlinear Duffing
oscillator and a quadratic ship rolling oscillator. The barcode is formed by plotting
sign(‖f‖2‖x‖2− 2(f · x)2) with respect to time. We analyze the barcode to point
out the bifurcation of subharmonic motions and the range of chaos in the parameter
space. The bifurcation diagram obtained by plotting the percentage of the first set
of dis-connectivity A −

1 := {sign(cosθ) =+1 and sign(cos2θ) =+1}with respect
to the amplitude of harmonic loading leads to a finer structure of a devil staircase
for the ship rolling oscillator, as well as a cascade of subharmonic motions to chaos
for the Duffing oscillator.

Keywords: Nonlinear dynamical system, SOo(n,1) Lie-group scheme, Signum
function, Barcode, Duffing oscillator, Ship rolling equation, Jumping in Barcode,
First set of dis-connectivity

1 Introduction

A cubic nonlinear oscillator described by the Duffing equation has the following
form:

ẍ(t)+ γ ẋ(t)+αx(t)+βx3(t) = F0 cos(ωt), (1)

where x is the displacement, γ is a damping constant, F0 and ω are respectively the
amplitude and excitation frequency of a harmonic loading, and

√
α with α > 0 is

the frequency of natural oscillation of the corresponding linear system.

The Duffing equation has been a major subject of intensive study over the last few
decades as one of innocent examples of nonlinear dynamical system exhibiting
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chaotic behavior, and which lends a typical chaotic system with a period doubling
route to chaos. The study of nonlinear oscillators is of great importance not only
in all areas of physics but also in engineering and other disciplines, since most
phenomena in our world are nonlinear and are described by nonlinear equations.
Recently, a considerable attention has been directed towards the semi-analytical so-
lutions for nonlinear oscillators. There are many computational methods that have
been developed for solving the periodic and sub/super-harmonic solutions of the
nonlinear oscillators, for example, the harmonic balance method [Donescu1, Vir-
gin and Wu (1996); Wu, Sun and Lim (2006), Liu, Thomas, Dowell, Attar and Hall
(2006)], the variational iteration method [He (1999); Ozis and Yildirim (2007)], the
homotopy perturbation method [He (2000); Shou (2009)], the parameter-expanding
method [Koroglu and Ozis (2011)], the exp-function method [He and Abdou (2007)],
and differential transform method [Chu and Lo (2011)]. Recently, Dai, Schnoor
and Atluri (2012) have applied a simple collocation method to reveal the complex
subharmonic behavior of the Duffing oscillator, and Liu (2012) proposed a Lie-
group adaptive method to solve the optimal control problem of nonlinear Duffing
oscillator.

The chaotic behavior of ship rolling motion in beam sea has been studied by Thomp-
son (1997), of which a typical equation to explore the instability of ship capsize is
the following quadratic nonlinear oscillator:

ẍ(t)+ γ ẋ(t)+ x(t)− x2(t) = F0 sin(ωt). (2)

In the studies of ship motion the analysis of large amplitude nonlinear rolling mo-
tion is important to understand the capsize dynamics.

The analyses of Eqs. (1) and (2) have been performed to obtain approximate solu-
tions by using various methods, like multiple scale method, perturbation method,
harmonic balance method, the Bogoulibov Mitropolsky asymptotic method. The
numeric safe basins, the Melnikov method, the Lyapunov exponents and the Lya-
punov direct method were used to determine the conditions of stability and the
occurrence of chaotic motion. The analytic methods used to predict chaos [Szem-
plinska - Stupnicka (1995); Litak and Borowiec (2006)] are also developed by us-
ing an observation of period doubling, and Melnikov’s method based on the phe-
nomenon of homoclinic intersection. But there are still many problems that the
existent methods cannot exhaust the complicated beahvior of nonlinear dynamical
systems.
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Figure 1: There are four Lie-groups for the nonlinear dynamical system, where X =
(x, ‖x‖)T and n = x/‖x‖.

Figure 1: There are four Lie-symmetries for the nonlinear dynamical system, where
X = (x,‖x‖)T and n = x/‖x‖.

2 A nonlinear augmented system formulation

To facilitate the formulation we write the above equations as a system of first-order
ordinary differential equations (ODEs):

ẋ = f(x, t), t ∈ R, x ∈ Rn, (3)

which is an n-dimensional ODEs system.

As that done by Liu (2001), for Eq. (3) we can define a unit orientation vector:

n :=
x
‖x‖ , (4)

where ‖x‖ :=
√

x ·x > 0 is the Euclidean norm of x, and the dot between two
vectors, say x ·y, denotes the inner product of x and y.

First, upon using Eqs. (3) and (4) the length ‖x‖ is governed by

d
dt
‖x‖= ẋ ·x√

x ·x = f(x, t) ·n. (5)
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Then, using Eqs. (3)-(5) we can derive

ṅ =
f(x, t)
‖x‖ −

(
f(x, t)
‖x‖ ·n

)
n =

[
f
‖x‖ ⊗n−n⊗ f

‖x‖

]
n, (6)

where u⊗y denotes the dyadic operation of u and y, i.e., (u⊗y)z = y · zu.

