
Copyright © 2014 Tech Science Press CMES, vol.98, no.4, pp.409-442, 2014
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Abstract: A new multi-objective reliability-based robust design optimization (M
ORBRDO) model is proposed which integrats the multi-objective robustness, the
reliability sensitivity robustness and the six sigma robustness design idea. The
pure-quadratic polynomial functions are adopted to fit the performance objective
functions (POF) and the ultimate limited state functions (ULSF) of the structure.
Based on the ULSF and the checking point method, the equations of the first order
reliability index are calculated. The mapping transformation method is employed
when the non-normal distribution variables are included. According to the POF
and the Taylor series expansion method, the equations of mean value and stan-
dard deviation of the performance objectives are deduced. In order to improve the
efficiency of MORBRDO, a new reliability based design optimization strategy is
proposed. The new strategy does not update the ULSF in the sub-cycle of reli-
ability calculation process, so that the computational work is reduced remarkably.
Then, the optimum design was obtained with the sequential quadratic programming
method. Finally, three engineering projects, a I-beam structure, a pressure vessel
and the turbine blade model lines are introduced to redesign their sizes by the new
MORBRDO methodology proposed in this paper. The results prove that the new
MORBRDO model and methods are correct, feasible and efficient, so it is valuable
theoretically and applicative in engineering.

Keywords: robust design, response surface method, reliability, multi-objective
optimization.

1 Introduction

For the past few years, the complication of multi-objective optimization, reliability
based design, robust design and their combination of each other in real project had
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been paid more and more attention. The multi-objective reliability based robust de-
sign optimization (MORBRDO) takes into consideration the multi-objective. The
designed product gets the expected reliability after MORBRDO and its multi-
objective performances are the least sensitive to the design variables. There are
several key problems must to be solved for MORBRDO: (1) calculation of struc-
tural reliability; (2)establishment of the robustness cost function; (3)the design of
optimizing strategy; (4) implementation of multi-objective optimization.

When the ultimate limited state functions (ULSF) and the performance objective
functions (POF) are given, the checking point method is often applied in reliability
analysis, see Hasofor and Lind (1974); Rachwitz and Fiessler (1978); Santos et al
(2012). The first order reliability index is numerically equal to the ratio of the mean
value and standard deviation of the ULSF. However, for most of the structures in
real projects, neither the ULSF nor the POF is known because of the complication
of the shape, loads and boundary conditions. Theoretically, the mean value and
standard deviation of the performance objectives and the structural reliability could
be obtained by the Monte Carlo simulation method combined with the finite ele-
ment analyses (FEA). But tremendous amount of computational work would make
the Monte Carlo simulation method infeasible. Focusing on the listed problems,
the researchers present a variety of methods.

When the ULSF and the POF are unknown, a dimension reduction method (DRM)
is proposed to obtain the mean value and standard deviation, see Alois and Hans
(2001); Rahman and Xu (2004); Lee et al (2008); Wang et al (2011) It converts
the multi-dimensional integral to one dimensional integral. Similar to the Gaussian
integral, it only calculates the values at some certain integral points and gets the
mean value and standard deviation with the weighted sum method. The DRM
provides an effective way to calculate the statistical moments, but the response
surface method (RSM) is a more commonly used method. The essence of RSM
is to simulate an approximate function to present the real relationship between the
response and the random variables of the structure. And the approximate ULSF
and POF can also be obtained by RSM, see Zhen et al. (2009); Shun et al. (2011);
Adam and Tadeusz (2012). There are some commonly used forms for the response
function, such as the quadratic polynomial function, see Cho JY, Oh MH.( 2010);
Kaminski and Szafran (2012), the Kriging model, see Andy (2009); Rajagopal and
Ranjan G.(2011); Yang and Sun (2013)and the radial basis function model, see
Zhou et al. (2013); Luo and Zhang (2012) Zhou (2013) compares the precision of
several surrogate models and proposed a hybrid surrogate model.

The robustness cost function also often includes the mean value and standard de-
viation of the POF. The Taguchi quality loss function model is one of the most
commonly used robustness cost functions, see Dubey and Yadava (2008). In other
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models, the six sigma robustness design idea is introduced, see Shimoyama (2008);
Koch. et al (2004). Om et al (2010) proposes a hybrid quality loss function which
included desirable as well as undesirable deviations; Lu and Zhang (2011) com-
bines the reliability sensitivity with the performance objectives in robustness cost
function.

The main challenge of MORBRDO is the low efficiency caused by large number of
reliability analyses involved in the optimization procedure, especially when multi-
failure modes are within the structure. To improve efficiency, a sequential method
is developed, see Yu. et al (2013) which decouples reliability analysis from the
optimization to construct an equivalent deterministic constraint instead of the orig-
inal probabilistic one by using the locally exponential approximation. Two single-
level methods are proposed respectively, see Wang (2002); Du and Chen (2004),
to instead the common two-level method. Li and Azarm (2006) presented a deter-
ministic non-gradient based approach which applied a robustness index based on
sensitivity regions.