By the definition of

x = ‖x‖n,

and from Eqs. (4)-(6), we can derive

ẋ =
d‖x‖

dt
n+‖x‖ṅ =

f ·x
‖x‖2 x+

[
f
‖x‖ ⊗

x
‖x‖ −

x
‖x‖ ⊗

f
‖x‖

]
x, (7)

and at the same time Eq. (5) can be written as

d
dt
‖x‖= f · x

‖x‖ . (8)

Then, Eqs. (7) and (8) can be put together as

d
dt

[
x
‖x‖

]
=

 f
‖x‖ ⊗ x

‖x‖ − x
‖x‖ ⊗ f

‖x‖
(f·x)x
‖x‖3

(f·x)xT

‖x‖3 0

[ x
‖x‖

]
. (9)

Furthermore, in terms of

X :=
[

x
‖x‖

]
, B :=

 f
‖x‖ ⊗ x

‖x‖ − x
‖x‖ ⊗ f

‖x‖
f·x
‖x‖3 x

(f·x)
‖x‖3 xT 0

 , (10)

and in terms of the symmetric and skew-symmetric matrices:

S =
f ·x
‖x‖2 In, W =

f
‖x‖ ⊗

x
‖x‖ −

x
‖x‖ ⊗

f
‖x‖ , (11)

we can write Eq. (9) as a Lie-type ODEs:

Ẋ = BX, (12)

where

B =

[
W Sn

(Sn)T 0

]
. (13)
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We can find three structures about Eq. (9):

Cone: XTgX = 0, (14)

Lie-algebra: B ∈ so(n,1), BTg+gB = 0, (15)

Lie-group: G ∈ SOo(n,1), GTgG = g, (16)

where g := diag(In,−1) is the metric tensor of the Minkowski space Mn+1 with a
signature (n,1), and G is the Lie-group generated from B [Liu (2001)]. Recently,
Liu (2013a) has developed a Lie-group algorithm based on the Lie-symmetry GL
(n,R) by dropping out the first and the third terms in the right-hand side of Eq. (7).
Moreover, Liu (2013b) has developed a Lie-group algorithm based on the Lie-
symmetry DSO(n) by Eq. (7). In Fig. 1 we show the relations of those Lie-group
formulations to Eq. (3). The present formulation by using the full Lie-symmetry of
SOo(n,1) is more delicated, as to be shown below.

3 A signum function

In order to develop a numerical scheme from Eq. (9), we suppose that the coefficient
matrix is constant with the pair

(a,b) =
(

f̄
‖x̄‖ ,

x̄
‖x̄‖

)
(17)

being constant, which can be obtained by taking the values of f and x at a suitable
mid-point of t̄ ∈ [0, t], where t ≤ h and h is a small time stepsize.

From Eqs. (9) and (17) we thus need to solve a constant linear system:

d
dt

[
x
‖x‖

]
=

 a⊗b−b⊗a a ·bb

a ·bbT 0

[ x
‖x‖

]
. (18)

Let

z = a ·x, w = b ·x, y = ‖x‖, (19)

c0 = a ·b, (20)

and Eq. (18) becomes

ẋ = wa− zb+ c0yb, (21)

ẏ = c0w. (22)
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At the same time, from the above equations we can derive the following ODEs for
z, w and y:

d
dt

 z
w
y

=

 −c0 a2
0 c2

0
−1 c0 c0
0 c0 0

 z
w
y

 , (23)

where a0 = ‖a‖. Fortunately, the original (n+1)-dimensional problem in Eq. (18)
can be reduced to a three-dimensional problem in the above.

For the special case with c0 = 0 we can derive

x(t) = x0 +

[
[cos(Ωt)−1]z0

Ω2 +
sin(Ωt)w0

Ω

]
a+
[
[cos(Ωt)−1]w0−

sin(Ωt)z0

Ω

]
b,

(24)

where Ω = ‖a‖, z0 = a ·x0 and w0 = b ·x0. For this case ‖x‖ is a constant.

Here we give a detailed derivation of the solutions for (z,w,y) with c0 6= 0. De-
pending on the signum function of

sign(a2
0−2c2

0) =
a2

0−2c2
0

|a2
0−2c2

0|
= sign(‖x‖2‖f‖2−2(x · f)2), (25)

there exist two different types solutions of (z,w,y) of Eq. (23). Instead of sign(a2
0−

2c2
0), we will use Sign for a shorthand.

From the first-order ODEs in Eq. (23) we have

ż = a2
0w+ c2

0y− c0z,

ẇ = c0w+ c0y− z,

ẏ = c0w. (26)

It follows that

d3y
dt3 +(a2

0−2c2
0)ẏ = 0. (27)

Depending on the value of a2
0−2c2

0, y has two different types of solutions.

(A) For the first case with a2
0−2c2

0 < 0, i.e., Sign =−1, we have

y(t) = k0 + k1h1(t)+ k2h2(t), (28)

where k0, k1 and k2 are constants and

h1(t) = sinh(Ωt), h2(t) = cosh(Ωt), (29)
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in which Ω =
√

2c2
0−a2

0.

Through some elementary operations we can derive the following solutions for z,
w and y: z(t)

w(t)
y(t)

= P

 z0
w0
y0

 ,

P =

 c2 +d1h1 + c3h2 d2h1 +d3h2− c0c2 c2Ωh1 + c1c2(h2−1)
− c2Ωh1

c2
0

c2Ωh1
c0

+h2
c2Ωh1

c0
c2(1−h2)

c0

c0h1
Ω

+ c2(h2−1) c3 + c2h2(t)

 , (30)

where z0, w0 and y0 are initial values of z, w and y at an initial time t = 0, and

Ω =
√

2c2
0−a2

0, c1 =
c2

0−Ω2

c0
, c2 =

c0

c0− c1
, c3 =−

c1c2

c0
,

d1 =−
c2Ω

c0
, d2 =

c0c1

Ω
+ c2Ω, d3 = c0 + c1c2. (31)

(B) For the second case with a2
0−2c2

0 > 0, i.e., Sign =+1, we have

y(t) = k0 + k1h3(t)+ k2h4(t), (32)

where k0, k1 and k2 are constants and

h3(t) = sin(Ωt), h4(t) = cos(Ωt), (33)

in which Ω =
√

a2
0−2c2

0.

Through some elementary operations we can derive the following solutions for z,
w and y: z(t)

w(t)
y(t)

= Q

 z0
w0
y0

 ,

Q =

 c2 +d1h3 + c3h4 d2h3 +d3h4− c0c2 c1c2(h4−1)− c2Ωh3
c2Ωh3

c2
0

h4− c2Ωh3
c0

− c2Ωh3
c0

c2(1−h4)
c0

c0h3
Ω

+ c2(h4−1) c3 + c2h4

 , (34)

where

Ω =
√

a2
0−2c2

0, c1 =
c2

0 +Ω2

c0
, c2 =

c0

c0− c1
, c3 =−

c1c2

c0
,

d1 =
c2Ω

c0
, d2 =

c0c1

Ω
− c2Ω, d3 = c0 + c1c2. (35)
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When (z,w,y) are obtained we can insert them into Eq. (21) and integrate the resul-
tant equation to obtain the solution of x(t). The solutions are written out directly.
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Figure 2: A schematic plot of the area of Sign=+1, Sign=-1, sign(c0)=+1, and sign 

(c0)=-1 in the plane. 

 

 

 

 

 

 

 

 

 

 

Figure 2: A schematic plot of the area of Sign=+1, Sign=-1, sign(c0) = +1, and
sign(c0) =−1 in the plane.

(A) For the case with a2
0− 2c2

0 < 0 (Sign = −1), inserting Eq. (30) for z, w and y
into Eq. (21) and integrating the resultant equation we can obtain

x(t) = x0+[G1(t)z0+G2(t)w0+G5(t)‖x0‖]a+[G3(t)z0+G4(t)w0+G6(t)‖x0‖]b,
(36)

where

G1(t) =
c2[1−h2(t)]

c2
0

,

G2(t) =
c2[h2(t)−1]

c0
+

h1(t)
Ω

,

G3(t) =
d1[1−h2(t)]

Ω
− (c2 + c3)h1(t)

Ω
,

G4(t) =
(c2

0−d2Ω)[h2(t)−1]
Ω2 +

(c0c2−d3)h1(t)
Ω

,

G5(t) =
c2[h2(t)−1]

c0
,

G6(t) =
c0h1(t)

Ω
− c2[h2(t)−1], (37)
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in which Ω =
√

2c2
0−a2

0, h1(t) = sinh(Ωt), and h2(t) = cosh(Ωt).

(B) Next for the case with a2
0−2c2

0 > 0 (Sign =+1) we can obtain

x(t) = x0 +[g1(t)z0 +g2(t)w0 +g5(t)‖x0‖]a
+[g3(t)z0 +g4(t)w0 +g6(t)‖x0‖]b,

(38)

where

g1(t) =
c2[1−h4(t)]

c2
0

,

g2(t) =
c2[h4(t)−1]

c0
+

h3(t)
Ω

,

g3(t) =
d1[h4(t)−1]

Ω
− (c2 + c3)h3(t)

Ω
,

g4(t) =
(c2

0−d2Ω)[1−h4(t)]
Ω2 +

(c0c2−d3)h3(t)
Ω

,

g5(t) =
c2[h4(t)−1]

c0
,

g6(t) =
c0h3(t)

Ω
− c2[h4(t)−1], (39)

in which Ω =
√

a2
0−2c2

0, h3(t) = sin(Ωt), and h4(t) = cos(Ωt).

4 Numerical algorithm: GPS2

From the above solutions of x(t) we can derive the new algorithm. In order to
distinct the present method from the group-preserving scheme (GPS) developed by
Liu (2001), we may call the new algorithm to be the second GPS, denoted by GPS2,
which is summarized as follows.
(i) Give an initial value of x0 at an initial time t = t0 and a time stepsize h.
(ii) For k = 0,1, . . ., we repeat the following computations to a specified terminal
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Figure 3: For the Duffing oscillator under a harmonic loading, showing (a) the signum 

function and (b) the length. 