The performance objectives will not always get the optimum simultaneously, some-
times even conflict with each other, see Besharati et al (2006); Li and Zhao (2013).
A usual way is to turn the multi-objective optimization problem into a single ob-
jective optimization problem, such as the main objective method and the linear
weighted sum method, see Om et al (2010); Lu and Zhang (2011). This way is
easy to accomplish but can get only one or parts of the Pareto solutions. The aim
of multi-objective design optimization is to obtain the Pareto solutions set with
multi-objective design optimization algorithm, so that the decider could choose the
corresponding one according to his preference to each objective. The way of chang-
ing the weight factors based on the linear weighted sum method is one of the most
commonly used methods to get the Pareto solutions set, see Dubey and Yadava
(2008). In recent years, the meta-metaheuristic method, see Darian and Alexan-
der (2009), the Multi-Objective Tabu Search method (MOTS2), see Kipouros et
al (2008); Trapani et al (2012); Razzaq et al ( 2013) the multi-objective particle
swarm optimization algorithm (MOPSO) , see Li and Zhao (2013), and the multi-
objective evolutionary algorithm, see Rajagopal and Ranjan(2011), et al, are also
applied to discover the full Pareto frontier for the multi-objective problems. These
methods are being paid more and more attentions because they don’t need gradient
of the objectives, so they are particularly suited for the structure with discontinuous
POF. The main challenge of these modern ways is that they still need to decrease
their iterations and improve their efficiency to reduce computational burden.

In this paper, a new MORBRDO model which takes advantages of the multi-
objective robustness, the reliability sensitivity robustness and the six sigma robust-
ness design is proposed. And a new design optimization strategy is put forward to
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improve the optimization efficiency. The pure-quadratic polynomial functions are
adopted to fit the POF and the ULSF of the structure. Then, the optimum design is
obtained with the sequential quadratic programming method. Finally, three engi-
neering projects are introduced to testify the feasibility, accuracy and efficiency of
the new MORBRDO methodology.

2 Multi-objective reliability based robust design optimization (MORBRDO)
model

2.1 traditional design optimization (TDO) model

minmize h(d)
s.t. gi(d)≤ 0, i = 1, ...,nc

dL ≤ d≤ dU ,d ∈ Rndv

(1)

Where h(d) is the cost function of the structure with respect to d, gi(d) is the ith con-
straint, d is the ndv-dimention design variable vector, dL is the lower specification
limit of d, and dU is the upper. The traditional(deterministic) design optimization
model does not take the random character of the design variable and the non-design
variable into consideration, and its optimal result locates on the constraint bound-
ary, so the result is sensitive to the variables. And the structural reliability after
design can not reach the requirement.

2.2 A new MORBRDO model
minmize f (µH ,σH ,α|X)

s.t. P(gi(X;d)< 0)≤Φ(-βti), and
nc

∏
i=1

P(gi(X;d)< 0)≤Φ(-βt0), i = 1, ...,nc

dL + f ·σd ≤ d≤ dU − f ·σd,

d ∈ Rndv and X ∈ Rnxv

(2)

Where f (µµµH ,σσσH ,ααα|X)is the new MORBRDO robust cost function with respect to
ααα and X, ααα is the reliability sensitivity coefficient, X is the nxv-dimention variable
vector (include design variable and non-design variable), µµµHand σσσHare the mean
value vector and the standard deviation vector of the multi-objectives, respectively.
σσσd is the standard deviation of d. gi(X;d) is the ith ultimate limit state function with
respect to X , the design is assumed to be a “failure” if gi(X;d) < 0;βti is the ith
target structural reliability index corresponding to the gi(X;d); P(gi(X;d) < 0)is the
probability of gi(X;d)<0. Φ(·) is the standard normal cumulative distribution func-

tion;
nc
∏
i=1

P(Gi(X;d)< 0) = P(G1(X;d)< 0)∗P(G2(X;d)< 0)∗ ...∗P(Gnc(X;d)<
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0); β t0 is the target reliability index of the structure system under multi-failure
modes. f is the robustness level of design variables, it guarantees the probabil-
ity that the design point goes beyond the specification limits equal to or less than
Φ(- f ); Usually, 3≤ f ≤6 .

2.3 MORBRDO cost function

MORBRDO cost function f (µH ,σH ,α|X) is the linear weighted sum of several
objectives. It can be classified to the following four types according to its charac-
teristic:

(1) Smaller-the-better type

fS(µH ,σH ,α|X) =
k

∑
i=1

[
wi1 · sgn(µHi)

(
µHi

µHi0

)2

+wi2

(
σHi

σHi0

)2
]

+
nc

∑
j=1

w j3

(
nxv

∑
p=1

α
4
jp

/
nxv

∑
p=1

α
4
jp0

)2
 (3)

Where µHi and σHi are the mean value and standard deviation of the ith performance
objective, respectively. K is the number of the performance objectives; ααα j is the
jth reliability sensitivity coefficient vector, α jp is the pth element of ααα j; µHi0 , σHi0

and α jp0 are the initial value of µHi , σHi and α jp, respectively. sgn(·) is the sign
function; wi1, wi2 and w j3 are weighting factors to be determined by the designer,
they are taken value in [0,1] usually.

(2) Larger-the-better type

fL(µµµH ,σσσH ,ααα|X) =
k

∑
i=1

[
wi1 · sgn(µHi)

(
µHi0

µHi

)2

+wi2

(
σHi

σHi0

)2
]

+
nc

∑
j=1

w j3

(
nxv

∑
p=1

α
4
jp

/
nxv

∑
p=1

α
4
jp0

)2
 (4)

(3) Nominal-the-best type

fN(µµµH ,σσσH ,ααα|X) =
k

∑
i=1

[
wi1

(
µHi−hit

µHi0−hit

)2

+wi2

(
σHi

σHi0

)2
]

+
nc

∑
j=1

w j3

(
nxv

∑
p=1

α
4
jp

/
nxv

∑
p=1

α
4
jp0

)2
 (5)
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Where hitandµHi0are the target nominal value and the initial target nominal value
of the ith performance objective function respectively

(4) Combined type

fC(µµµH ,σσσH ,ααα|X) = fS(µµµH ,σσσH ,ααα|X)+ fL(µµµH ,σσσH ,ααα|X)+ fN(µµµH ,σσσH ,ααα|X) (6)