 

 

 

 

 

Figure 3: For the Duffing oscillator under a harmonic loading, showing (a) the
signum function and (b) the length.

time t = t f :

ak =
fk

‖xk‖
,

bk =
xk

‖xk‖
,

ak
0 = ‖ak‖,

ck
0 = ak ·bk,

zk
0 = ak ·xk,

wk
0 = bk ·xk,

Sign =
(ak

0)
2−2(ck

0)
2

|(ak
0)

2−2(ck
0)

2| ,
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if Sign =+1,



Ωk =
√

(ak
0)

2−2(ck
0)

2,

ck
1 =

(ck
0)

2+Ω2
k

ck
0

,

ck
2 =

ck
0

ck
0−ck

1
,

ck
3 =−

ck
1ck

2
ck

0
,

dk
1 =

ck
2Ωk

ck
0
,

dk
2 =

ck
0ck

1
Ωk
− ck

2Ωk,

dk
3 = ck

0 + ck
1ck

2,
ak = sin(Ωkh),
bk = cos(Ωkh),

gk
3 =

dk
1(bk−1)

Ωk
− (ck

2+ck
3)ak

Ωk
,

gk
4 =

[(ck
0)

2−dk
2Ωk](1−bk)

Ω2
k

+
(ck

0ck
2−dk

3)ak
Ωk

,

(40)

if Sign =−1,



Ωk =
√

2(ck
0)

2− (ak
0)

2,

ck
1 =

(ck
0)

2−Ω2
k

ck
0

,

ck
2 =

ck
0

ck
0−ck

1
,

ck
3 =−

ck
1ck

2
ck

0
,

dk
1 =−

ck
2Ωk

ck
0
,

dk
2 =

ck
0ck

1
Ωk

+ ck
2Ωk,

dk
3 = ck

0 + ck
1ck

2,
ak = sinh(Ωkh),
bk = cosh(Ωkh),

gk
3 =

dk
1(1−bk)

Ωk
− (ck

2+ck
3)ak

Ωk
,

gk
4 =

[(ck
0)

2−dk
2Ωk](bk−1)
Ω2

k
+

(ck
0ck

2−dk
3)ak

Ωk
,

(41)

gk
1 =

ck
2(1−bk)

(ck
0)

2
,

gk
2 =

ck
2(bk−1)

ck
0

+
ak

Ωk
,

gk
5 =

ck
2(bk−1)

ck
0

,

gk
6 =

ck
0ak

Ωk
− ck

2(bk−1),

xk+1 = xk +(gk
1zk

0 +gk
2wk

0 +gk
5‖xk‖)ak +(gk

3zk
0 +gk

4wk
0 +gk

6‖xk‖)bk. (42)
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In Eq. (40) there are sin(Ωkh) and cos(Ωkh), while that in Eq. (41) there are
sinh(Ωkh) and cosh(Ωkh). The most dynamical systems fall into the first class
with Sign = +1. However, for a chaotic system the situation is quite different,
where both equations (40) and (41) are needed in the computation.

5 The barcode and the set A −
1

It is significant that in Eq. (25) we have derived a signum function, which is ab-
breviated as Sign for saving notation, to demand the algorithm into two classes in
Eqs. (40) and (41). Without having the factor 2 before f ·x in Eq. (25) one has

‖f‖2‖x‖2− (f ·x)2 = ‖f‖2‖x‖2(1− cos2
θ)≥ 0,

where θ is the intersection angle between x and f; hence, it makes no sense to say
its signum function, because it is always non-negative.

On the contrast, by Eq. (25) we have

Sign = sign(‖f‖2‖x‖2(1−2cos2
θ)) =−sign(cos2θ), (43)

which might be +1 or −1, depending on the intersection angle θ between x and f.
When θ is in the range of−π/2 < θ < π/2 or 3π/4 < θ < 5π/4, the value of Sign
is Sign =−1. As a remark given below Eq. (23), here we can classify the behavior
of the nonlinear dynamical system in a three-dimensional subspace (f,x,‖x‖) with
a trio (Sign,sign(c0),‖x‖). Thus we can observe the time-varying values of Sign
and plot them as a barcode with alternative values of Sign being +1 and -1. It is
known that a barcode is an optical machine-readable representation of data relating
to the object to which it is attached. A main feature of the barcode is the intervened
black lines and white lines with varying spacings and widths. Barcode is ubiqui-
tously used in the identification and classification of products. Here we will use the
barcode to identify the property of nonlinear oscillators in Eqs. (1) and (2).

Definition 1: The barcode is a time-varying function of Sign defined in a time in-
terval.

Let us give a schematic plot in Fig. 2, and as shown there we have two dis-connected
sets of ‖f‖2‖x‖2−2(f ·x)2 < 0:

f ·x >
1√
2
‖f‖‖x‖, (44)

f ·x <− 1√
2
‖f‖‖x‖, (45)
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by noting that (x, f) = (0,0) is deleted. Then we can identify five time-varying sets:

A −
1 := {(x, f) | Sign =−1, and f ·x >

1√
2
‖f‖‖x‖}

= {(x, f) | ‖f‖2‖x‖2−2(f ·x)2 < 0, and f ·x >
1√
2
‖f‖‖x‖}, (46)

A −
2 := {(x, f) | Sign =−1, and f ·x <

−1√
2
‖f‖‖x‖}

= {(x, f) | ‖f‖2‖x‖2−2(f ·x)2 < 0, and f ·x <
−1√

2
‖f‖‖x‖}, (47)

A + := {(x, f) | Sign =+1}= {(x, f) | ‖f‖2‖x‖2−2(f ·x)2 > 0}, (48)

B+ := {(x, f) | sign(c0) = +1}= {(x, f) | f ·x > 0}, (49)

B− := {(x, f) | sign(c0) =−1}= {(x, f) | f ·x < 0}. (50)

While B+ and B− are connected, A −
1 and A −

2 are dis-connected. We may call
A −

1 the first set of dis-connectivity and A −
2 the second set of dis-connectivity,

respectively. Clearly, the first set of dis-connectivity is a subset of B+ and the
second set of dis-connectivity is a subset of B−, i.e.,

A −
1 ⊂B+, A −

2 ⊂B−. (51)

We can prove the following theorems, which can help us understand the complex
structure of a barcode.

Theorem 1: If Eq. (3) satisfies

f(x(t0), t0) ·x(t0)> 0, and Sign =−1 ∀t ≥ t0,

then x(t)→ ∞, t→ ∞. (52)

Proof: Under the first assumption the case in Eq. (45) is impossible because it con-
tradicts to f(x(t0), t0)·x(t0)> 0. Then under the condition of Sign= sign(‖f‖2‖x‖2−
2(f ·x)2) =−1, it is always

f ·x >
1√
2
‖f‖‖x‖ ∀t ≥ t0, (53)

which is in the set A −
1 by Eq. (46). Because the two sets A −

1 and A −
2 are dis-

connected, and from the first set A −
1 to the second set A −

2 it must be Sign =
sign(‖f‖2‖x‖2− 2(f · x)2) = +1 on some time interval, which contradicts to the
second assumption in Eq. (52). Then using Eqs. (8) and (53) we have

d
dt
‖x‖> 1√

2
‖f‖> 0, (54)
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which means that the length grows with time. Thus, Eq. (52) is proven. �

Theorem 2: If Eq. (3) satisfies

f(x(t0), t0) ·x(t0)< 0, and Sign =−1 ∀t ≥ t0,

then x(t)→ 0, t→ ∞. (55)

Proof: Under the first assumption the case in Eq. (44) is impossible because it con-
tradicts to f(x(t0), t0)·x(t0)< 0. Then under the condition of Sign= sign(‖f‖2‖x‖2−
2(f ·x)2) =−1, it is always

f ·x <− 1√
2
‖f‖‖x‖ ∀t ≥ t0, (56)

which is in the set A −
2 by Eq. (47). By a similar argument and then using Eqs. (8)

and (56) we have

d
dt
‖x‖<− 1√

2
‖f‖< 0, (57)

which means that the length decreases with time. Thus, Eq. (55) is proven. �

We note that the length as governed by Eq. (8) has the following property:

sign(c0)≶ 0⇔ d
dt
‖x‖≶ 0, (58)

where

sign(c0) = sign(f ·x) = sign(cosθ). (59)

The above two theorems also hold if we replace A −
1 and A −

2 by the sets B+ and
B−, but they are un-interesting, because for an oscillatory system the value of
sign(c0) always changes its sign between +1 and -1.

For a chaotic system the value of Sign is not always +1 or −1. In order to demon-
strate the use of the barcode, let us investigate the Duffing oscillator (1) under the
following parameters: γ = 0.3, α = −1, β = 1, F0 = 0.32, ω = 1.2. In all com-
putations the initial conditions are set to be (x(0), ẋ(0)) = (0,0), unless specifying
otherwise. By using the algorithm GPS2 in Section 4 to solve the Duffing equation
the time stepsize is h = 0.01. We analyze the signum function and the length as
shown in Fig. 3 within a time interval of t ∈ [200,220], where the transient part in
t ∈ [0,200) is not plotted for clear.
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As shown in Fig. 3(a) by solid line the values of Sign are varying from −1 to +1
and then to −1, and then Sign will return to +1 again; otherwise, as shown in
Theorem 1 the system will respond unstably, causing the displacement tend to in-
finity, which by definition is not a chaotic system. In order to compare the values
of sign(c0) with the values of Sign we plot them in Fig. 3(a) with dashed and solid
line, respectively, where we make a slight shift of the dashed line downward for
clear. On the other hand, for a distinction to A −

2 , the first set of dis-connectivity
A −

1 is filled by solid black points.

Theorem 3: If a state is in the set A −
1 ⊂B+, before it leaves the set B+ to B−,

the set A −
1 changes to A +.

Proof: It follows from the first equation in Eq. (51) and the dis-connectivity of A −
1

and A −
2 . �

Theorem 4: If a state is in the set A −
2 ⊂B−, before it leaves the set B− to B+,

the set A −
2 changes to A +.

Proof: It follows from the second equation in Eq. (51) and the dis-connectivity of
A −

1 and A −
2 . �

Before sign(c0) changes from +1 to −1, for example from point f1 to point f2 in
Fig. 2, the Sign must jump from −1 to +1. The two jumping behaviors described
in Theorems 3 and 4 render a quite complex structure of the barcode as shown in
Fig. 3(a). More barcodes are to be shown below, which can be seen very complex.