In equations (3)-(6), to reduce the dimensionality problem of multi-objectives, each
term is normalized by the initial value µHi0σHi0 and α jp0, respectively. The new
MORBRDO cost function not only pursuits the optimum of the mean value, but
also seeks the minimum values of the standard deviation of the multi-objectives.
Moreover, it explores the most robust design of the structural reliability in itself.
The weighting factors reflect the preferences of the designer to each objective

3 MORBRDO based on response surface method (RSM)

In practical projects, for structural system with complicated shape and in complex
stress condition, it is necessary to get the response values of volume, stress, defor-
mation and inherent frequency by numerical computation method (such as finite
element method, FEM). The real function relationships between the responses and
the random variables of the structure are so complicate that they can not be ob-
tained, so are the POF and ULSF. In terms of the listed problems, the response
surface method (RSM) is an effective method had been developed in recent years.
The essence of RSM is to fit an approximate specific function to substitute the real
POF or ULSF. And based on the response function, it is relatively easy and feasible
to carry out MORBRDO for complicated structures

3.1 The fitting of response functions

The steps to obtain the response function are showed as bellow:

(1) Choose the pure-quadratic polynomial function to fit the relationship between
the response and the random variables as the following:

H(X) = a+
n

∑
i=1

bixi +
n

∑
i=1

cix2
i (7)

Where H(X) is the response of the structure, X = (x1,x2, · · · ,xn) is the random
variable vector, a, bi and ciare the coefficients to be determined, n is the number of
random variables.

(2) Take the current mean value of variables as the spread point of the response
function, compute the response values at the following selected 2n+1 sample points:
the mean value point µX =(µx1 ,. . . ,µxi ,. . . ,µxn), 2n points on axis (µx1 , . . . µxi±λσxi ,



A New Multi-objective Reliability-based Robust Design Optimization Method 415

. . . µxn), where µxi and σxi are the mean value and standard deviation of xi, respec-
tively. λ is the location parameter of sample points, 1≤ λ ≤ 3, usually. The 2n+1
values of responses [h1(X),h2(X),. . . ,h2n+1(X)] are obtained by finite element anal-
ysis (FEA);

(3) Put the 2n+1 sample points and 2n+1 response value of H(X) into the Eqn.(7),
then a equations set include 2n+1 variables and 2n+1 responses can be gotten.
The 2n+1 undetermined coefficients a, bi and ci can be obtained conveniently by
using the least square method. For convenience, we call the approximate POF
and ULSF simulated with the pure-quadratic polynomial functions POF_RSM and
ULSF_RSM, respectively.

3.2 Calculation of the mean value and standard deviation of POF_RSM

Suppose H(X) is a certain POF_RSM (such as efficiency, stress, etc), spread H(X)
at the mean value point µX with Taylor series expansion method and get to the
second order items. So:

H(X) = H(µX)+
n

∑
i=1

(bi +2ciµxi)(xi−µxi)+
n

∑
i=1

ci(xi−µxi)
2 (8)

The mean value of H(X) is:

µH = E(H) = H(µX)+
n

∑
i=1

ciσ
2
xi

(9)

The standard deviation of H(X) is:

σH =

√
n

∑
i=1

n

∑
j=1

(
(bi +2ciµxi)(b j +2c jµx j)ρi jσxiσx j

)2 (10)

Where ρi j is the correlation coefficient of xiandx j.

3.3 Calculation of the reliability and reliability sensitivity coefficient based on
the ULSF_RSM

(1) Structural reliability index

Suppose gX(X) is the ULSF_RSM with respect to a certain failure mode, display
gX(X) as below:

gX(X) = d +
n

∑
i=1

eixi +
n

∑
i=1

fix2
i (11)
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Adopt checking point method to compute the structural reliability index corre-
sponding to Eqn. (11), suppose the checking point is x∗, hence, x∗ is located on
the ultimate limit state surface, so

gX(x∗) = 0 (12)

Spread gX(X) at the checking point x∗ with Taylor series expansion method and get
to the linear items, so

gXL = gX(x∗)+
n

∑
i=1

∂gX(x∗)
∂xi

(xi− x∗i ) = gX(x∗)+
n

∑
i=1

(ei +2 fix∗i )(xi− x∗i ) (13)

According to the definition of the structural reliability index, the first order reliabil-
ity index based on checking point method is:

β =
µgXL

σgXL

=
gX(x∗)+

n
∑

i=1

∂gX (x∗)
∂xi

(µxi− x∗i )√
n
∑

i=1

n
∑
j=1

(
∂gX (x∗)

∂xi
· ∂gX (x∗)

∂x j
ρi jσxiσx j

)2

=

gX(x∗)+
n
∑

i=1
(ei +2 fix∗i )(µxi− x∗i )√

n
∑

i=1

n
∑
j=1

(
(ei +2 fix∗i ) · (e j +2 f jx∗j)ρi jσxiσx j

)2

(14)

β can be calculated with iteration method.

(2) Reliability sensitivity coefficient

The structural reliability sensitivity coefficient with respect to xi is:

αxi =

−
n
∑
j=1

∂gX (X∗)
∂xi

ρi jσx j√
n
∑

i=1

n
∑
j=1

(
∂gX (X∗)

∂xi
· ∂gX (X∗)

∂x j
ρi jσxiσx j

)2

=
−

n
∑
j=1

(ei +2 fix∗i )ρi jσx j√
n
∑

i=1

n
∑
j=1

(
(ei +2 fix∗i ) · (e j +2 f jx∗j)ρi jσxiσx j

)2

(15)

αxi indicates the relative contribution of the ith random variable to the standard
deviation of ULSF_RSM, and it also reflects its relative influence to the first order
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reliability index. It is not robust when the influence of a certain variable takes the
main part. Hence, it is very natural to hope that each element of αx is relatively
equal.