From Fig. 3(a) we can observe the following interesting phenomena: (i) The first
set of dis-connectivity A −

1 is a subset of sign(c0) = +1, and the second set of dis-
connectivity A −

2 is a subset of sign(c0) =−1. (ii) In a time interval of Sign =−1,
the state is either in the first set of dis-connectivity A −

1 or in the second set of dis-
connectivity A −

2 , which is due to the dis-connectivity of A −
1 and A −

2 . (iii) From
one in first set of dis-connectivity A −

1 to another first set of dis-connectivity A −
1

there must accompany a jump from Sign=−1 to Sign=+1. This also holds for the
second set of dis-connectivity A −

2 . (iv) From one in first set of dis-connectivity A −
1

to one in second set of dis-connectivity A −
2 , or vice-versa, there must accompany

a jump from Sign = −1 to Sign = +1. For some cases this jumping event only
happens at one time point [an example will be given in Fig. 11(b)]. (v) Before
sign(c0) jumps from +1 to −1 as remarked in Fig. 3(a) by the symbols + and −
(i.e., the length is decreased), and if Sign is in the state of −1, then Sign will jump
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from −1 to +1 as remarked in Fig. 3(a) by the symbols − and +. The proof of
(v) is obvious by viewing Fig. 2 and that the first set of Sign =−1 cannot directly
jump to the second set of Sign = −1. When f1 goes to f2, the Sign changes from
−1 to +1.

Moreover, according to the numerical algorithm of GPS2 we can prove the follow-
ing result.

Theorem 5: If Eq. (3) satisfies

Sign =+1 ∀t ≥ t0, then x(t) is stable, (60)

where t0 is a small finite time.

Proof: Under the above condition of Sign =+1, the algorithm in Eq. (40) is used.
Because |sin(Ωkh)| ≤ 1 and |cos(Ωkh)| ≤ 1, the algorithm does not bring the state
of x to be unbounded. Indeed, the Lie-group transformation from xk to xk+1 is a
compact subgroup of SOo(n,1), whose action is bounded. �

Theorems 1 and 2 reflect two extremal cases with the state always being Sign=−1,
which is either unstable or tending to zero. Thus for a regular system it should go
to the state Sign = +1 after a certain time t0 as shown in Theorem 5. However,
a chaotic system is frequently switching between these two states of Sign = +1
and Sign = −1. This is the reason that the barcode of a chaotic system is quite
complex. In the next section we will demonstrate the importance of the first set of
dis-connectivity A −

1 for Duffing equation (1) and the ship rolling equation (2).

6 Results and discussions

In this section we apply the GPS2 to solve Eqs. (2) and (1), and investigate their
behaviors by using the barcode and its first set of dis-connectivity A −

1 .

(A) Ship rolling equation:
(i) For Eq. (2) with γ = 0.1 (we fix it, unless specifying otherwise), under a fixed
F0 = 0.2, and with two different ω = 0.76 and ω = 0.6, we plot the phase portraits
of (x,y) = (x, ẋ) in Fig. 4(a), where we can observe two type behaviors: The escape
one with ω = 0.76 whose Sign function is plotted in Fig. 4(b) with an unstable
behavior as specified by Theorem 1. Here we can only calculate the solution up to
t = 12 sec although we use a very small time stepsize h = 0.0005. The periodic
one (in steady state) with ω = 0.6, whose Sign function is plotted in Fig. 4(c) with
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stable behavior as specified by Theorem 5. The Sign is returned to Sign =+1 after
25 sec and until 200 sec it keeps Sign =+1 unchanged.

(ii) In order to further test the escape and chaotic behavior of Eq. (2), we plot the
percentage of the state in the first set of dis-connectivity A −

1 up to 500 sec for two
fixed values, F0 = 0.2 in Fig. 5(a) and F0 = 0.15 in Fig. 5(b), with respect to the
excitation frequency ω in the range of 0.1 ≤ ω ≤ 1. The curves are fitted with
black points and connected by dashed lines and in the escape state there exist no
black points. The GPS2 has a mechanism to identify the "instability" of solution
by checking the value of Ωkh in Eq. (41). Because Ωkh appears in cosh(Ωkh)
and sinh(Ωkh), when Ωkh ≥ 20 the algorithm will blow up and we terminate the
computation, although the time does not reach to t = 500 sec, of which the resultant
state is classified as "escape" in the parameter space of ω . Thompson, Bishop and
Leung (1987) have employed x > 20 to be an escape criterion. Here we employ the
criterion of Ωkh≥ 20, basing on the numerical algorithm. For the case of F0 = 0.2,
after ω > 0.6 there are all escape states, and another one indicated in Fig. 5(a) by a
piece of dashed line. After the escape state there exists a thin layer within which the
motion is chaotic. In the percentage curve of A −

1 there appears many peaks, such
as those marked by the numbers 0.2935, 0.334 and 0.5635 in Fig. 5(a), and under
these parameter values of ω we find respectively, 1/3 subharmoic, 1/2 subharmoic
and periodic motion as shown in the inset. In the chaotic state, the percentage of
A −

1 is very low, smaller than 1%, for the ship rolling equation (2). We remind that
in the hyperplane (x, f) as shown in Fig. 2, A −

1 might have the maximal percentage
25%.