According to Eqn.(15),
n
∑

i=1
α2

xi
= 1. Let ti = α2

xi
(i=1, 2, . . . , n), so that

n
∑

i=1
ti =

1, 0 ≤ ti ≤ 1. According to the knowledge of non-equality, the smaller
n
∑

i=1
t2
i is,

the closer the each element of ti is, so is αxi . And the reliability index is more
robust. Therefore, the following function is chosen to be the reliability sensitivity
robustness objective function:

f (α)
xi =

n

∑
i=1

t2
i =

n

∑
i=1

α
4
xi

(16)

(3) Dealing with non-normal distribution variables

Eqn.(14) is appropriate when all the variables of the structure are normal distribu-
tion variables. If there are non-normal distribution variables, the mapping trans-
formation method is adopted. Its principle is to map the non-normal distribution
variable into standard normal distribution variable in the constraint that the cumu-
lative distribution function (CDF) values of both variables are equal at the checking
pointx∗. Suppose yi is a normal distribution variable and xi is a non-normal distri-
bution variable, Φ(yi) and F(xi) are the CDF of yi and xi, respectively. To carry out
the following transformation:

Fxi(xi) = Φ(yi) (17)

So:{
xi = F−1

xi
[Φ(yi)]

yi = Φ−1[Fxi(xi)]
(18)

Eqn.(17) for differential on both sides:{
fxi(xi)dxi = ϕ(yi)dyi

dxi
/

dyi=ϕ(yi)
/

fxi(xi)
(19)

Where ϕ(yi) and fxi(xi) are the probability density function of yi and xi, respec-
tively.

Put Eqn. (18) into Eqn. (11), the ULSF_RSM with respect to Y :

Z = gX(X) = d +
n

∑
i=1

ei ·F−1
xi

[Φ(yi)]+
n

∑
i=1

fi · {F−1
xi

[Φ(yi)]}2 = gY (Y ) (20)



418 Copyright © 2014 Tech Science Press CMES, vol.98, no.4, pp.409-442, 2014

Where, Y = [y1 y2 · · · yi · · ·yn ], yi ∼ N(0,1). Then, Eqn.(14) and Eqn.(15) are
turned into Eqn.(21) and Eqn.(22) as the following:

β =

gY (y∗)+
n
∑

i=1

∂gY (y∗)
∂yi

(µyi− y∗i )√
n
∑

i=1

n
∑
j=1

(
∂gY (y∗)

∂yi
· ∂gY (y∗)

∂y j
ρi j

)2
=

gY (y∗)−
n
∑
j=1

∂gX (x∗)
∂x j

· ∂x j
∂y j

∣∣∣
y∗j
· y∗i√

n
∑

i=1

n
∑
j=1

(
∂gX (x∗)

∂xi
· ∂xi

∂yi

∣∣∣
y∗i
· ∂gX (x∗)

∂x j
· ∂x j

∂y j

∣∣∣
y∗j

ρi j

)2

=

gX(x∗)+
n
∑

i=1
(ei +2 fix∗i ) ·

∂xi
∂yi

∣∣∣
y∗i
·Φ−1(Fxi(x

∗
i ))√

n
∑

i=1

n
∑
j=1

(
(ei +2 fix∗i ) ·

∂xi
∂yi

∣∣∣
y∗i
· (e j +2 f jx∗j) ·

∂x j
∂y j

∣∣∣
y∗j

ρi j

)2

(21)

αyi =

−
n
∑
j=1

∂gY (y∗)
∂yi

ρi j√
n
∑

i=1

n
∑
j=1

(
∂gY (y∗)

∂yi
· ∂gY (y∗)

∂y j
ρi j

)2

=
−

n
∑
j=1

(e j +2 f jx∗j) ·
∂x j
∂y j

∣∣∣
y∗j
·ρi j√

n
∑

i=1

n
∑
j=1

(
(ei +2 fix∗i ) ·

∂xi
∂yi

∣∣∣
y∗i
· (e j +2 f jx∗j) ·

∂x j
∂y j

∣∣∣
y∗j
·ρi j

)2

(22)

According to Eqn. (19), the below item in Eqn. (21) and Eqn. (22) is deduced:

∂xi

∂yi

∣∣∣∣
y∗i

=
dxi

dyi

∣∣∣∣
y∗i

=
ϕ(y∗i )
fxi(x

∗
i )

=
ϕ(Φ−1(Fxi(x

∗
i )))

fxi(x
∗
i )

(23)

3.4 A new design optimization strategy of MORBRDO

For the structure with unknown ULSF which needs to fit the approximate ULSF
with FEM, the main challenge of MORBRDO is the large number of reliability
analysis within the optimization process. And the reliability is an iteration process
in itself. So, it is a key step to design an efficient optimization strategy for MOR-
BRDO which can guarantee the reliability and in the same time can reduce compu-
tational work effectively. Traditional reliability analysis based on RSM and check-
ing point method (TDCRA_RSM) is a double cycle iteration process, as shown in
Fig.1.a). In TDCRA_RSM, several iterations (k supposed) may be needed to get
the convergence and reliability index. If the pure-quadratic polynomial function is
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adopted as the RSM model, 2n+1 FEA are needed every time the ULSF_RSM up-
dates, n is the number of variables of the structure. So, k×(2n+1) FEA in total are
taken in a TDCRA_RSM in order to get the reliability index under current value of
design variables.

In order to enhance the efficiency of reliability analysis, an improved method is pro-
posed, as shown in Fig.1.b). The improved method does not update the ULSF_RSM.
Based on the checking point method and the current ULSF_RSM, it ends the relia-
bility analysis when the checking point convergences. We call the improved method
the simplified single cycle reliability analysis method based on current ULSF_RSM
(SSCRA_RSM).