(iii) In order to show the chaotic behavior of Eq. (2), we compare two steady state
behaviors in Fig. 6(a) with the same ω = 0.17 but with two slightly different values
of F0 = 0.2414 and F0 = 0.2415, which correspond respectively to 1/4 subhar-
monic and chaotic motion. The corresponding barcodes as compared in Fig. 6(b)
for F0 = 0.2415, and Fig. 6(c) for F0 = 0.2414 are slightly different. Although, the
difference of F0 is only 0.0001, but the resultant behaviors are very different. This
indicates that Eq. (2) is a chaotic system under certain parameter values, which is
sensitive to the parameter value.

(iv) In Figs. 7(a) and 7(b) we fix γ = 0.1 and γ = 0.05 by plotting the distribution of
escape states in the parameter space of (ω,F0) ∈ [0,1]× [0,0.4], where the escape
states are marked by black points. For the purpose of comparison the following
Melnikov curve [Thompson (1989)] is plotted in Fig. 7:

FM =
γ sinh(πω)

5πω2 . (61)

F0 > FM is a necessary condition for the appearance of chaos, but it is not a suffi-
cient condition. In Fig. 8 we plot the escape time which is the terminal time when
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Ωkh used in in Eq. (41) is arrived to 20. After that the algorithm blows up. There
have several cusps and adjunct them the state of chaos appears. For example the
above case with F0 = 0.2415 is near to a cusp of escape. In the largest cusp region
there is a fractal structure as shown in the inset of Fig. 7(a), which is plotted in the
range of (ω,F0) ∈ [0.8,1]× [0.06,0.16].
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Figure 4: For a quadratic oscillator under a harmonic loading, (a) escape and chaotic 

orbit, and the signum functions for (b) escape motion and (c) periodic motion. 

 

 

 

 

Figure 4: For a quadratic oscillator under a harmonic loading, (a) escape and
chaotic orbit, and the signum functions for (b) escape motion and (c) periodic mo-
tion.
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Figure 5: For quadratic oscillators under harmonic loadings, showing escape and 

chaotic regions for two amplitudes of force. The inset shows subharmonic motions. 

 

 

 

 

Figure 5: For quadratic oscillators under harmonic loadings, showing escape and
chaotic regions for two amplitudes of force. The inset shows subharmonic motions.

(v) Within the large cusp, Thompson, Rainey and Soliman (1990) have analyzed the
bifurcation behavior with a fixed value ω = 0.85 and varying F0 ∈ [0.107,0.109].
However, in that range we cannot detect any special structure by using the new the-
ory. In Fig. 9 with ω = 0.85 being fixed, we plot the bifurcation diagram by using
the percentage curve of A −

1 with respect to F0 in the range of F0 ∈ [0.06,0.108].
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Figure 6: For quadratic oscillators, (a) showing subharmonic and chaotic motions with 

slightly different amplitudes of force, and (b) and (c) the corresponding barcodes. 

 

 

 

 

Figure 6: For quadratic oscillators, (a) showing subharmonic and chaotic motions
with slightly different amplitudes of force, and (b) and (c) the corresponding bar-
codes.
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Figure 7: For quadratic oscillators under harmonic loadings, showing escape regions 

for two damping constants. 

 

 

 

Figure 7: For quadratic oscillators under harmonic loadings, showing escape re-
gions for two damping constants.
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(a) 

 

(b) 

 

Figure 8: For quadratic oscillators under harmonic loadings, showing escape times for 

two damping constants: (a) γ=0.1, and (b) γ=0.05. 

 

 

Figure 8: For quadratic oscillators under harmonic loadings, showing escape times
for two damping constants: (a) γ = 0.1, and (b) γ = 0.05.
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It is interesting that after a sequence of period-doubling bifurcation showing as a
devil staircase in the figure there are states of escape and chaos.
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Figure 9: For quadratic oscillators under fixed ω=0.85 and varying amplitudes of 

loading, showing a bifurcation diagram with the staircase structure. 

 

 

 

 

 

 

 

Figure 9: For quadratic oscillators under fixed ω = 0.85 and varying amplitudes of
loading, showing a bifurcation diagram with the staircase structure.

(B) Duffing equation:

(i) For the Duffing Eq. (1) we fix the parameters as those given in the computation
of Fig. 3. Under the same parameters of γ = 0.3, α =−1, β = 1, ω = 1.2, we plot
the curves of the percentages of sign(c0)=+1 (i.e., B+) and A −

1 with respect to F0
from F0 = 0.22 to F0 = 0.4 in Fig. 10. The time is up to 250 sec and with h = 0.005
sec used in the GPS2. As expected the curve in Fig. 10(a) gives no much useful
information about the motion types, whose percentages are near 50%. However, in
the percentage curve of A −

1 in Fig. 10(b) there appears many peaks, such as those
marked by the numbers 0.267, 0.288 and 0.301, 0.356 and 0.359, and under these
parameter values of ω we find respectively, a smaller 1/3 subharmoic (Fig. 11),
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Figure 10: For the Duffing oscillator under different amplitudes of harmonic loading, 

showing the percentage of (a) the signum function c0, and (b) the first set of 

dis-connectivity. 

 

 

 

 

 

Figure 10: For the Duffing oscillator under different amplitudes of harmonic load-
ing, showing the percentage of (a) the signum function c0, and (b) the first set of
dis-connectivity.
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Figure 11: For the Duffing oscillator under F0=0.267, showing (a) the steady orbit of 

1/3 subharmonic motion, and (b) the barcode. 