Figure 1: Flow chart of TDCRA_RSM and SSCRA_RSM.

The main distinguish between the TDCRA_RSM and SSCRA_RSM is that the TD-
CRA_RSM chooses the checking point as the final center point of the ULSF_RSM
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Figure 2: The new design optimization strategy of MORBRDO.

by iteration. Thus, the computational accuracy of TDCRA_RSM is higher than
SSCRA_RSM. However, the computational work is also greatly larger than SS-
CRA_RSM. The SSCRA_RSM is also based on the checking point method and
can deal with correlative and non-normal distribution variables. Although its com-
putational accuracy is lower than TDCRA_RSM, it can satisfy the engineering re-
quirement. The examples followed in this paper will prove this.

Based on the SSCRA_RSM, we proposed a new design optimization strategy of
MORBRDO. Its workflow is showed in Fig.2. From the workflow, if the design
optimization takes miterations to gets its convergence, it will take m×(2n+1) FEA
for the new strategy. But if the sub-cycle of reliability analysis adopts the TD-
CRA_RSM, it will take m× k×(2n+1) FEA. It is obviously that the new design
optimization strategy of MORBRDO improves the design optimization efficiency
remarkably.

The steps of the new MORBRDO methodology are as following:

1) Determine the performance objectives, random variables (include design vari-
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ables and non-design variables), rang and distributions of the variables; Determine
the failure modes of the structure, such as stiffness failure and strength failure;

2) Establish the parameter model of the structure;

3) Adapt the method introduced in section 3.1 of this paper, fit the ULSF_RSM and
POF_RSM;

4) Based on the POF_RSM adopt the method introduced in section 3.2 of this paper
to calculate the mean values and standard deviations; Based on the ULSF_RSM,
adopt the method introduced in section 3.3 of this paper to calculate the reliability
index and reliability sensitivity coefficient;

5) According to Eqn.(3) ∼ Eqn.(6), gain the MORBRDO cost function;

6) According to the MORBRDO model in Eqn.(2) of this paper, adopt sequential
quadratic programming method to obtain the new design optimization point.

7) Take the new design optimization point as the next iteration point, repeat step
3)∼6) until the cost function value converge to required precision. If more Pareto
solutions are needed, adjust the weighting factors and restart the design optimiza-
tion.

4 Application

4.1 MORBRDO for I-beam structure

To obtain the minimum sectional area of the I-beam structure, as shown in the Fig.
3, under the concentrated force P. The constraints are as the following: vertical
distortion less than 0.3mm; bending stress less than 160Mpa. E is elasticity modu-
lus of the beam material. The variables of the I-beam structure and their statistical
properties and correlation coefficients are shown in Tab.1. Please redesign the sizes
of I-beam structure with MORBRDO method.

Analysis: In terms of the I-beam structure, the analytic solution of MORBRDO can
be obtained. So this example can be used to testify the feasibility and validity of
the method proposed in this paper.

According to the purpose of the problem, the POF is the sectional area as following:

H(X) = 2x2x4 + x3(x1−2x4) (24)

The vertical section area is:

I =
[
x2x3

1− (x2− x3)(x1− x4)
3]/12 (25)

The maximum distortion is:

ymax = PL3/(48EI) (26)
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Table 1: Types, ranges, statistical properties and correlation coefficients of random
variables of I-beam structure.

Variables variable
type

Mean value
and date range

Standard
deviation

distribution Remarks

x1 Design [100,800]mm 3.0 mm Normal Original
design

x2 Design [100,800]mm 1.8 mm Normal size/mm:
x3 Design [9,50]mm 0.03 mm Normal (x1,x2,x3,x4)=
x4 Design [9,50]mm 0.03 mm Normal (750,520,15,15)
L Non-design 2000mm 10mm Lognormal Correlation
P Non-design 600kN 3 kN Gumbel coefficients:
E Non-design 2×105Mpa 1000

Mpa
Normal ρx1x4=0.8

ρx2x3 = 0.8

Figure 3: Sketch map of I-beam structure.

The maximum bending moment is:

Mmax = PL/4 (27)

The maximum normal stress is:

σmax = (Mmax/I) · x1/2 (28)

The ULSF with respect to stiffness failure mode is:

g1(X) = 0.3− ymax (29)

The ULSF with respect to strength failure mode is:

g2(X) = 160−σmax (30)

The smaller-the-better type cost function in Eqn. (3) is chosen for the MORBRDO
of the I-beam structure.
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TDO and MORBRDO had been implemented to the I-beam structure. The opti-
mization results are shown in Tab. 2. Where β t is the optimum result of structural
system index and β M_C is the optimum result with Monte-Carlo method, which had
taken the advantage of the analytic equations of Eqn. (24)∼Eqn. (30).

According to Tab.2, the mean value and standard deviation of the performance ob-
jective (sectional area of the beam) decreased remarkably after MORBRDO com-
pared with the initial design. The structural reliability meets the requirement. When
compared the MORBRDO with the Monte-Carlo method, which are regarded as the
most accurate one, the differences of the results are small. So, the MORBRDO are
accurate and reliable. Different weighting factors caused different design results
and revealed the preferences of the weighting factors to the objectives. In this pa-
per, the MORBRDO cost 165 FEA in the whole 11 iterations. If the TDCRA_RSM
which had been introduced in section 3.4 in this paper is adopted, it will cost 825
FEA. But the optimization results will be almost the same as the results in Tab.2.

Figure 4: Statistics histogram of g1(X).

Statistics histograms of g1(X) after designed by TDO and MORBRDO respectively
are showed in Fig.4. After TDO, the optimum cross-sectional area of the beam is
the minimum. So, it could utmost to reduce the cost of raw materials for TDO.
But, because of the randomness of the variables, the mean value of g1(X) is about
zero, the optimum point is near the border of the failure surface and the structural
reliability is just about 50%; After MORBRDO, however, the optimum point is far
away from the border of the failure surface and the structural reliability is about
Φ(6).



424 Copyright © 2014 Tech Science Press CMES, vol.98, no.4, pp.409-442, 2014

Table
2:R

esults
ofM

O
R

B
R

D
O

ofI-beam
structure.

Item
s

W
eight

(w
11 ,w

12 ,w
13 ,w

23 )
(µ

H
,σ

H
,

n∑p=
1
α

41p ,
n∑p=

1
α

42p )
D

esign
variables

optim
um

V
alues

/
(x1 ,x2 ,x3 ,x4 )

β
t1

β
t2

β
M

_C
Iter.

N
o.ofFE

A

Initial
(26400,79.53,0.611,0.539)

(750,520,15,15)
23.0

310.8
24.7

T
D

O
(15399,55.4,0.612,0.0.576)

(800,464.5,9.0,9.0)
0.0

132.8
0.014

11
55

M
O

R
B

R
D

O
(0.5,0.5,0.5,0.5)

(17263,58.99,0.483,0.583)
(782,522.1,9.18,9.83)

6.00
172.3

6.11
11

165
f=6

(1,0,0,0)
(17263,59.02,0.483,0.583)

(782,520.4,9.18,9.86)
6.00

172.5
6.12

11
165

β
ti =

β
t0
=

6
(0,1,0,0)

(17260,58.94,0.484,0.589)
(782,528.2,9.18,9.71)

6.00
172.4

6.09
11

165
(0,0,1,0)

(22993,73.41,0.459,0.509)
(750,519,9.18,15.78)

21.6
300.0

305.4
11

165
(0,0,0,1)

(24094,76.09,0.458,0.493)
(772,519,9.18,16.68)

27.5
333.4

340.0
11

165



A New Multi-objective Reliability-based Robust Design Optimization Method 425

4.2 MORBRDO for the pressure vessel

Pressure vessel is a kind of important equipment being widely used in engineering,
to design a cylindrical pressure vessel with standard elliptical head (as shown in
Fig.5). The total volume is 80m3 and the pressure that the vessel bears is Pc. The
vessel is made of 16MnR steel whose allowable stress is Sσ and welded joint co-
efficient φ is 0.85. The length-diameter ratio constraint is 3 ≤ L/D ≤ 20. Types,
ranges, statistical properties and correlation coefficients of random variables and
other parameters of the pressure vessel are shown in Tab.3. Please design the sizes
of pressure vessel with MORBRDO method.

Figure 5: Sketch map of pressure vessel.

Table 3: Types, ranges, statistical properties of the random variables of pressure
vessel.

Variables variable type Mean value
and date range

Standard
deviation

distribution Remarks

D Design [0,+∞] mm 0.005D Normal
δ Design [0,+∞] mm 0.005δ Normal Correlation
L Design [0,17000] mm 0.005L Normal coefficient:
Pc Non-design 0.8MPa 0.192MPa Lognormal ρDδ = 0.75,
Sσ Non-design 340MPa 27.2Mpa Normal ρDL = 1.0

Analysis: Under internal pressure, the maximum stress is at the circumferential
direction and the apex of the standard elliptical head. And the value is:

σmax = Pc(D+δ )δ/2 (31)

The ULSF with respect to strength is:

g(x) = φ ·Sσ −σmax (32)



426 Copyright © 2014 Tech Science Press CMES, vol.98, no.4, pp.409-442, 2014

The POF (the total mass) is:

H(D,δ ) = ρπ(D+δ )δL+
1

12
ρπ
[
(D+2δ )2(D+4δ )−D3] (33)

Where ρ is the material density of the vessel, ρ =7850Kg/m3.

The total volume V = 1
4 πD2L+ 1

12 πD3, so:

L = 4V/(πD2)−D/3 (34)

The stiffness constraint is:

δ ≥ 3mm (35)

The stability constraint is:

δ −15% ·D≥ 0 (36)

The smaller-the-better type cost function in Eqn. (3) is chosen for the MORBRDO
of the pressure vessel. The optimization results are shown in Tab.4. After MOR-
BRDO, the structural reliability reached the target value, the inner diameter D and
the thickness δ of the pressure vessel were decreased, but the length was increased.

4.3 MORBRDO for the turbine blade model lines

The turbine blade is the key parts of the gas turbine, and the aerodynamic efficiency,
structural strength and intrinsic frequency, etc, are closely connected with blade
model lines, see Nikita and Keane (2011); PENG and YANG. (2012). In terms of
the guide blade, the maximum aerodynamic efficiency is expected. For the rotating
blade, because it is rotating under the high-speed and high temperature currents of
gas, it bears very complicated stress. Therefore, it is necessary to design its model
lines with MORBRDO method.

4.3.1 Parameter modeling of turbine blade model line

Taking the advantage of the basic geometry characteristic parameters of the turbine
blade model line such as the blade width B, setting angle γ p, radius of leading edge
r1 and trailing edge r2, flow inlet angle β 1 and flow outlet angle β 2 wedge angle of
leading edge ϕ1 and trailing edge ϕ2, we describe the blade model lines with three
cubed Bezier curve, as shown in Fig.6.

According to the coordinates of G, U1, U2, D, the equations of the suction side line
curve with respect to three cubed Bezier curve are:{

xSUC(t) = xG(1− t)3 + xU13(1− t)2t + xU23(1− t)t2 + xDt3

ySUC(t) = yG(1− t)3 + yU13(1− t)2t + yU23(1− t)t2 + yDt3 (37)
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 Figure 6: Description of blade model lines with three cubed Bezier curve.