 

 

 

 

 

 

Figure 11: For the Duffing oscillator under F0 = 0.267, showing (a) the steady orbit
of 1/3 subharmonic motion, and (b) the barcode.
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Figure 12: For the Duffing oscillator under F0=0.288, showing (a) the steady orbit of 

1/4 subharmonic motion, and (b) the barcode. 

 

 

 

 

 

 

Figure 12: For the Duffing oscillator under F0 = 0.288, showing (a) the steady orbit
of 1/4 subharmonic motion, and (b) the barcode.
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Figure 13: For the Duffing oscillator under F0=0.301, showing (a) the steady orbit of 

chaotic motion, and (b) the barcode. 

 

 

 

 

 

 

Figure 13: For the Duffing oscillator under F0 = 0.301, showing (a) the steady orbit
of chaotic motion, and (b) the barcode.
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Figure 14: For the Duffing oscillator under F0=0.356, showing (a) 1/3 subharmonic 

motion inside a window of chaotic range, and (b) the barcode. 

 
 
 
 
 

Figure 14: For the Duffing oscillator under F0 = 0.356, showing (a) 1/3 subhar-
monic motion inside a window of chaotic range, and (b) the barcode.
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Figure 15: For the Duffing oscillator under F0=0.359, showing (a) 1/5 subharmonic 

motion inside a window of chaotic range, and (b) the barcode. 

 

 

 

 

 

Figure 15: For the Duffing oscillator under F0 = 0.359, showing (a) 1/5 subhar-
monic motion inside a window of chaotic range, and (b) the barcode.
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Figure 16: For the Duffing oscillator under F0=0.2895, comparing the results of (a) 

RK4, and (b) GPS2. RK4 gives an incorrect 1/4 subharmonic motion. 

 
 
 
 

Figure 16: For the Duffing oscillator under F0 = 0.2895, comparing the results of
(a) RK4, and (b) GPS2. RK4 gives an incorrect 1/4 subharmonic motion.
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1/4 subharmoic (Fig. 12), chaotic (Fig. 13), a larger 1/3 subharmoic (Fig. 14) and
a larger 1/5 subharmoic (Fig. 15). The last two subharmonic motions are within
the subharmonic window inside the chaotic range. The range of 1/3 subharmoic is
ω ∈ [0.356,0.359), while the range of 1/5 subharmoic is ω ∈ [0.359,0.38). After
ω = 0.38 the Duffing system returns to the chaotic motion. For this case the Mel-
nikov theory gives a quite conservative estimation of chaos with F0 ≥ 0.25276. But
we find that the chaos is happened after F0 ≥ 0.301.

(ii) For the value of F0 = 0.2895 which is near to the starting value of chaos
F0 = 0.301, it leads to a higher subharmoic motion through period doubling route.
However, the fourth-order Runge-Kutta method with a time stepsize h = 0.005
gives an incorrect 1/4 subharmonic motion as shown in Fig. 16(a), while the GPS2
can reveal a higher subharmoic motion in Fig. 16(b). The steady state motions are
shown in a time interval of t ∈ [500,2000].

After F0 = 0.2676 the Duffing equation comes to a period-doubling range until the
entrance to a chaotic state at F0 = 0.301. Then we come to a narrow range of 1/3
subharmoic motion in the range of F0 ∈ [0.356,0.359), and then a 1/5 subharmonic
motion in the range of F0 ∈ [0.359,0.38]. In summary, we have found two ranges of
F0 ∈ [0.301,0.356)] and F0 > 0.38 for the chaotic motions of the nonlinear Duffing
oscillator.

7 Conclusions

In this paper the nonlinear differential equations system was converted into an
augmented quasi-linear dynamical system in the Minkowski space, with the co-
efficient matrix being a Lie-form with B ∈ so(n,1). Based on the Lie-symmetry
of the underlying new system, we have derived two types closed-form Lie-group
G ∈ SOo(n,1) solutions, of which the numerical scheme to preserve the Lie-group
properties was developed. A signum function of sign(‖f‖2‖x‖2− 2(f · x)2) was
introduced. Then we have announced a very important concept of the first set of
dis-connectivity in the hyper-plane (x, f), whose variation with respect to the pa-
rameter of nonlinear dynamical systems as shown by the Duffing equation and the
ship rolling equation reveals special structures. In view of Eqs. (43) and (59), the
set of A −

1 := {sign(cosθ) =+1 and sign(cos2θ) =+1} plays a dominant role for
disclosing the complexity of nolinear dynamical systems. The barcode can be used
to detect the appearance of chaotic motion, of which the peak in the curve of the
percentage to stay in the set of A −

1 is an important criterion to forecast the sub-
harmonic motions and chaos. One of the major contribution of this paper was that
the proposal of the bifurcation diagram obtained by plotting the percentage of the
first set of dis-connectivity A −

1 with respect to the amplitude of external loading,
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which leads to a finer structure of the devil staircase for the quadratic oscillator, and
the cascade of subharmonic motions to chaotic motions for the Duffing oscillator.
Hence, one has a practical and convenient tool to assess the complex behavior of
nonlinear oscillators.
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