Where 0≤ t ≤ 1, and the pressure side line equations could be obtained in the sim-
ilar way. The coordinates of G, U1, U2, D and the detailed equations of the model
lines expressed by the basic geometry characteristic parameters of the turbine blade
had been deduced by the authors, see PENG and YANG (2012).

4.3.2 Parameter modeling of blade flow field and heat-fluid-solid coupling anal-
ysis

Based on the parameter equation of the blade model line, the parameter models
of the blade and flow field are established with Pro/Engineering software. The
parameter models under original design are shown in Fig.6.

 Guide blade  

Rotating blade  

Flow field  

of guide blade  

Flow field of 

rotating blade  

 

Figure 7: Blade and flow field models.
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In order to obtain the aerodynamic efficiency, stress and deformation, etc of the
blade accurately, the heat-fluid-solid coupling analysis is adopted. The coupling
analysis is accomplished with Ansys Workbench 12.1. The flow field analysis
chooses the shear stress transport (SST) as the turbulence model. According to the
dates of the stand tests and the actual working records of the turbine under design
working condition, the loads inflicted to the flow field analysis are as the following:
to inflict the flow field inlet with mass flow rate and average temperature; to inflict
the flow field outlet with average static pressure; stationary inertial frame is cho-
sen for the guide blade flow field; the non-inertial frame which is rotating around
the main shaft of the turbine at a certain angular velocity is chosen for the rotat-
ing flow field; in each reference frame, the flow field boundary is heat insulation,
solid wall, zero speed condition without slip; choose the CFX frozen rotor model
to transfer the calculation dates between the guide blade flow field and the rotating
blade flow field; adopt general grid interface(GGI) method to map the dates. The
flow analysis obtains the distribution of the temperature, pressure and gas velocity
of the flow field and blade surface. And then the aerodynamic efficiency of the
blade is calculated. After, the temperature and pressure of the blade surface of the
flow analysis together with the angular velocity are conducted as loads of the stress
analysis. Then the stress, deformation and intrinsic frequency, etc are obtained by
stress analysis. Partial results of the heat-fluid-solid coupling analysis of the blade
are shown in Fig. 8- Fig.10.

4.3.3 MORBRDO of blade model lines

(1) Choice of POF

For both of the guide blade and rotating blade, we choose the aerodynamic effi-
ciency and the blade volume as the main POF.

MORBRDO cost function: The aerodynamic efficiency is always expected to in-
crease. But the volume is expected to decrease, so the combined type in Eqn. (6) is
chosen for the turbine blade model lines MORBRDO.

Because the guide blade is stationary, so the stress and deformation are much
smaller than the rotating blade. In this paper, we mainly take the rotating blade
into consideration and carry out the stress and reliability analyses to it.

(2) Probability constraints of rotating blade

Strength probability constraint is:

P(S−σs>0)≥Φ(βts) (38)

Stiffness probability constraint is:

P(ξ −ξs>0)≥Φ(βtξ ) (39)
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Figure 8: The pressure, temperature, Mach number and turbulence kinetic energy
distributions of the flow field at 10%, 50% and 90% blade height.

Resonance frequency probability constraint is :

P(|F− k ·FI| ≥ 7.5Hz)≥Φ(βtF) (40)

Where S, ξ and F are the maximum stress, maximum deformation and natural fre-
quency of the rotating blade under design working condition, respectively. ξ s is the
allowed deformation; σs is the yield strength of blade at the working temperature.
FI is the rotational frequency of the turbine, k is the number of even-distributed
excitation sources, usually only k=1 and k=2 are being taking into consideration.
β ts, β tξ g and β tF are the target reliability indexes with respect to strength, stiffness
and vibration failure modes respectively.

(3) MORBRDO cost function for turbine blade
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Figure 10: Equivalent stress distribution of rotating blade.

1. for turbine guide blade, the MORBRDO cost function is

fCJ(µH ,σH ,α|X) =w11 ·
(

µEJ0

µEJ

)2

+w12

(
σEJ

σEJ0

)2

+w21 ·
(

µVJ

µVJ0

)2

+w22

(
σVJ

σVJ0

)2 (41)
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2. for turbine rotating blade, the MORBRDO cost function is

fCD(µH ,σH ,α|X) = w11 ·
(

µED0
µED

)2
+w12

(
σED
σED0

)2

+w21 ·
(

µVD
µVD0

)2
+w22

(
σVD
σVD0

)2
+

3
∑
j=1

w j3

(
nxv
∑

p=1
α4

jp

/
nxv
∑

p=1
α4

jp0

)2
 (42)

In Eqn.(41) and Eqn.(42), µEJ, µMJ, µED and µMD are the mean value of the
aerodynamic efficiency of guide blade, volume of guide blade, efficiency of rotating
blade and volume of rotating blade, respectively. σEJ, σMJ, σED and σMDare
the standard deviation of the aerodynamic efficiency of guide blade, volume of
guide blade, efficiency of rotating blade and volume of rotating blade, respectively.
µEJ0

is the value of µEJ when the blade is in initial design, so as to other items. The
last item in Eqn. (42) is the objective of the reliability sensitivity coefficient with
respect to Eqn.(38)- Eqn.(40).

(4) Variables definition

In MORBRDO, the design parameters are regarded as random variables. Moreover,
the non-design random variables also must be taken into consideration. In terms of
the turbine blade, the non-design variables and other parameters are shown in Tab.5.
The design variables and their ranges are shown in Tab.6. Where, Minlet , Tinlet , and
Poutlet are the mass flow rate, inlet average temperature and outlet average static
pressure of the flow field, respectively.

Table 5: Statistic parameters and distributions of the non-design variables of turbine
blade.

Non-design
Variables

Mean value Standard
deviation

distribution Remarks

σs 550MPa 0.02σs Normal ξ s=0.006mm;
FI 54.5Hz 0.03FI Normal β ts=β tξ =β tF =4;

Minlet 0.975/kg·s−1 0.01Minlet lognormal β t0=4; f =4;
Tinlet 710/◦F 0.01Tinlet Normal Correlation coefficient:
Poutlet 0.1495 MPa 0.01Poutlet Gumbel ρMP=0.4,ρT P=0.75

The weighting factors wi j reflects the preference of the designer to each objective.
For turbine blade, wi j is chosen in four cases, as shown in Tab.6.

According to the sensitivity analysis based on DOE and FEA, six parameters in-
cluding β 1, β 2, ϕ1, ϕ2, R1 and R2 , as shown in Tab.7, which have the major
influences on the aerodynamic efficiency and stress of the blade are chosen to be
optimized.
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(5) MORBRDO results

According to the new design optimization strategy of MORBRDO in section 3.4,
we have achieved the design optimization with respect to the above four cases in
Tab.6. Take the case 1 for instance, the whole MORBRDO takes 9 iterations (350
hours in total) to achieve optimization. The optimum value of the design variables
and performance objectives are shown in Tab.7∼Tab.9. After MORBRDO, the
aerodynamic efficiencies of the guide blade and the rotating blade are increased by
1.5% and 5.4% respectively; the maximum stress and the maximum deformation of
the rotating blade are decreased by 16.8% and 8.5% respectively; and the standard
deviations of the above performance objectives are decreased too, so the robustness
of the blade is increased. What’s more, the structural system reliability reached
99.99%, but before MORBRDO it is only 89.4%. Fig.11 shows the comparing
of turbine blade model line figures before and after MORBRDO. Fig.11∼ Fig.13
show the comparing of the turbulence kinetic energy changing along with the blade
model line at the 10%, 50% and 90% blade height before and after MORBRDO,
respectively. The turbulence kinetic energy reflects the loss of kinetic energy of
the blade. So Fig.12 ∼ Fig.14 show that, after MORBRDO, the maximum loss of
kinetic energy of the blade surface at the 10%, 50% and 90% blade height decrease
by 14.9%, 11.1% and 17.6% respectively. However, the means and standard devia-
tions of the blade volumes increased a little, so the cost of the blade material would
be increase finally.

For turbine blade, the aerodynamic efficiency and the volume would not get the
optimum at the same time, as shown in Fig.15. The mean value of the aerodynamic
efficiency and volume of the guide blade and rotating blade in Case 1 to Case 4 are
shown in Tab.6 and Fig.15. The results show that the original design is a feasible
design but not a Pareto solution. By changing the weighting factors and redesign,
we can get the Pareto frontier of the turbine blade model line design optimization
solutions, as shown in Fig.15.

Therefore, MORBRDO can ensure the structural reliability and enhance the ro-
bustness of the structure on the one hand; but on the other hand, it may sacrifice
some other desirable performances, such as the costs, time, quality, etc. So the
MORBRDO could be regarded as a trade-off compromise design method.

5 Conclusions

In this paper, a new MORBRDO model and a new design optimization strategy
were proposed. Based on the pure-quadratic polynomial function model, the relia-
bility calculation equations with non-normal distribution variables, the mean value
and standard deviation equations of performance objectives were deduced. The I-
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Table 9: Optimization results of target parameters of guiding blade (Case 1).

Items aerodynamic efficiency volume / mm3

mean
Orig. 0.9281 173289
Opt. 0.9421 185557

standard Orig. 0.039 4935
deviation Opt. 0.041 5052
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 Figure 11: Comparing of turbine blade model line figures before and after MOR-
BRDO (Case 1).
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 Figure 12: Compare of the turbulence kinetic energy changing along with the blade
model line at the 10% blade height before and after MORBRDO (Case 1)
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 Figure 14: Compare of the turbulence kinetic energy changing along with the blade
model line at the 90% blade height before and after MORBRDO (Case 1).
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beam structure, a pressure vessel and the turbine blade model lines were introduced
to testify the MORBRDO methodology. The main concluding remarks could be
summarized as below:

(1) The new MORBRDO model takes advantages of the multi-objective robustness,
the reliability sensitivity robustness and the six sigma robustness design idea. It
considers the multi-objectives and multi-failure modes simultaneously, ensures the
system reliability and enhances the robustness of the structure.

(2) In terms of the structure with unknown ULSF and POF, the new MORBRDO
model adopts the pure-quadratic polynomial function to obtain approximate ULSF
and POF. It makes the design optimization feasible and relatively easy to imple-
ment.

(3) The new design optimization strategy does not update the ULSF_RSM, so it
reduces computational work of FEA and improves optimization efficiency remark-
ably.

(4) Two real projects of I-beam structure and pressure vessel with analytic solutions
had been introduced and had verified the accuracy and feasibility of the new MOR-
BRDO methodology. Then the new methodology was also adopted to redesign the
turbine blade model lines. And the Pareto frontier of the turbine model line MOR-
BRDO solutions is obtained. So it could be inferred that the new MORBRDO
methodology could be applied to the complicated structures.

(5) For the MORBRDO, in order to improve the robustness and guarantee the re-
liability of the structure, it may sacrifice some other desirable performances, such
as manufacturing costs, time, etc. In actual engineering, the designer can adjust
the target reliability index, the robustness level or the weighting factors to trade off
between the quality enhancement and the costs decrease.
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